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Abstract—The present work introduces a proposed 
Artificial Bee Colony with Adaptive Scale Factor (ABC-ASF) 
optimization algorithm-based optimal electrode selection 
strategy from which the acquired EEG signals enlighten the 
major brain activities involved in a cognitive task. In ABC-
ASF, the scale factor for mutation in traditional Artificial Bee 
Colony is self adapted by learning from the previous 
experiences. Experimental results obtained from the real 
framework of estimating optimal electrodes indicate that the 
proposed algorithm outperforms other state-of-art techniques 
with respect to computational accuracy and run-time 
complexity. 

Keywords—artificial bee colony; electroencephalogram; 
independent component analysis; self adaptation 

I. INTRODUCTION  
Brain computer interface (BCI) technology [1] has 

revolutionized rehabilitation, assistance and treatment of 
neuro-motor, sensory-motor and cognitive disabilities. BCIs 
have been implemented using a number of different 
techniques that include invasive brain implants, partially 
invasive procedures like electrocorticography and non-
invasive techniques like processing of brain signals that are 
captured through Electroencephalogram (EEG), 
magnetoencephalogram (MEG) or functional magnetic 
resonance imaging (fMRI). EEG has proved to be the most 
popularly used non-invasive interface because of its superior 
temporal resolution, easy acquisition, simple processing, 
portability, cost-effectiveness and freedom from exposure of 
the subject to intense magnetic fields. Several instances of 
EEG based BCI research has been found in literature [2-7].  

EEG signals are generated from independent and 
localized sources through neuronal firing in the outer cortex 
of the brain and are recorded using electrodes placed on 
various locations on the scalp [8]. At each electrode the 
obtained EEG signal is a mixture of the effects of the signals 
from a number of sources. EEG for a task may be recorded 
using a number of electrodes placed at different locations; 
however, it may happen that signals from two or more EEG 
electrodes convey redundant information and hence only one 
out of these is to be considered. The selection of the most 

relevant electrodes for which non-overlapping information is 
obtained without any information being lost is necessary for 
faster signal processing in the real time scenario.  

The present work proposes a novel evolutionary 
technique of EEG electrode selection specific to a particular 
cognitive activity. EEG signals available on the scalp are 
termed as sink signals henceforth, which are acquired using 
14 scalp electrodes. The corresponding set of 14 source 
signals is estimated using Independent Component Analysis 
(ICA) [8-9]. The source signals as well as the sink signals 
(i.e., EEG signals) are represented using a feature space 
consisting of four standard EEG features, namely, Adaptive 
Autoregressive parameters [10], Hjorth parameters [11], 
Power Spectral Density [12-13] and Wavelet Coefficients 
[14]. The most important electrodes are found out using a 
proposed Artificial Bee Colony with Adaptive Scale Factor 
(ABC-ASF) algorithm with an aim to maximize the 
correlation between the set of source features for original and 
selected sink signals while minimizing the mutual 
information among each of the selected sink feature pairs. 

In ABC-ASF, the scale factor used for food source 
(candidate solution) mutation is gradually self-adapted by 
learning from their previous experiences in producing 
improved locations of food sources. Specifically, at each 
generation, a set of scale factor values will be separately 
assigned to each individual bee (corresponding to a food 
source) of the current generation according to the selection 
probabilities learned from their previous generations. A 
comparison of ABC-ASF with some standard evolutionary 
algorithms like Artificial Bee Colony (ABC) [15], 
Differential Evolution (DE) [16] and one variant of ABC, 
known as Self-Adaptive Artificial Bee Colony (SAABC) [17] 
for solution of the present problem is provided.  

The rest of the paper is structured as follows. The 
standard principles and methods are explained in Section II. 
An overview of the ABC algorithm is presented in Section III 
while the proposed ABC-ASF algorithm is described in 
Section IV. The experiments and results are explained in 
Section V. Finally, in Section VI conclusions are drawn. 
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II. PRINCIPLES AND METHODS 
This section provides a schematic overview of the 

proposed scheme. Fig. 1 illustrates the basic steps of the 
present work.  

