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Abstract—Using a surrogate model to evaluate the expensive
fitness of candidate solutions in an evolutionary algorithm can
significantly reduce the overall computational cost of optimization
tasks. In this paper we present a recurrent neural network
ensemble that is used as a surrogate for the long-term prediction
of computational fluid dynamic simulations.

A hybrid multi-objective evolutionary algorithm that trains
and optimizes the structure of the recurrent neural networks
is introduced. Selection and combination of individual prediction
models in the Pareto set of solutions is used to create the ensemble
of predictors. Five selection methods are tested on six data sets
and the accuracy of the ensembles is compared to the converged
computational fluid dynamic data, as well as to the delta change
between two flow conditions. Intermediate computational fluid
dynamic data is used for training and the method presented
can produce accurate and stable results using a third of the
intermediate data needed for convergence.

I. INTRODUCTION

COMPUTATIONAL FLUID DYNAMICS (CFD) simula-
tions are an iterative numerical process [1] used for

evaluating the quality of aerodynamic designs, determining
performance indicators such as lift and drag (CL and CD)
on vehicles and aircraft [2]. CFD simulations can take many
iterations to converge, resulting in significant computational
expense. Simulation results may also only represent an esti-
mation of performance if the full physics is not included.

When performing aerodynamic optimization it is desirable
to use CFD to determine the fitness of candidate solutions.
In addition, it is also beneficial to be able to use a global
optimizer, such as an evolutionary algorithm (EA), which
enables a wide design space to be explored and potentially
novel design solutions to be identified. However, such an opti-
mization process may require many hundreds (or thousands) of
candidate solutions to be evaluated, resulting in a potentially
very significant computational burden.

A potential means of reducing the computational expense
of such an optimization process would be to use a surrogate
assisted evolutionary algorithm (SAEA) [3]. A surrogate model
is a computational algorithm designed to simulate the under-
lying function, process or system behaviour of a complex or
expensive process, by building a representation based upon a
limited number of sample or training values [4]. In particular,
by using a surrogate model, the number of expensive CFD
simulations required during aerodynamic optimization can be
significantly reduced.
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Surrogate models have been used with CFD simulations to
achieve optimal designs and an overall reduction in computa-
tion time has been achieved [5], [6]. Traditionally these surro-
gates are constructed by inputting a limited number of training
values, corresponding to specific choices of design parameters
(e.g. geometry design variables and angle of incidence) and the
associated fitness values. The number of training values can
be substantially less than the alternative approach of linking
the EA optimizer directly with CFD, but this can still result
in a large computational cost.

An alternative, or possibly additional approach, would be to
use a surrogate model during each CFD convergence process,
to predict the outcome of a fully converged CFD simulation,
based on the intermediate convergence data. The aim would be
to stop each CFD simulation early, before full convergence and
project a possible outcome. This type of convergence based
prediction surrogate could reduce the computational cost of
each individual CFD calculation and hence represent a large
overall computational saving for an optimization procedure,
where many individual CFD solutions need to be evaluated.

CFD convergence prediction can be considered as a long
term prediction problem. The process of learning the charac-
teristics of partially converged CFD data to build a surrogate
model has been implemented by Cao et al. [7] to predict the
performance of turbine blade designs. A recurrent neural net-
work (RNN) was used for this model and the CFD performance
measure was predicted to within 5% of the fully converged
result, using half the number of CFD iterations. We have
also presented work that uses an ensemble of heterogeneous
RNNs for the prediction of transonic wing aerodynamic CFD
data [8]. This work showed that confident predictions can
be made within 5% of the converged data, using 40% of
the iterations needed for convergence. It also highlighted the
importance of using an ensemble approach and monitoring
accuracy and diversity. Finally, Forrester et al. [9] also used
partially converged CFD data to predict converged results when
optimizing a wing profile, in which a scaling factor was used
to scale partially converged data to a converged value.

