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Abstract— Robotic simulators are used extensively in Evo-
lutionary Robotics (ER). Such simulators are typically con-
structed by considering the governing physics of the robotic
system under investigation. Even though such physics-based
simulators have seen wide usage in ER, there are some
potential challenges involved in their construction and usage.
An alternative approach to developing robotic simulators for
use in ER, is to sample data directly from the robotic system
and construct simulators based solely on this data. The authors
have previously shown the viability of this approach by training
Artificial Neural Networks (ANNs) to act as simulators in the
ER process. It is, however, not known how this approach to sim-
ulator construction will compare to physics-based approaches,
since a comparative study between ANN-based and physics-
based robotic simulators in ER has not yet been conducted.

This paper describes such a comparative study. Robotic sim-
ulators for the motion of a differentially-steered mobile robot
were constructed using both ANN-based and physics-based
approaches. These two approaches were then compared by
employing each of the developed simulators in the ER process to
evolve simple navigation controllers for the experimental robot
in simulation. Results obtained indicated that, for the robotic
system investigated in this study, ANN-based robotic simulators
offer a promising alternative to physics-based simulators.

I. INTRODUCTION

Evolutionary Robotics (ER) is a process used to semi-

automatically develop controllers for robots through artificial

evolution [1]. The fact that evolution is used to construct

and optimize the controller of a robot during the ER process

means that the need for human input is minimal, making ER

an attractive alternative to manual controller development by

human programmers [2].

As with other Evolutionary Algorithms, the ER process

evolves a population of candidate solutions (robot con-

trollers), with the aim of producing an optimal controller that

can effectively perform a pre-defined task when uploaded to

a real-world robot. An important aspect during this evolution

process is the ability to quantify the relative performance of

each controller in the population in performing the required

task. A fitness function is used to achieve this [3].

To determine the fitness of a candidate controller in the

ER population, the controller can be uploaded to the real-

world robot [2]. Such real-world evaluation of controller

performance can, however, be an extremely time-consuming
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process and can possibly damage robotic hardware, since

many (typically in the order of tens of thousands [4])

candidate controllers need to be evaluated during a typical

ER process. Owing to the challenges in performing ER on

real-world robots, evolution in simulation has been consid-

ered by various researchers [4], [5]. This process involves

making use of a robot simulator to simulate the robot and

its interaction with its environment, so that the fitness of

candidate controllers can be evaluated without needing to

upload these controllers to the real-world robot.

The current work aims to compare two different ap-

proaches to constructing such simulators for ER, namely Ar-

tificial Neural Network (ANN)-based simulators and physics-

based simulators. The remainder of this paper is presented

as follows: Section II introduces different approaches that

can be followed in robotic simulator construction for ER.

A motivation is provided for the investigation attempted

in the current study, and the methodology employed to

compare different approaches to simulator construction is

then outlined in Section III, followed by a discussion on

the experimental hardware employed and the method used to

acquire data from which robotic simulators were constructed

(Section IV). Section V discusses the processes followed

to construct the different robotic simulators. In order to

gauge the effectiveness of each of these simulators in the

ER process, robotic controllers were evolved using each

simulator (Section VI). Results are presented and discussed

in Section VII and conclusions are drawn (Section VIII).

II. APPROACHES TO SIMULATION IN ER

As discussed in Section I, robotic simulators are often

used to accelerate and simplify the ER process. It is vital

that controllers evolved in ER using such robotic simulators

perform the required task effectively when uploaded to real-

world robotic hardware, since this is the ultimate goal of ER.

It is thus very important that robotic simulators used during

the ER process accurately model the real-world behaviour of

the robot under consideration. In addition, since a very large

quantity of candidate controllers are typically evaluated dur-

ing the ER process (Section I), the computational efficiency

of robotic simulators employed during the ER process is of

great importance [6].

To construct robotic simulators for ER, various techniques

can be applied. The two methods of simulator construction

for ER that will be investigated in the current study are now

briefly outlined and contrasted.
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A. Physics-based Robotic Simulation

Robotic simulators used in ER are often based on the

physics governing the robotic system under consideration [4],

[7]. The construction of physics-based robot simulators can

be a complex process, since various characteristics of the

robot system to be simulated need to be incorporated into

such a simulator, such as complex body shapes and factors

such as friction [2]. Physics-based robotic simulators fur-

thermore often make simplifying assumptions of real-world

physics to simplify the implementation of these simulators

and improve their computational efficiency [6]. This can have

a negative impact on the accuracy of these simulators.