 
Fig. 1. The overview of the proposed scheme 

A. Independent Component Analysis for EEG Source 
Estimation   
Estimation of the EEG sources from the signals collected 

at the scalp electrodes has long been tried to solve through a 
wide variety of techniques [18-19]. Independent Component 
Analysis (ICA) [8-9], [20-21] is a method that can estimate 
the original signals from their linear transformation provided 
that the transformed data is non-gaussian and the estimated 
signals are independent.  

Suppose there are N signal sources xi(t) within the brain 
giving rise to an equal number of sinks yi(t) on the scalp as 
shown in Fig. 2, for i,j=[1, N]. Let the time series 
representing the source as well as the sink signals be 
discretized with the sampling frequency 1/T at n integer 
points k=[1, n]. Assuming negligible propagation delay 
between the sources and the sinks, the linear transformation 
relating the discrete source and the sink EEG signals can be 
described by (1), where xi(kT) denotes the i-th source and 
yi(kT) denotes the i-th sink, for i=[1, N], while aij for i,j=[1, 
N] denote parameters that establish the relation between the 
above mentioned signals and depend on the distance between 
the sources and the sinks. 

1
( ) ( ),  1  

N

i ij j
j

x t a y t i to N
=

= ∀ =∑

 
Fig. 2. Distribution of the N source xi(t) - sink yj(t) pairs and the linear 
relation between them in terms of the transformation parameters aij for 
i,j=[1, N] 
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A matrix form representation of (1) is presented in (2) 
where A with elements aij is called the ‘mixing matrix’, 
x=[x1(t), x2(t),… xn(t)] and y=[y1(t), y2(t),… yn(t)] for a 
particular time index. 

 xy A=  (2) 

ICA involves estimation of the mixing matrix A assuming 
the sources to be independent, computation of its inverse W 
(the ‘demixing’ matrix) and evaluating the sources from (3). 

 yx W=     (3) 

ICA estimation is done through the maximization of non-
gaussianity that can be measured through kurtosis, 
negentropy, mutual information or maximum likelihood. In 
the present work ICA is performed on the acquired EEG data 
using the Infomax algorithm [20] that maximizes the entropy 
of the estimated source signals. 

B. Feature Extraction 
EEG signals of the sinks as well as the sources have been 

represented using four standard features used in BCI 
problems—Adaptive Autoregressive (AAR) Parameters [10], 
Hjorth Parameters [11], Power Spectral Density (PSD) [12-
13] and Wavelet Coefficients [14]. 

C. Selection of best Electrodes/Sinks by Evolutionary 
Algorithm 
In the present context, the objective function formulation 

to select M best representative sinks from the feature space of 
N source-sink signals by means of evolutionary algorithm is 
inspired by two crucial observations: 

a) The Mutual Information (MI) between the features two 
selected sinks must be minimized. 

According to information theory, mutual information 
(MI) measures the independence of random variables [22-
23]. From the point of view of the present problem, in order 
to maximize the separability of information between two 
selected sinks such that only maximally distinct sinks are 
obtained, the mutual information between these sink features 
has to be minimized. For two sink feature spaces A1 and A2 
mutual information MI(A1;A2) is computed using (4), where, 
average information or entropy H(A1) is the uncertainty in the 
features of the first sink before observing the second sink and 
conditional entropy H(A1|A2) is the uncertainty in the features 
of the first sink after observing the second sink.  

If there are n samples in an observation, then H(A1) and 
H(A1|A2) are given by (5) and (6), where P(a1i) is the 
probability of each sample in A1, P(a1i,a1j) is the joint 
probability of that in A1 and A2 and P(a1i|a2j) is the transition 
probability of that from A1 to A2 and all cases are considered 
equally likely. 

 )|()();( 21121 AAHAHAAMI −=   (4) 
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b) The correlation between the features of the source signals 
estimated from the selected sink signals and that of the 
original number of sink signals must be maximized. 