The convergence based prediction surrogate model in this
work is an ensemble of RNNs. RNNs are designed for tem-
poral based problems, as they have both feed-back as well
as feed-forward connections [10]. This makes them ideal for
predicting CFD convergence data, as the states of the neurons
in the network are stored from the previous iteration step
and are used to influence the prediction of data at future
iterations. The value of an ensemble is that it allows individual
surrogate models to be combined, which can achieve better
generalization than single surrogate model use. The result is a
more confident prediction [11].

In contrast to our previous work that used a gradient
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descent method to train individual RNNs in the ensemble, a
hybrid multi-objective evolutionary algorithm (HMOEA) has
been used to train the RNNs and determine their optimal
structure. The HMOEA uses a global multi-objective evo-
lutionary algorithm (MOEA) search technique and gradient
descent (GD) local search. This approach results in a Pareto set
of solutions, where each individual represents a unique RNN
surrogate model.

By selecting and combining individual surrogate models
from the Pareto set, a final ensemble of surrogate models can
be established. Selection of ensemble members is important,
as some individuals in the Pareto set may be unsuitable and
sampling many of the created models can be better than
sampling them all [12]. Ranking the individual models, based
on some criteria or through the use of an optimization process,
have been suggested as possible methods of selection [13].
Determining the best way of ranking the individual surrogate
models, prior to selection, is very important. Selection based
on surrogates located at the knee point of the Pareto set,
surrogates with minimum fitness values and the crowding
distance measure are investigated.

We hypothesize that the training method presented, as well
as the selection of individuals, will be able to accurately
predict converged CFD parameters, using minimal partially
converged/intermediate data. Along with a direct comparison
to CFD predictions, the delta change from two flow conditions
will also be analyzed.

The rest of this paper is organized as follows: Section II
presents the methods used for creating, selecting and com-
bining the ensemble members. Section III introduces the
data sets and Section IV presents the results achieved by
the methods introduced. Section V concludes the paper and
provides thoughts on future work.

II. METHOD

A. Ensembles - Accuracy and Diversity

An ensemble of surrogate models consists of many differ-
ent models that are designed in parallel and used in combina-
tion to give a final prediction. Ensembles have been shown to
provide better generalization performance than single models
[11]. Ensembles can include information that is not contained
in a single model [14] and each member can produce different
errors. However, the creation, selection and combination of
individual predictors is critical to the success of an ensemble,
as each individual model needs to be both accurate and diverse
[13].

There is always a trade-off between these two characteris-
tics [15], as summarized by the Error-Ambiguity Decomposi-
tion presented by Krogh and Vedelsby [16]. This relationship
shows that the generalization error of an ensemble is based on
the weighted average of the individual generalization errors
and the weighted average of the individuals ambiguities, also
known as diversity. Creating accurate predictions is clearly
very important to the success of an ensemble, but it has been
said that diversity is the “holy grail” of ensemble learning [13].

Diverse ensemble members can be either implicitly or
explicitly created. Different data sampling, network param-
eters and initialization, as well as using different learning

algorithms have all been used to implicitly create diverse
ensemble members [13], [15]. To explicitly create diverse
neural network ensembles, the ADDEMUP [17], DIVACE [18]
and Regularization [19] algorithms have been used.

The use of an MOEA to create diverse ensemble members
is very attractive, as the fitness functions can be specifically
chosen to optimize conflicting objectives, with the resultant
Pareto set of solutions providing a trade-off between these
objectives. An MOEA can be used as an indicator of which
solutions to use in the ensemble and MOEAs have been used to
successfully design neural networks for a variety of problems
[14], [20], [21], [22]. There has not been much discussion
in the literature on how to select ensemble members from
the Pareto set of solutions. For example, in [20] both the
weights and number of hidden neurons in a feed-forward
neural network were optimized, but the final performance is
based on all members in the Pareto set. Also, in [21] the
errors on two different training sets are used as the conflicting
objectives and it is argued that the concept of dominance in
MOEA’s is a form of selection, as it determines if a network
should be included in the final Pareto set. Selection from the
Pareto set of solutions is however not discussed. Ensembles
consisting of all Pareto optimal solutions, combined using a
simple average and an ensemble consisting of the weighted
output of the Pareto optimal solutions were discussed in [19].
An evolutionary strategy was used to optimize the weights
based on an expected error on a validation data set. The
results showed that although an improvement can be made
on a validation data set, using the weighted output, it did not
necessarily mean that there would be an improvement on a test
data set. The simple average of all Pareto optimal solutions
provided the best result on a test data set.