Evidence does exist that controllers evolved in simulation

using physics-based simulators do not always perform ef-

fectively when these controllers are executed on real-world

robots [3], meaning that these simulators are not necessarily

accurate enough to simulate the relevant features of the

experimental robot. The calculations involved in physics-

based simulators can also be computationally demanding [8]

and, as a result, the computational efficiency of physics-based

simulators can become a prohibitive factor for using these

simulators in ER.

B. ANNs as Robotic Simulators

As a result of the challenges involved in using physics-

based simulators in the ER process, the authors previously

explored an alternative approach to simulator development

by constructing ANNs from experimentally-collected data to

act as simulators during the ER process [9], [10]. ANNs were

advocated for usage as robotic simulators due to their noise

tolerance and generalization capabilities [10]. It was shown

that various robotic controllers can be evolved in ER and

successfully transferred to real-world robots when making

use of such ANN simulators. The notion of developing

robotic simulators by learning from empirical data has been

explored by others [11], [12] and is essentially an application

of system identification [13]. This approach has, however, not

seen wide application in the field of ER.

It is proposed that employing ANNs as robotic simula-

tors in ER can potentially address some of the challenges

involved in traditional physics-based approaches to simu-

lator construction. Since ANN-based robotic simulators are

constructed exclusively from empirically-collected data, the

physics governing the robotic system under consideration

does not need to be explicitly considered in the construction

of ANN-based simulators. This can potentially reduce the

amount of human effort required during simulator construc-

tion. Also, idiosyncrasies of the robotic system which could

be omitted from a physics-based simulator due to simplifying

assumptions made during the construction of said simulator

(Section II-A), could be taken into account in an ANN-based

simulator, since these idiosyncrasies will also be present in

the data from which such a simulator is constructed. This

means that ANN-based robotic simulators offer the potential

of accurately simulating the operation of real-world robots.

Furthermore, since ANNs can avoid the complex calculations

involved in some physics-based robotic simulators (Section

II-A), it is envisaged that ANN-based simulators could be

computationally efficient as robotic simulators in ER.

III. MOTIVATION FOR AND OUTLINE OF THE CURRENT

STUDY

Since both the approaches to robotic simulator construc-

tion for ER presented in Section II have been shown to be

viable for usage in ER, and both approaches have apparent

advantages and disadvantages to their usage, a comparative

study between these two approaches appears warranted.

Such a comparative study of ANN-based and physics-based

simulators in ER has not yet been attempted. The research

presented here therefore attempts such a comparative study,

and represents a first attempt at quantitatively comparing

these two approaches to simulator construction in ER.

As an initial attempt at such a comparative study, a simple

robotic platform was selected, namely a differentially-steered

mobile robot (Section IV). Both physics-based and ANN-

based simulators were developed for the motion of this robot

(Section V) and were subsequently used in the ER process

to evolve simple navigation controllers for the robot (Section

VI). During this process, the human effort needed during

simulator construction was compared for the different robotic

simulators1, as well as the accuracy and computational

efficiency of each simulator, and the real-world performance

of controllers evolved using each simulator.

IV. ROBOTIC HARDWARE AND DATA ACQUISITION

This study made use of a Khepera III mobile robot [14].

The Khepera III is a differentially-steered robot, meaning that

it is driven by two wheels, each connected independently

to a motor. In this study, simulators were developed for

the motion of the experimental robot in a horizontal plane

(Section V). The operating environment of the robot therefore

consisted of a horizontal skid-proof surface. A Nintendo Wii

remote [15] was mounted directly above this surface using a

purpose-built supporting frame, so as to face perpendicularly

downward onto the surface from a height of roughly 1.8m.

In order to collect data related to the real-world motion

of the experimental robot, a motor speed for each of the

robot’s two wheels was randomly generated, as well as a time

period that these speeds were to be maintained. Each speed

and time period was generated from a uniform distribution

to ensure that the resulting data would uniformly cover

the entire search space. The generated wheel speeds were

then maintained by the robot for the required time period

after which another pair of wheel speeds and time duration

were generated randomly and maintained by the robot. This

process was repeated numerous times. Collisions with the

boundaries of the working surface were not considered in

this study. While the robot was moving in response to the

1A quantitative comparison of the human effort needed during simulator

construction was not done in this study due to the inherent subjectivity that
would be involved in such a comparison. Rather, comments are given in

the text to illustrate the possible differences in the amount of human effort

needed to construct the different robotic simulators.
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generated commands, the Wii remote was used to track the

motion of the robot by tracking an arrangement of infrared

lights mounted on top of the robot. This tracking process

and the calibration of the Wii remote needed to allow for

accurate tracking were implemented using a modification of

code by Lee [16].