Another factor is the linear correlation coefficient [24] 
between the set of reduced source features and the original 
number of source features. In statistics, the linear correlation 
coefficient in the range [-1, 1] between two random variables 
is a measure of the strength and the direction of a linear 
relationship between them. +1 and -1 values respectively 
stand for perfect positive and perfect negative correlations 
where as the absence of any correlation between the variables 
produce a correlation coefficient having near zero value. The 
correlation coefficient between two source features B1 and B2 
each of length n is computed using (7). 
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A larger value of correlation coefficient between the sets 
of source features of original and selected sink signals 
indicate an efficient representation of the original number of 
sink signals with the reduced number of sinks signals. In 
other words, on successful selection of the electrodes, the 
absolute value of the correlation between these two above 
mentioned entities must be close to unity (indicating the 
selected and the original set of source features covary 
perfectly, either positively or negatively) while a low 
absolute value of the same concludes high degree of 
disassociation (between the features of selected and original 
group of source signals). 

With these two considerations, an objective function 
formulated in (8) needs to be minimized with the 
evolutionary algorithm. The minimization is effected over all 
the subjects under consideration. Here S, N and M denote the 
total number of subjects, original number of sinks and 
selected number of sinks respectively. MI(Aj, Ak) denotes the 
mutual information between the features of the j-th and k-th 
selected sink signals while R(Bj, Bk) denotes the correlation 
coefficient between features of the source signals 
corresponding to the j-th selected sink and k-th original sink. 
λ denotes a constant which is set in a manner so as to have all 
terms in the right hand side of (8) in the same order of 
magnitude. In our experiments λ is selected to be 20. 
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III. AN OVERVIEW OF ARTIFICIAL BEE COLONY (ABC) 
ALGORITHM 

In ABC [15], the nectar amount of a food source 
corresponds to the fitness of the associated solution. The 
number of employed bees and onlooker bees is equal to the 
number of solutions in the population. 

A. Initialization 
ABC starts with a population of NP, D-dimensional food 

sources (candidate solutions) )}(),...,(),(),({)( ,3,2,1, txtxtxtxtX Diiiii =  
at generation t=0 for i= [1, NP] within the search range 

],[ maxmin XX where { }DxxxX −−−= min2min1minmin ,...,, and 

{ }DxxxX −−−= max2max1maxmax ,...,, . Each food source )(tX i is 
assigned a fitness value (nectar amount) ))(( tXfit i . 

B. Employed Bee Phase 
 An employed bee produces a modification 

)}(),...,(),...,({)( ,,1, txtxtxtX Dijiii ′=′ on the food source position in 

her memory )}(),...,(),...,({)( ,,1, txtxtxtX Dijiii =  depending on the 

local information as stated by (9) and tests ))(( tXfit i′ . 

 ))()(()()( ,,,, txtxFtxtx jkjijiji −×+=′  (9) 

Here F is the scale factor in [-1, 1],  j  is a randomly 
chosen index from [1, D] and k is any number between 1 to 
NP but not equal to i. Provided that ))(( tXfit i′ > ))(( tXfit i , 
the bee memorizes )(tX i′ and forgets )(tX i .  

C. Calculation of Probability of Food Source Selection 

The probability of each food source )(tX i to be selected 
by the onlooker bee is proportional to the nectar amount 

))(( tXfit i of )(tX i and is given by (10). 
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D. Onlooker Bee Phase 

An onlooker bee then selects a food source )(tX i  
depending on the associated probability, prob(i) as calculated 
by (10). After that, as in case of employed bee, onlooker bee 
produces a modification on the food source in her memory as 
described in section III-B and checks the nectar amount of 
the candidate source. Providing that its fitness is better than 
that of the previous one, bee remembers the new position and 
forgets the old one. 

E. Scout Bee Phase 
In the ABC algorithm, if a food source cannot be 

improved further through a predefined number of cycles 
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called ‘limit’, the food source is abandoned and is reinstated 
by the scouts by randomly producing a position.  