Our study is the first to use a HMOEA to train RNNs
and determine their optimal structure for CFD convergence
prediction. The global search can be used to find suitable
starting weight values and the local search can be used to
fine tune them to their optimal value [19], [23]. The fol-
lowing subsections provide details of the global and local
search techniques, finishing with a summary of the HMOEA.
Different selection methods are then presented which are used
to construct the final ensemble of predictors.

B. Global Search

Evolutionary algorithms (EAs) can be considered as multi-
point search strategies that are able to “sample (a) large search
space” [24] and escape local optima to find global optimum
solutions [25]. EAs are stochastic search and optimization pro-
cedures that are based on the principles of natural genetics and
natural selection [26]. A population of individual candidates is
used, instead of one candidate solution and new solutions are
created by selection, crossover and mutation operators, during
a set number of generations [25]. The specific design variables
that make up a solution are coded into a chromosome, which
is decoded to give a fitness/quality score of how well the
individual satisfies the objective function(s). Selection, based
on this score, is used to determine which individuals will be
used as parents to create new offspring or to determine those
that will be selected for the next generation [24].

The non-dominated sorting genetic algorithm II (NSGA-II)
[27] is used as the global MOEA in this work. Each RNN in
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the population is encoded using two chromosomes. The first
of Boolean type to represent the structure of the networks
and the second is of real values to represent the weights of
the networks. Fig. 1 represents how the two chromosomes are
linked and that specific alleles represent specific connections.
This means that when a Boolean connection is present, the
corresponding weight value is used by the network. The direct
method of representing the network structure, as described in
[23] is used, with every possible connection represented in the
chromosomes.

Chromosome 1 1 1 0 1 1 0 1 … 1

Chromosome 2 -0.05 2.65 1.53 5.97 0.49 0.04 -0.29 … -4.47

Fig. 1: Chromosomes for each Recurrent Neural Network

The chromosomes are decoded to represent an individual
network by placing the values of specific alleles into particular
locations in the network structure. The topology of the net-
works is restricted to three input neurons, five hidden neurons
and one output neuron. The states of the neurons from the
previous time step are recalled and recurrent connections are
allowed across all layers of neurons.

Fig. 2 is an example of the matrix setup used in this work,
with locations below the main diagonal of the matrix repre-
senting forward connections and locations above the diagonal
representing recurrent connections. Locations on the diagonal
represent self recurrence. Therefore, when a connection, Cij

equals 1, a connection is made from neuron j to neuron
i, which means neuron j is the connection start point and
neuron i the connection end point, i.e. neuron i is receiving
activation from neuron j. The connection highlighted in Fig. 2
shows that hidden neuron 4 (H4) receives activation from
input neuron 3 (I3). Fig. 3 illustrates the network presented
in Fig. 2, with the state of the neurons from the previous time
step represented by the grey dotted circles. The solid arrows
represent forward connections and the dotted arrows represent
recurrent connections, which originate from the neurons at
(t− 1).

I1 I2 I3 H1 H2 H3 H4 H5 O1
I1 0 0 0 0 0 0 0 1 1

I2 0 0 0 0 1 0 0 0 0

I3 0 0 0 0 0 0 0 0 0

H1 1 0 0 1 0 1 1 0 1

H2 0 0 0 1 0 1 0 0 0

H3 0 0 0 0 0 0 0 1 0

H4 0 0 1 0 0 0 0 0 0

H5 0 1 1 0 0 0 1 0 0

O1 1 0 0 1 0 0 1 1 1

j

i

Fig. 2: Recurrent Neural Network Matrix

The two conflicting objectives are the mean squared error
(MSE) on a fixed training data set and the number of connec-
tions in the network. Both are minimized and this is because

Neuron State at (t - 1)

Neuron State at (t)

x(t - 2)

x(t - 1)

x(t)

x(t + 1)

Fig. 3: An example of a Recurrent Neural Network

large complexity is the main reason behind over-fitting [19].
Different crossover and mutation operators are used for the
different chromosomes and a fixed number of generations are
utilized.