The acquired data was separated into three distinct sets: a

training set, validation set and test set. These sets contained

1000, 230 and 230 data patterns, respectively. The usages of

these data sets as well as the different simulators developed

for the motion of the experimental robot are discussed in the

next section.

V. SIMULATOR DEVELOPMENT

The main aim of this study was to quantitatively compare

physics-based and ANN-based robotic simulators for the

motion of the experimental robot in the ER process. Since

the robot was constrained to moving in a horizontal plane

(Section IV), the state of the robot at any point during its

motion could be described by three variables: two for the

position of the robot in the plane (x- and y-coordinates in a

Cartesian coordinate system) and one for its orientation angle

(denoted by θ), that is the angle between the forward-facing

direction of the robot and some fixed vector in its operating

environment.

The task of each of the simulators developed in this work

would be as follows: Given that a series of commands are

issued to the robot, each in the form of a motor speed for

each of its two wheels and a time duration for these speeds to

be maintained by the robot, the simulators were to predict the

nett change in position and orientation of the robot as a result

of each of the commands in the series. For each command

issued to the robot, vcur

L
and vcur

R
are used to denote the

linear speeds of the left and right wheels, respectively, issued

as part of said command. Since the wheel speeds maintained

by the robot before receiving a certain command (that is,

as part of the preceding command) would also have an

influence on the robot’s motion while executing the current

command (due to the inertia of the robot), these speeds

were also taken into account by some of the simulators

developed in this work. The left and right wheel speeds

maintained by the robot as part of the previous command

are denoted, respectively, by v
prev

L
and v

prev

R
. Lastly ∆t is

used to denote the time period for which a certain command

is to be executed by the robot.

A Cartesian coordinate system was constructed and al-

lowed to move with the robot during its motion. The nett

changes in the x-coordinate and y-coordinate of the axle-

centre of the robot in response to a certain command were to

be predicted in this local coordinate system by the developed

simulators. These changes are denoted by ∆x and ∆y,

respectively. The change in orientation angle of the robot

in response to a certain command was simply measured in a

static global coordinate system and is denoted by ∆θ.

Three different simulators were developed for the motion

of the robot: two physics-based simulators and one ANN-

based simulator. The development of each of these simulators

is now discussed.

A. Physics-based Simulators

Two physics models were implemented in this work:

a kinematic model and a dynamic model. The kinematic

model makes various simplifying assumptions and was thus

anticipated to be computationally efficient, but the predic-

tions made by this model were expected to be relatively

inaccurate. The dynamic model, conversely, takes various

factors related to the motion of the robot into account which

are neglected by the kinematic model. This meant that the

dynamic model would likely be less computationally efficient

but more accurate than the kinematic model. These physics-

based simulators are now presented in more detail.

1) Kinematic Model: The kinematic model of differential

steering does not take the inertia of the robot or any other

complicating factors related to robotic motion into account.

Under these assumptions ∆x, ∆y and ∆θ during the time

period [0, ∆t] can be calculated using [17]:

∆x =
d(vcur

R + vcur
L )

2(vcur
R − vcur

L )

[
sin

(
(vcur

R − vcur
L )∆t

d
+ θ0

)
− sin(θ0)

]
(1)

∆y = −
d(vcur

R + vcur
L )

2(vcur
R − vcur

L )

[
cos

(
(vcur

R − vcur
L )∆t

d
+ θ0

)
− cos(θ0)

]
(2)

∆θ =
(vcur

R − vcur
L )∆t

d
(3)

where d is the robotic axle length and θ0 = θ(0). It can be

seen from equations (1) to (3) that due to the simplifying as-

sumptions on which this model is based, the kinematic model

does not take into account the wheel speeds maintained by

the robot before receiving a certain command (v
prev

L
and

v
prev

R
). The axle length (d) and other parameters required in

the kinematic model could be accurately measured directly.

These parameter values were thus considered fixed and were

not subjected to optimization as was done with the dynamic

model (Section V-A.2), since changes made to their values

through optimization would lead to a physically unrealistic

model.