After each evolution, we repeat from step B until the 
termination condition is satisfied.  

IV. PROPOSED ARTIFICIAL BEE COLONY WITH ADAPTIVE 
SCALE FACTOR (ABC-ASF) 

In ABC-ASF, a candidate pool of scale factors, denoted 
as {F1, F2, …, Fn} is maintained. Prior to the mutation 
operation (as in (9)) corresponding to each food source, a 
scale factor Fi is selected from the candidate pool according 
to its success probabilities gradually learned from past 
experience to generate improved neighborhood food source 
locations. The more successfully one scale factor Fi behaves 
in the previous generations to produce quality food source 
positions, the more probably Fi will be selected for mutation 
operation in the current generation. It is realized in ABC as 
follows. 

1. Let pl,t denotes the probability of selecting the scale factor 
Fl from the candidate pool {F1, F2, …, Fn} at generation t 
for l= [1, n]. 

2. At t=0, pl,t is initialized with 1/n signifying that all the 
scale factors in the candidate pool have the equal 
probability of selection. 

3. The number of neighborhood food sources successfully 
replacing the original food sources after mutation with Fl 
(by employed/onlooker bee) at generation t is recorded as 
sl,t. The value is stored in a success memory. 

4. The number of neighborhood food sources discarded with 
respect to the original food sources after mutation with Fl 
(by employed/onlooker bee) at generation t is recorded as 
fl,t. The value is stored in a failure memory. 

5. Steps 3 and 4 are repeated for a fixed number of 
generations, known as Learning Period LP. It is 
pictorially represented in Fig. 3(a) for success and failure 
memory of dimension LP×n. 

6. When t>LP, steps 3 and 4 are also performed. However, 
the rows corresponding to the rows st-LP and ft-LP will be 
removed from the respective memories leaving room for 
the newly available sl,t and fl,t. It is elaborated in Fig. 3(b). 

7. When t>LP, the probabilities of choosing Fl will be 
updated at each subsequent generation based on the 
success and failure memories as follows 

 LPtl    SSp
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where Sk,t represents the success rate of the neighborhood 
sources generated by Fl within the previous LP generations 
with respect to generation t. The small constant value ε  

=0.01 is used to avoid the possible null success rates. 
Obviously, a high value of the success rate for the Fl within 
the previous LP generations leads to the larger probability of 
applying it for mutation at the current generation. 

 

Fig. 3. (a) Success Memory and Failure Memory (b) Progress of Success 
Memory 

The pseudo code of ABC-ASF is given below. 

Procedure ABC-ASF 
Begin 
1. Initialize a population Pt of NP, D-dimensional food sources 

)(tX i at generation t=0 with triali=0 and evaluate 

))(( tXfit i for i= [1, NP]. 
2. While termination condition is not reached do begin 

2.1. If t>LP Then calculate pl,t using (11) and (12) and remove 
sl,t-LP and fl,t-LP from success and failure memories 
respectively for l= [1, n]. 
End If 

//Employed Bee Phase 
2.2. Using stochastic universal sampling, select a scale factor Fl 

from the candidate pool {F1, F2, …, Fn} corresponding to 
each food source )(tX i  for i= [1, NP]. 

2.3. Produce a new food source )(tX i′ using Fl following (9) for 
i= [1, NP]. 

2.4. Evaluate ))(( tXfit i′  for i= [1, NP]. 
2.5. If ( ( )) ( ( ))i ifit X t fit X t′ >  

Then )()1( tXtX ii ′←+ ; triali←0; sl,t← sl,t+1; 
Else triali= triali +1; fl,t← fl,t+1; 
End If 
Repeat the step for i= [1, NP]. 