The created models are used to recursively predict a
specific number of iterations ahead. The first three actual data
points are used to start the models prediction, but then each
predicted value is carried forward and used to predict the
value at the next time step. This means that this work can
be considered as a long-term prediction problem. All actual
training data points are needed to calculate the training MSE,
as the predicted values are compared to this data.

The temporal CFD data is presented to the RNN in groups
of three data points. These three consecutive data points
represent the CFD data at three iterations (e.g. x(t − 2),
x(t−1) and x(t)) and are used to predict the CFD performance
measure at the next iteration (e.g. x(t + 1)). This is also
illustrated in Fig. 3.

C. Local Search

A gradient descent local search is used to fine tune the
weight values of the network once it has been decoded,
affecting the second chromosome of each individual. During
the local search, all actual data points are presented to the
RNN at once, using a batch learning technique.

The error used during the local search is the MSE calcu-
lated on all data pairs, minus a warm-up-length and is back
propagated through the network to determine the change in the
weights. A warm-up-length of data is taken into consideration
during batch learning and is used to initialize the internal states
of the neurons, so the network can converge to a “normal”
dynamic state, allowing for new data to be predicted [28],
[29].

The learning algorithm used is the IRPropPlus [30] and
all of the neurons use the non-linear sigmoid transfer function
(tanh(v)). This function was chosen so a non-linear system
can be modeled, but it does mean that all data needs to be
normalized, as the function only outputs between -1 and 1.

So any values created by the local search are compatible
with the genetic algorithms crossover and mutation operators
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and are within an acceptable range, the local search has a
bounds check on all new design variables. The new weight
values are assessed after each training epoch of the gradient
descents local search and if a weight value is out of bounds,
the weight values for all connections from the previous training
epoch are used and the local search is stopped.

When using a local search there are several parameters that
need to be considered. Firstly, when to use the local search
(frequency), i.e. at which generations. Secondly, how often to
use the local search (probability), i.e. which individuals and
the length/duration of the local search [31].

Both Lamarckian or Baldwinian learning can be realized
by the algorithm presented in this paper. Lamarckian learning
allows the newly created chromosomes and associated fitness
values to be passed to the individual and used by the GAs
operators to create new offspring, whereas Baldwinian learning
does not and only the fitness value is updated. Lamarckian
learning is adopted during this work as it has been shown to
outperform Baldwinian learning when evolving RNNs [32].
By using a Lamarckian search, all of the information learnt
by an individual is retained and used to guide the search. If
Baldwinain learning were to be adopted, the HMOEA is reliant
on the GA to find the specific design parameters of the most
successful individuals, with only the fitness values directing the
search. This would increase the number of generations required
for convergence and therefore increase the computation time.

D. Hybrid Algorithm

Algorithm 1 provides details of how the final Pareto set of
solutions are generated. The parameters of the global and local
search are defined at the beginning and the fitness functions
are the training Mean Square Error (MSE) and total number
of connections in the network (NC).

Algorithm 1 Hybrid MOEA for training RNNs

Step 1: Input Data Set and Normalize
Step 2: Define Global and Local Search Parameters

Number of Generations, n
Frequency of Local Search
Probability of Local Search
Duration of Local Search
Lamarckian or Baldwinain Learning

Step 3: Initialize Chromosomes of Parent Population
Step 4: Evaluate Parents
for i Individuals do