2) Dynamic Model: The dynamic model applied in this

study is based on work by Laut [18]. For the sake of brevity

the derivation of this model and other technical details related

to this model will not be presented here. The interested reader

is referred to Laut [18] for more details.

In the dynamic model, α1,..., α6 are parameters depending

on various physical characteristics of the robot and a is the

distance between the axle of the robot and the point on

the robot for which the motion is to be predicted. Since

this work was concerned with the motion of the axle-centre

of the robot, a = 0. vref and ωref are the reference

linear and angular velocities of the robot and can easily be

expressed in terms of the left and right wheel speeds (vcur

L

and vcur

R
). Using these quantities, the rate of change in the

x-coordinate, y-coordinate, orientation angle, linear velocity

(v) and angular velocity (ω) of the robot respectively, can be
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expressed by the following non-linear system of five first-

order coupled differential equations [18]:

dx

dt
= v cos θ − aω sin θ (4)

dy

dt
= v sin θ + aω cos θ (5)

dθ

dt
= w (6)

dv

dt
=

α3

α1
ω

2
−

α4

α1
v +

vref

α1
(7)

dω

dt
= −

α5

α2
vω −

α6

α2
ω +

ωref

α2
(8)

To determine ∆x, ∆y and ∆θ in response to wheel speeds

maintained by the robot, the system of differential equations

(equations (4) to (8)) was solved for each time interval [0, ∆t]
corresponding to a command issued to the robot, taking

appropriate initial conditions into account in each case. These

initial conditions were based on v
prev

L
and v

prev

R
meaning

that, unlike the kinematic model, the dynamic model did take

into account these previous wheel speeds. The system was

solved numerically using a Runge-Kutta fourth-order method

[19]. This numerical method has a high-order local truncation

error [19] and was thus expected to give numerical results

with high accuracy. In the Runge-Kutta method, a constant

time-step of 10ms was used, as this was determined to be

the largest time-step that would lead to stable solutions of

the system of differential equations.

Accurate determination of the parameters α1,..., α6 can

be a challenging task since these parameters depend on

various physical quantities, for example the moment of

inertia of the robot about its local z-axis [18]. Furthermore,

deriving the differential equations describing the motion of

the robot (equations (4) to (8)) is also not a trivial task and

takes roughly five pages of mathematical derivation by Laut

[18]. This illustrates some of the challenges involved in the

construction of accurate physics-based robotic simulators.

In this study the values of the parameters to be used in the

dynamic model (α1,..., α6) were determined using a Genetic

Algorithm (GA) [20]. Other optimization techniques could

also have been employed, but since the GA allowed for

successful optimization of the parameters, other techniques

were not considered. Each individual in the GA population

encoded potential parameter values to be used in the dynamic

model. The error function to be minimized by the GA was

calculated as:

1000∑
i=1

[(∆x
E
i − ∆x

P
i )2 + (∆y

E
i − ∆y

P
i )2 + (∆θ

E
i − ∆θ

P
i )2] (9)

where ∆xE

i
is the expected change in robotic x-coordinate

associated with pattern i from the training set (Section IV)

and ∆xP

i
is the corresponding change in x-coordinate as

predicted by the dynamic physics model making use of the

parameters encoded in a certain individual in the GA popu-

lation. ∆yE

i
, ∆yP

i
, ∆θE

i
and ∆θP

i
are defined analogously.

The quantities in equation (9) were normalized to ensure

that each of the three terms in this equation contributed

roughly equally to the error function. Further details of the

GA used during this optimization process are given in Table

I. The GA was run for 1000 generations. During this process

the algorithm was monitored for overfitting [20] using the

validation set (Section IV), but no overfitting was found to

occur. In multiple runs of the GA, the GA was consistently

found to converge to within 3 decimal places of a specific

combination of parameter values and these values were thus

considered optimal. The optimal parameter values are shown

in Table II and were subsequently used in the dynamic model

for controller evolution (Section VI). Laut also determined

optimal values for α1,..., α6 [18], but these were based on

a slightly different physical configuration of the robot. The

values determined in the current work were found to lead

to more accurate predictions from the dynamic model than

those determined by Laut, as expected.