//Onlooker Bee Phase 
2.6. Select a food source ∈)(tX i  Pt based on its probability of 

selection prob(i) for calculated using (10) for i= [1, NP]. 
2.7. Repeat from 2.1 to 2.5. 
2.8. Reinitialize the food source with highest trial value 

exceeding “limit” by the scout bee. 
2.9. t←t+1. 
End While 

End 
 

V. EXPERIMENTS AND RESULTS 

A. EEG Acquisition 
EEG channel selection can be done in response to 

different types of external stimuli. In the present work we 
have undertaken two case studies — 1) an audio-visual 
stimulus that consisted of a length of video to be watched 

index F1 F2  Fn 
1 f1,t-LP f2,t-LP …. fn,t-LP 
2 f1,t-LP+1 f2,t-LP+1 …. fn,t-LP+1 
: : : …. : 

LP f1,t-1 f2,t-1 …. fn,t-1 
Failure Memory

s1,t-LP …. sn,t-LP 
: …. : 

s1,t-1 …. sn,t-1 

s1,t-LP+1 …. sn,t-LP+1 
: …. : 

s1,t …. sn,t 

s1,t-LP+2 …. sn,t-LP+2

: …. : 
s1,t+1 …. sn,t+1 

(a) 

(b)  

index F1 F2  Fn 
1 s1,t-LP s2,t-LP …. sn,t-LP 
2 s1,t-LP+1 s2,t-LP+1 …. sn,t-LP+1

: : : …. : 
LP s1,t-1 s2,t-1 …. sn,t-1 

Success Memory
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along with audio and 2) according to a visual stimulus the 
subject has to move his hand in right or left directions. 
Experimental data is acquired in the laboratory from 5 
subjects, 2 male and 3 female, in the age group 25±5 years, 
with their consent. EEG is acquired using a 14 channel 
Emotiv headset [25] which has a sampling rate 128Hz.  The 
placement of electrodes follows the standard 10/20 system of 
electrode placement [26] and is shown in Fig. 4(a). Each 
experiment was conducted while the subject sat comfortably 
during EEG recording and responded according to the 
stimulus. Periods of relaxation were included in between the 
several instances of stimuli for EEG recording. A sample data 
acquisition queue for an experiment is illustrated in Fig. 4(b).  

 
           (a)                                                           (b) 
 

Fig. 4. (a) Electrode Placement (b) Queue for Stimulus Presentation   

B. Pre-processing and Source Signal Estimation 
From the study of the EEG power spectrum that spans 

different frequency bands [27], it is seen that the stimuli 
produce significant changes in the 4-30 Hz range. To extract 
the EEG signals in the desired frequency range and thereby 
eliminate the other frequencies, an Elliptical Band pass filter 
of order 6 with 1dB pass-band ripple and 50dB stop-band 
ripple in the bandwidth 4-30Hz has been used. EEG source 
signals are extracted using the ICA algorithm based on 
Infomax principle [20] from the EEG sink signals selected in 
each iteration of the evolutionary process.  

C. Feature Extraction 
Four standard features have been extracted from the 

source as well as the sink signals. AAR parameters of order 6 
have been extracted using Kalman Filtering [28] as the 
estimation algorithm. The update coefficient of the AAR 
estimation has been taken as 0.0085. PSD has been computed 
with Welch method [29] with 50% overlap between the 
signal segments using a Hamming Window at the integer 
frequency points between 4-30Hz. For extracting the wavelet 
coefficients Daubechies order 4 mother wavelet has been 
used. For each source/sink EEG signal an instance of 
duration 30 seconds has been considered such that the 
dimensions of the four feature spaces are 6, 3, 27 and 965 
respectively for each EEG channel. The proposed ABC-ASF 
has been tested with all the possible combinations of these 
four features after normalization with their respective 
maximum values. 

D. Selection of best electrodes/ Sink signals 
For selecting the best electrodes using ABC-ASF, a 

candidate solution is encoded as a food source of dimension 
M (<N) representing the indices of the M selected electrodes 
out of the N. In each iteration of ABC-ASF the process of 
ICA for source signal estimation and feature extraction from 
the selected sink signals and corresponding source signals 
have been performed to evaluate the objective function in (8). 