Decode Chromosomes
Evaluate Fitness Functions

end for
Step 5: Optimize RNNs Structure and Parameters
for n Generations do

for i Individuals do
Decode Chromosomes
if Local Search then

Optimize Weights (batch learning)
Boundary Check

else Continue
end if
Evaluate Fitness Functions (MSE & NC)

end for
Select Individuals for next Generation

end for
Step 6: Assemble Final Archive

E. Selection and Combination

Initially, selection and combination of all individuals in
the Pareto set is performed. This is because a Pareto set of

solutions should be diverse and contain a lot of information.
However, to select many of the individual surrogate models
can be better than selecting them all [12], so once the search
has been completed and a Pareto set of solutions has been
established, a subset of individuals in the Pareto set are selected
and combined. Fig. 4 illustrates an example of a Pareto set
of solutions, where each individual represents a unique RNN
model. It also illustrates the selection of some solutions that
can then be used in the ensemble. In this example, these
selected surrogates are combined to give the final prediction
of the CFD performance indicators (CL and CD).

Surrogate3
(RNN)

Surrogate2
(RNN)

Surrogaten
(RNN)

Surrogate1
(RNN)

Objective 1 (Complexity)
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Ensemble of Selected 

Surrogates

Selection 

Criteria

Prediction

CL and CD

…
Combination 

of Surrogates

Key:

Individual Surrogate (RNN)

Fig. 4: Pareto Set of Solutions

Five selection methods are investigated and compared to
selecting all members in the Pareto set. Prior to selection
the extreme individuals in the Pareto set (surrogates with the
lowest and highest complexity) are removed to avoid including
surrogates with high training error and those that are more
likely to cause over-fitting. The following subsections provide
information on the five selection methods.

1) Subset based on Knee Point of Pareto set: The knee
point of a Pareto set has been described as the region on the
front that “involve(s) (a) steep trade-off between objectives”
and “high marginal rates of return” [33], indicating that this
region is where you get the best trade-off between objectives.
The knee point of the Pareto set is also of interest because the
complexity of the models in this region is most likely to match
that of the data [22]. Consequently, the models in this area of
the Pareto set will not exhibit over-fitting on a validation data
set.

The Normalized Performance Gain (NPG) was introduced
in [22] to give an indication of the knee point of the Pareto set.
When there is a large change in the NPG value and it gradually
drops to zero, it can be said that the model complexity matches
that of the data and that this is the knee-point of the Pareto set.
Equation (1) is used for calculating the NPG, where MSEi,
MSEi+1 and NCi, NCi+1 are the MSE on the training data
and the number of connections of the ith and i+ 1th Pareto
optimal solutions.

NPG =
MSEi+1 −MSEi

NCi −NCi+1
(1)
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When the solutions are ranked in the order of increasing
complexity, the following relationship holds:

NCi+1 > NCi,

MSEi+1 ≤MSEi
(2)

The subset will be selected from the identified knee-point
and includes individuals with an increasing complexity from
the knee point.

2) Single model located at Knee Point of Pareto set: The
individual surrogate identified by the NPG as the knee-point
of the Pareto set is selected, as this will be the individual that
has the best trade-off between objectives.

3) Subset based on NSGA-II Crowding Distance: The
crowding distance measure in the NSGA-II algorithm is used
to sort individuals in the Pareto set. It is a measure of how
crowded an individual is and is therefore a measure of the
individuals diversity during the search. The value assigned
to the individual is dependent on the average distance of the
individuals on either side of it. The individuals in the Pareto
set are ranked based on their crowding distance from largest
to smallest. The top ranked individuals are selected for the
subset.

4) Subset based on Training MSE: The individuals in the
Pareto set are ranked based on the training MSE from smallest
to largest. The top ranked individuals are selected for the
subset.

5) Subset based on Number of Connections: The individ-
uals in the Pareto set are ranked based on the number of
connections in the network from smallest to largest. The top
ranked individuals are selected for the subset.

Successful ensemble sizes have generally ranged from
between three and five members [11], so where possible
subsets of five members are used. Once the surrogates have
been selected, the individual RNN models are used to recur-
sively predict the converged performance indicator to a certain
number of iterations. A simple average is used to combine the
predicted values at the final iteration point.

Section III provides information on the specific data sets
that have been used in this work.