TABLE I

DETAILS OF GA USED FOR PARAMETER OPTIMIZATION

Population Size 200

Initialization Random from a uniform distribution

Selection Method Tournament Selection (Tournament size 40)

Crossover Probability 80%

Crossover Method Simulated Binary Crossover

Mutation Probability 5%

Mutation Method Random Component Perturbation

B. ANN-based Simulators

Unlike the physics-based simulators, ANN-based simula-

tors developed in this work did not explicitly take any of the

physics governing the motion of the robot into account. In-

stead, these ANN-based simulators were constructed entirely

from data collected from the robot system under consider-

ation. This illustrates that ANN-based robot simulators can

potentially reduce the need for human input in the simulator

development process. The topologies used for the ANN-

based simulators are now discussed, along with the ANN

training process.

1) ANN Topologies: To develop the ANN-based simula-

tors for the motion of the experimental robot, use was made

of Feed-Forward Neural Networks (FFNNs) [20] with one

hidden layer each, consisting of 20 hidden neurons. Similar

FFNN-based simulators have previously been shown to be

viable in modeling differential steering [9]. Furthermore,

previous research by the authors [21] suggested that more

involved ANN topologies for modeling differential steering

(such as Recurrent ANNs) do not offer considerable accuracy

improvements over simpler FFNN topologies. All neurons

in the ANNs developed in this work were implemented as

summation units and neurons in the hidden layer of each

TABLE II

OPTIMAL PARAMETER VALUES FOR DYNAMIC MODEL

Parameter Value

α1 0.087
α2 0.101
α3 1.17 × 10−8

α4 0.989
α5 6.00 × 10−6

α6 0.989
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ANN used sigmoid activation functions, whereas neurons

in the output layer used linear activation functions. Three

separate ANNs were constructed: one each for the prediction

of ∆x, ∆y and ∆θ. Each ANN took five inputs: vcur

L
, vcur

R
,

v
prev

L
, v

prev

R
and ∆t.

2) ANN Training: For ANN training, use was made of

the Levenberg-Marquardt training algorithm [22]. Informal

tests on other training algorithms, such as Gradient Descent,

revealed that the Levenberg-Marquardt algorithm generally

trained the ANNs more accurately and thus further lead

to the decision to employ this training algorithm. In order

to construct and train the ANNs employed in this work,

use was made of the Encog Machine Learning Framework

[23]. All weights corresponding to each ANN were randomly

initialized and network training was employed to minimize

the Mean Squared Error (MSE) [20] of each ANN based on

the data in the training set of the ANN (Section IV). Training

was allowed to continue until the MSE of a given ANN as

calculated over the relevant ANN’s validation set was seen to

increase in ten successive iterations of the training algorithm.

This stopping condition was used to avoid overfitting [20].

The training process was performed 30 times for each ANN

and the ANN with the lowest MSE value based on validation

data out of the 30 training runs was selected for further usage

as a robotic simulator in the controller evolution process

(Section VI). This was done since ANN simulators were

required that could generalize well on data not presented

during the training phase.

VI. CONTROLLER EVOLUTION

To test the viability of each of the developed simulators

in the ER process, each simulator was subsequently used

in the evolution of a simple navigation controller for the

experimental robot. The task to be performed by an evolved

controller was chosen as follows: Four square blocks of side

length 30cm were placed in the corners of the rectangular

working surface of the robot. These blocks can be seen in

Figure 1. A navigational controller evolved for the robot

would then be expected to allow the robot, originally placed

in the centre of the working surface, to pass through each

of these squares (in no particular order) after which the

robot was to return to its original position (the centre of

the working surface). This task was also to be completed

as quickly as possible without the robot leaving the outer

perimeter of the working surface at any time during execution

of the task.

Simple open-loop controllers were evolved to achieve the

desired robotic behaviour (these controllers took no sensory

inputs).2 Controllers encoded a list of 10 commands (each

command consisting of a speed for each of the two robot

wheels as well as a time period to maintain each of these

2Although inputs from sensors might have allowed the robot to perform

the task more effectively, open-loop controllers were specifically chosen

since this would allow for rigorous testing and comparison of the different
motion simulators developed in this work. The authors have, however,

previously shown that closed-loop controllers can be successfully evolved

in simulation when using ANN-based simulators [10].

pairs of speeds). The possibility was also introduced for one

or more of the 10 commands in a certain controller to be

a null command (a command that would be ignored during

execution of the controller), effectively meaning that 9 or

less commands could also be used in a certain controller.