E. Experimental Results 
The performance of the proposed ABC-ASF is examined 

here with respect to minimizing the objective in (8). Here, we 
compare ABC-ASF with traditional ABC [15], Differential 
Evolution (DE/current-to-best/1) [16] and Self Adaptive 
Artificial Bee Colony (SAABC) [17] algorithms. For each 
algorithm, the population size is kept at 50. We employ the 
best parametric set-up for all these competitor algorithms as 
prescribed in their respective sources. For the proposed ABC-
ASF algorithm, we have selected the size of the candidate 
pool of scale factors n= 10 and learning period LP= 50.  

We plot the mean objective function values taken over 50 
runs versus Function Evaluations (FEs) in Fig. 5, and observe 
that ABC-ASF outperforms all other algorithms in terms of 
the relative speed of convergence and quality of solution. In 
Tables I and II a comparison of ABC-ASF with the other 
three algorithms has been made while varying the number of 
selected electrodes M for the respective case studies 
considering the combination of all four features. The mean 
and standard deviation (in parenthesis) of the cost functions 
for 50 independent runs are provided. The statistical 
significance levels (SS) of the difference of the means of best 
two algorithms using t-test are reported, with maximum FEs 
as 500. Here “+” indicates that the t value of 49 degrees of 
freedom is significant at a 0.05 level of significance by two-
tailed test, whereas “−” means the difference of mean is not 
statistically significant, and “NA” stands for not applicable, 
covering cases for which two or more algorithms achieve the 
best accuracy results. The best algorithm is marked in bold. 
In Case Study I, ABC-ASF outperforms its competitors in 7 
cases out of 10 in a statistically significant manner. In two 
cases (M=10 and M=12) SAABC has better results than 
ABC-ASF, being the second best algorithm. In Case Study II, 
ABC-ASF outperforms its competitors in all of the 10 cases 
in a statistically significant manner. 
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                            (a)                                                        (b) 
Fig. 5.  Plots of Mean Objective Function Values vs. FEs (a) Case Study I 
and (b) Case Study II 

With a view to find the smallest number of electrodes 
necessary in the recognition of a task from EEG signals, from 
the observations of the mean values of the cost functions in 
Table I and Table II, it is found that for Case Study 1 a 
minimum of 5 electrodes provides the best results with ABC-
ASF while 4 electrodes are sufficient for Case Study 2. 
Tables III and IV are constructed to focus on the performance 
of ABC-ASF with the best solutions (5 electrodes for Case 
Study I and 4 for Case Study II) and different combinations 
of signal features. In Tables III and IV, the mean values of 
the total sum of Correlation Coefficient over all pairs of 
selected and original source features over all subjects, that of 
Mutual Information over all pairs of selected and original 
sink features over all subjects and the Cost Function, along 
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with the corresponding standard deviation values (within 
parenthesis) for 50 independent runs for each combination of 
feature sets have been reported for Case Study I and Case 
Study II respectively, taking maximum FEs as 500. 

TABLE I.  PERFORMANCE OF THE PROPOSED ABC-ASF WITH OTHER 
STATE-OF-ART ALGORITHMS FOR CASE STUDY-1  

M ABC-
ASF SAABC ABC DE SS 

4 0.0539 
(0.001) 

0.0838 
(0.019) 

0.1656 
(0.030

0.3516 
(0.054) + 

5 0.0119 
(0.033) 

0.0781 
(0.044) 

0.2629 
(0.049

0.3804 
(0.057) + 

6 0.0758 
(0.042) 

0.1523 
(0.058) 

0.1621 
(0.073

0.5497 
(0.135) + 

7 0.1299 
(0.072) 

0.2289 
(0.095) 

0.3112 
(0.103

0.2858 
(0.147) + 

8 0.3371 
(0.095) 

0.3371 
(0.095) 

0.5285 
(0.159

0.5678 
(0.166) NA 

9 0.4505 
(0.140) 

0.4693 
(0.172) 