III. DATA SETS

Convergence data for an aircraft wing is used to test the
HMOEA and selection methods presented. Converged predic-
tions for the CL and CD are made at three angles of incidence
(α = 1.35◦, 1.65◦ and 6.00◦). The convergence histories are
from an Euler CFD method and each CFD simulation takes
approximately 40 minutes to run on one CPU. Each data
set has a total of 150 iterations, which is a typical level for
practical use.

Results will be presented in two formats. Firstly, a com-
parison between the CFD converged result and the predicted
results is presented for each data set and selection type, with
the absolute error reported. The second format is more specific
to the use of the predictors as surrogates in an optimization
task. When a surrogate is used in an optimization task the

TABLE I: Data Sets

Data Set Target
1.35◦CD 0.01922
1.65◦CD 0.02176
6.00◦CD 0.10333
1.35◦CL 0.56842
1.65◦CL 0.60677
6.00◦CL 1.13679

TABLE II: Absolute Deltas

Comparison Delta
1.35◦CD-1.65◦CD 0.00254
1.65◦CD-6.00◦CD 0.08156
1.35◦CD-6.00◦CD 0.08411
1.35◦CL-1.65◦CL 0.03835
1.65◦CL-6.00◦CL 0.53002
1.35◦CL-6.00◦CL 0.56837

accuracy of the individual predictions can be less important.
As long as the surrogate can lead the search to the optimum
and the order of the individuals in the population is maintained,
the best individuals should still be selected [34], [35]. This
means the optimizer is interested in the incremental change in
performance between different designs or parameter values. It
is therefore not so critical that a surrogate model can predict
the exact performance of a specific design, but the same delta
between different designs as the CFD simulations. Therefore,
the performance delta for a change in the angle of incidence
is reported for both the CFD data and the surrogate models
predicted data.

Table I provides information on the target values for the
six data sets and Table II the different comparisons that are
made and the corresponding absolute delta values that the CFD
simulations can achieve.

IV. SIMULATION RESULTS AND DISCUSSION

As discussed in Section II-C the frequency, probability and
duration of the local search need to be considered. A numerical
investigation that considered different local search parameters
was conducted to establish what the values are for one data
set and the same values are then used for all other data sets.
These values are; Frequency: every 10 generations, Duration:
20 epochs and Probability: 50%. The first 50 data points are
used for training and a warm-up-length of 10 is used during
the local search.

The weights of the connection matrices for each ensemble
member are randomly initialized between -10 and 10 and the
boundary check used during the local search ensures the weight
values do not exceed these limits. A total of 500 generations
and a population size of 100 are used. Normalization of
training data is between 0 and 1. However, it should be noted
that the training MSE for the global search is calculated using
the original data, so the predicted values need to be converted
back to the original range prior to calculating the training MSE.
This is also done during the prediction phase.

Ten independent runs of each data set were performed to
account for the random initial weights. The mean prediction
value and standard deviation for the 10 runs, along with the
absolute error to the target value, is presented in Table III.
The best performing selection methods are highlighted in bold
text. Table IV presents the comparisons between the deltas for
different angle of incidence calculations. The absolute error
between the delta achieved by the CFD simulations and the
delta achieved by the surrogates is used to identify the best
selection criteria for each data set.

Fig. 5 is an example of the prediction performance for a CD

data set. All surrogate model predictions are included (dashed
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TABLE III: Prediction Results

All Selection 1 Selection 2 Selection 3 Selection 4 Selection 5

1.35◦ CD

Mean Prediction 0.02279 0.02139 0.02018 0.02378 0.02564 0.02052
Standard Deviation 0.00081 0.00148 0.00309 0.00100 0.00110 0.00115

Absolute Error 0.00357 0.00218 0.00097 0.00456 0.00642 0.00131

1.65◦ CD

Mean Prediction 0.02590 0.02599 0.02386 0.02663 0.02737 0.02397
Standard Deviation 0.00168 0.00285 0.00197 0.00297 0.00272 0.00149

Absolute Error 0.00414 0.00423 0.00210 0.00487 0.00561 0.00221

6.00◦ CD

Mean Prediction 0.11889 0.12074 0.11951 0.11966 0.12057 0.11716
Standard Deviation 0.00132 0.00243 0.00137 0.00185 0.00098 0.00255