0.5852 
(0.195

0.6019 
(0.309) + 

10 0.5383 
(0.196) 

0.5307 
(0.160) 

0.6540 
(0.219

0.7537 
(0.320) – 

11 0.5688 
(0.205) 

0.6892 
(0.231) 

0.7572 
(0.326

0.8258 
(0.360) + 

12 0.7791 
(0.347) 

0.7481 
(0.248) 

0.8308 
(0.347

0.9133 
(0.361) – 

13 0.7942 
(0.341) 

0.9171 
(0.364) 

0.9340 
(0.377

0.9961 
(0.384) + 

TABLE II.    PERFORMANCE OF THE PROPOSED ABC-ASF WITH OTHER 
STATE-OF-ART ALGORITHMS FOR CASE STUDY-2  

M ABC-
ASF SAABC ABC DE SS 

4 0.0254 
(0.044) 

0.0285 
(0.051) 

0.0780 
(0.069) 

0.1135 
(0.072) + 

5 0.0275 
(0.055) 

0.1015 
(0.060) 

0.1260 
(0.090) 

0.1369 
(0.141) + 

6 0.0369 
(0.082) 

0.2227 
(0.092) 

0.3137 
(0.094) 

0.3374 
(0.162) + 

7 0.0777 
(0.094) 

0.3883 
(0.095) 

0.4375 
(0.102) 

0.5243 
(0.164) + 

8 0.2215 
(0.125) 

0.5058 
(0.129) 

0.5245 
(0.181) 

0.6337 
(0.187) + 

9 0.2536 
(0.175) 

0.5429 
(0.184) 

0.6402 
(0.202) 

0.6517 
(0.239) + 

10 0.5558 
(0.216) 

0.5945 
(0.227) 

0.7246 
(0.258) 

0.7325 
(0.262) + 

11 0.5648 
(0.242) 

0.6061 
(0.277) 

0.7307 
(0.279) 

0.7657 
(0.301) + 

12 0.6587 
(0.251) 

0.6793 
(0.283) 

0.7660 
(0.311) 

0.7675 
(0.329) + 

13 0.7471 
(0.294) 

0.7601 
(0.343) 

0.7719 
(0.354) 

0.7764 
(0.355) + 

 

To view the brain activation areas for the selected 
electrodes, the independent components or sources obtained 
by using ICA are illustrated in Fig. 6 and Fig. 7 respectively 
for Case Study I and II. In each of these figures, (a) provides 
the independent components estimated for all the 14 
electrodes, while (b) provides the independent components 
obtained for the selected electrodes. In Case Study I an 
audio-visual stimulus is presented, and hence the selected 
electrodes lie in the occipital, temporal, frontal and prefrontal 
regions [30] that is evident from the selected electrodes as 
well as the corresponding independent components as shown 
in Fig. 6. In Fig. 6(b) it is clearly visible that ABC-ASF 

provides the best selection such that five completely distinct 
source activations are obtained in comparison with the other 
algorithms. Similar observations are found for Case Study II 
in Fig. 7. Here the selected electrodes span the occipital, 
parietal and motor cortex regions having accordance with the 
active regions during motor imagination [30-31] with visual 
stimulus. 

TABLE III.  PERFORMANCE OF THE PROPOSED ABC-ASF ALGORITHM 
FOR CASE STUDY-1 WITH NO. OF SELECTED ELECTRODES=5  

Features Correlation 
Coefficient 

Mutual 
Information 

Cost 
Function 

AR +Hjorth 275.273 
(0.068) 

13.7654 
(0.014) 

0.0349 
(0.029) 

Hjorth +PSD 283.086 
(0.002) 

14.1557 
(0.029) 

0.0268 
(0.038) 

AR +PSD 288.666 
(0.046) 

14.4347 
(0.034) 

0.0276 
(0.047) 

Wavelet 
+Hjorth 

290.229 
(0.060) 

14.5127 
(0.047) 

0.0253 
(0.084) 

Wavelet +AR 301.698 
(0.049) 

15.0862 
(0.083) 

0.0255 
(0.064) 

Wavelet 
+PSD 

315.597 
(0.098) 

15.7806 
(0.097) 

0.0147 
(0.090) 

AR +Hjorth 
+PSD 

293.294 
(0.078) 

14.6653 
(0.106) 

0.0128 
(0.044) 

Wavelet +AR 
+Hjorth 

317.362 
(0.007) 

15.8695 
(0.025) 

0.0291 
(0.072) 

Wavelet 
+Hjorth +PSD 

322.546 
(0.037) 

16.1286 
(0.031) 

0.0256 
(0.074) 

Wavelet +AR 
+PSD 

324.637 
(0.045) 

16.2325 
(0.092) 

0.0138 
(0.028) 

Wavelet +AR 
+PSD +Hjorth 

331.524 
(0.083) 

16.5767 
(0.094) 

0.0119 
(0.033) 

TABLE IV.  PERFORMANCE OF THE PROPOSED ABC-ASF ALGORITHM 
FOR CASE STUDY-2 WITH NO. OF SELECTED ELECTRODES=4  

Features Correlation 
Coefficient 

Mutual 
Information 

Cost 
Function 

AR +Hjorth 163.155 
(0.003) 

8.1591 
(0.005) 

0.0285 
(0.001) 

Hjorth +PSD 172.837 
(0.007) 

8.6536 
(0.010) 

0.0235 
(0.004) 

AR +PSD 179.377 
(0.018) 

8.9701 
(0.012) 

0.0250 
(0.012) 

Wavelet 
+Hjorth 

180.559 
(0.059) 

9.0290 
(0.017) 

0.0216 
(0.014) 

Wavelet +AR 182.980 
(0.084) 

9.1503 
(0.030) 

0.0256 
(0.019) 

Wavelet +PSD 204.040 
(0.057) 

10.2031 
(0.035) 

0.0214 
(0.023) 

AR +Hjorth 
+PSD 

184.170 
(0.029) 

9.2097 
(0.038) 

0.0238 
(0.024) 

Wavelet +AR 
+Hjorth 

183.236 
(0.082) 

9.1629 
(0.045) 

0.0218 
(0.027) 

Wavelet 
+Hjorth +PSD 

197.773 
(0.048) 

9.8901 
(0.047) 

0.0281 
(0.028) 

Wavelet +AR 
+PSD 

204.093 
(0.045) 

10.2061 
(0.070) 

0.0299 
(0.028) 

Wavelet +AR 
+PSD +Hjorth 

217.310 
(0.069) 

10.8668 
(0.070) 

0.0254 
(0.044) 
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VI. CONCLUSIONS AND DISCUSSIONS 
The paper proposes a novel evolutionary approach for 

estimating the best electrode positions to be selected for EEG 
analysis of a particular cognitive task. The work involves 
source signal estimation from acquired EEG signals by ICA, 
feature extraction to represent EEG signals by four standard 
features and using an evolutionary technique to determine the 
best electrodes by minimizing the difference of mutual 
information between the EEG features of each pair of the 
selected electrodes and the correlation coefficient between 

the source signal features estimated from the selected 
electrodes and that of the original electrodes. The novelty in 
the proposed evolutionary approach is the use of a self 
adapted mutation scale factor in traditional Artificial Bee 
Colony algorithm. The proposed strategy when compared 
with other three traditional optimization procedures yields 
better results in two case studies in the present context. 
Future works in this direction include determination of 
minimum number of EEG electrodes specific to a large 
number of well defined activities using the proposed scheme. 

 
Fig. 6. Independent Components for Case Study I from Subject 1 (a) for 14 electrodes (b) For reduced number of electrodes 

 
Fig. 7. Independent Components for Case Study II from Subject 1 (a) for 14 electrodes (b) For reduced number of electrodes. The vertical colour bar 

indicates intensity/activation levels in Fig. 6 and Fig. 7. The electrode locations are given by black points. 
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