Absolute Error 0.01554 0.01741 0.01618 0.01633 0.01724 0.01384

1.35◦ CL

Mean Prediction 0.61140 0.64138 0.63324 0.63980 0.64519 0.63259
Standard Deviation 0.02966 0.00926 0.01267 0.01012 0.00857 0.01297

Absolute Error 0.04298 0.07296 0.06482 0.07138 0.07677 0.06417

1.65◦ CL

Mean Prediction 0.63887 0.67705 0.67632 0.67783 0.68368 0.66679
Standard Deviation 0.01937 0.01069 0.01087 0.01123 0.00614 0.01251

Absolute Error 0.03210 0.07028 0.06955 0.07106 0.07691 0.06002

6.00◦ CL

Mean Prediction 1.10781 1.18454 1.18093 1.18636 1.19211 1.18445
Standard Deviation 0.04198 0.01757 0.02280 0.01664 0.01959 0.01591

Absolute Error 0.02898 0.04775 0.04414 0.04957 0.05532 0.04766

TABLE IV: Delta Results

All Selection 1 Selection 2 Selection 3 Selection 4 Selection 5

1.35◦CD-1.65◦CD
Delta 0.00312 0.00460 0.00367 0.00285 0.00173 0.00345

Abs. Error 0.00057 0.00205 0.00113 0.00031 0.00081 0.00091

1.65◦CD-6.00◦CD
Delta 0.09297 0.09475 0.09565 0.09303 0.09320 0.09319

Abs. Error 0.01140 0.01318 0.01409 0.01146 0.01163 0.01162

1.35◦CD-6.00◦CD
Delta 0.09608 0.09935 0.09933 0.09588 0.09493 0.09664

Abs. Error 0.01197 0.01524 0.01522 0.01177 0.01082 0.01253

1.35◦CL-1.65◦CL
Delta 0.02747 0.03568 0.04309 0.03804 0.03849 0.03421

Abs. Error 0.01088 0.00268 0.00473 0.00032 0.00014 0.00415

1.65◦CL-6.00◦CL
Delta 0.46894 0.50748 0.50461 0.50852 0.50843 0.51765

Abs. Error 0.06108 0.02253 0.02540 0.02149 0.02159 0.01236

1.35◦CL-6.00◦CL
Delta 0.49641 0.54316 0.54770 0.54656 0.54692 0.55186

Abs. Error 0.07196 0.02521 0.02067 0.02181 0.02145 0.01651
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Fig. 5: CFD Prediction - 1.35◦CD

lines) along with the target data (solid line) and the enlarged
plot is the final 90 iterations to show the different performance
of the various surrogates. Each prediction is associated with
a surrogate model in the Pareto set shown in Fig. 6. Fig. 6
also gives an example of the NPG for this setup and how it
can indicate where the knee point of the Pareto set is located.
Fig. 7 is an example of the prediction performance for a CL

data set, with all surrogate model predictions included (dashed
lines) along with the target data (solid line).
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Fig. 6: NPG and Pareto Set example - 1.35◦CD

The results presented in Table III shows that the target
values can be predicted with reasonable accuracy. A selection
from the Pareto set either using selection method 2 (a single
model located at the knee-point of the Pareto set) or method 5
(a subset based on the number of connections) have performed
best for the CD data sets. However, using all individuals in the
Pareto set has produced the best results for all CL data sets.

This result was unexpected, as it is known that the Pareto
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Fig. 7: CFD Prediction - 1.65◦CL

set will include some unsuitable models and that selection
should remove these surrogates from the ensemble. An expla-
nation as to why this has happened can be seen in Fig. 7, which
shows two surrogate models that are producing very different
and actually wrong predictions that are below the target (solid
line). When these two predictions are included in the ensemble
they add a bias to the prediction performance, shifting the
mean down and closer to the target. However, when they are
removed, because the other surrogates are all predicting similar
results above the target, the mean is shifted up and away from
the target, resulting in poorer performance.

The results presented in Table IV show that the deltas
between two aerodynamic flow conditions can also be pre-
dicted reasonably well. These results are encouraging as it
shows that the surrogates can still maintain the direction of
design improvement and to a similar number of lift and drag
counts as the CFD simulations. An explanation for this is that
the absolute error for each ensemble prediction appears to be
consistent, with both the lift and drag predictions being over
predicted. Hence by considering the delta in lift and drag, the
effect of this absolute error is reduced. The predicted delta
can potentially provide a usable search direction during aero-
dynamic optimization, as the resultant drag delta is consistently
over predicted and the lift delta under predicted.

Table IV also does not show a selection method that
performs better than any of the others when considering the
deltas between different flow conditions. There is also one
case where using all individuals in the Pareto set provides the
best result. It is clear though that when considering the deltas
between different flow conditions, using a subset is generally
better than using all individuals, particularly for CL data sets.

The previously presented results show stable predictions
and this behaviour was generally seen for the majority of sur-
rogate models generated. However, there were some unstable
predictions, including those that cycled with small and large
amplitudes. Fig. 8 is an example of an unstable prediction for
the 1.65◦CL data set. This surrogate would be a member of
an ensemble that includes all individuals from the Pareto set,
but would be removed by the selection process.

Further investigation is required to understand why some
of the networks produce these oscillatory predictions. Also,
when reviewing the structure of the networks there were some
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Fig. 8: Unstable Prediction example - 1.65◦CL

instances where connections were made, but no associated
weight value is present. This may be due to the networks
driving the weights to zero, indicating that a connection should
not be present. However, in the future a mechanism to identify
these links should be included in the model, as connections
without weights means that some solutions in the Pareto set
may actually be dominated solutions, as their complexity is
being overstated.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a framework that uses ensembles
of RNNs to predict CFD convergence data using partially con-
verged/intermediate data. A HMOEA has been presented that
uses a global optimizer with local search to train the networks
and optimize their structure. The result of the algorithm is a
Pareto set of solutions. The selection and combination of the
individuals in the Pareto set has been investigated, although it
is not possible to conclude that one selection method is better
than any of the others tested on the CFD datasets. Generally
the predictions are very stable and the selection process should
result in removal of any which are unstable.

Encouraging predictions have been made for two perfor-
mance measures (CL and CD) at three different angles of
incidence (α = 1.35◦, 1.65◦ and 6.00◦). The delta change from
one flow condition to another has also been investigated and
this has shown that when two surrogate models are considered
together, the performance is comparable to the delta change
from the CFD data. This appears to be because there is a
consistent over prediction by the surrogate models.

This work has shown that an ensemble of RNNs, which
are trained using a hybrid optimizer, can be used to predict
converged CFD results using a third of the intermediate data.
The impact of this is that a reduction in overall computation
time could be achieved when an optimizer uses CFD simu-
lations as its fitness function evaluation. Particularly when a
global optimizer is used and many CFD simulations need to
be evaluated.

Further work will be to investigate the consistent over and
under predictions seen. Additional data sets that consider wing
geometry changes will also be investigated, because it is these
features that are most likely to be optimized, rather than just
the angle of incidence. Different quantities of training data and
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the local search parameters can also be fine tuned to improve
prediction accuracy. Additional selection methods should also
be investigated to see if one can be applied that is suitable
for all data sets. Also, a selection method that assesses the
similarity between the ensemble members should be inves-
tigated, as it can be seen that a number of the surrogates
are producing similar prediction profiles. The ambiguity term
of Krogh and Vedelsbys Error-Ambiguity Decomposition [16]
could be used to give an indication of the diversity between
members. Members with high ambiguity values should be
selected, so the ensemble only includes those that are diverse.

Evolving ensembles instead of individuals could also be
investigated, however it is felt that the overall computation
time would increase, due to the need to evaluate the various se-
lection schemes after each generation. Currently the ensemble
members are only selected from the final archive of solutions.

Finally, the recurrent neural network ensemble based sur-
rogates will be used in evolutionary aerodynamic design opti-
mization of wing high-lift systems.
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