During the evolution process, the fitness of a candidate

controller in the ER population was determined by using one

of the developed simulators to construct the path followed

by the robot in response to the commands encoded in that

particular controller. Based on this path, the controller was

assigned a fitness using the following fitness function:

Fitness =

{
k1n − k2t − k3f − k4e;
k1n − k2t − k3c − k4e;

if n = 4
otherwise

(10)

In equation (10), k1,..., k4 are constants for which values

were chosen manually as k1 = 1000, k2 = 2.5s−1, k3 =
5cm−1 and k4 = 2.5cm−1. Furthermore, n is the number of

blocks that the robot passes through successfully, t is the total

execution time of the controller, f is the distance between the

final position of the robot and the target position in the centre

of the working surface, c is the distance between the final

position of the robot and the centre of the nearest block not

yet visited by the robot and e is the sum of the distances by

which the robot moves outside the perimeter of the working

surface, for all points making up a specific path.

This fitness function thus rewards controllers that allow

the robot to pass through as many blocks as possible.

Simultaneously, controllers are punished if they cause the

robot to take a large amount of time to perform the required

task or to leave the perimeter of the working surface. It can

be seen that the two cases in the fitness function differ in

their respective third terms. In the first case, since n = 4,

the robot has successfully moved through all four blocks and

therefore the third term in the fitness function aims to reward

a controller for finishing as close as possible to the target

position in the centre of the working surface. In the second

case, since n < 4, there exists at least one block that has

not been visited by the robot. The third term in the fitness

function then aims to reward a controller for allowing the

robot to finish as close as possible to the closest block not

yet visited. This was done to encourage the evolution process

to evolve controllers that would cause the robot to gradually

move closer to an unvisited block as the evolution process

proceeded and, eventually, visit this block.

The ER process applied to evolve navigation controllers

was implemented as a GA. Each chromosome in this GA

simply encoded the wheel speeds and command durations

for each of the commands of which a certain controller

comprised. The details of the GA employed for controller

evolution are the same as those listed in Table I, with the

exception that a mutation probability of 15% was used since

this increase in exploration capabilities of the GA was found

to accelerate the evolution process whilst still producing

effective controllers. Evolution was allowed to proceed for

10 000 generations. This evolution process was repeated 20

times using each of the developed simulators, and thus 20

controllers were evolved using each simulator. After 10 000
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generations of each evolution process, the best-performing

controller (the controller with the highest fitness value in

the population) was selected for further analysis on the real-

world robot.

VII. RESULTS AND DISCUSSION

The ANN-based and physics-based simulators developed

in this work (Section V) were compared based on their accu-

racy, computational efficiency and performance of controllers

evolved using each simulator when executed on the real-

world robot. Results are now presented and discussed.

A. Accuracy of Simulators

In order to compare the accuracy of the simulators, pre-

dictions made by each simulator were compared to data

collected from the real-world robot. This data was taken from

the test set (Section IV), since the data in this set was not pre-

sented to the dynamic model during parameter optimization

or the ANNs during their training phase. Using this unseen

data would thus gauge the generalization capabilities of each

of the simulators.

Findings are summarised in Table III. The data presented

in this table is based on the absolute errors produced by

each simulator, that is the absolute value of the difference

between a prediction made by a given simulator and the

corresponding expected value in the test set. These errors

were calculated for all data points in the test set, and Table

III shows the average absolute error, the minimum absolute

error, maximum absolute error and the standard deviation

in absolute errors for each simulator in predicting ∆x, ∆y

and ∆θ. To give perspective on the magnitude of errors, the

average magnitude of all expected values of ∆x, ∆y and ∆θ

in the test set is also provided in the table.

TABLE III

ACCURACY OF EACH MOTION SIMULATOR

∆x (cm) ∆y (cm) ∆θ (degrees)

Ave Magnitude in Test Set 2.8940 4.7725 81.7871

Ave Error 0.4483 0.6241 3.0239

ANN Min Error 0.0053 0.0079 0.0096

Max Error 5.2392 3.9437 22.5320

Std Dev 0.5485 0.6014 3.3638

Ave Error 0.3467 0.3628 4.1985

Dynamic Model Min Error 0.0013 0.0025 0.0311

Max Error 7.8446 4.0399 26.7574

Std Dev 0.6586 0.4363 3.9652

Ave Error 1.0093 1.2788 13.2385

Kinematic Model Min Error 0.0008 0.0036 0.0586

Max Error 19.0230 15.2045 50.2058

Std Dev 1.7967 1.5346 10.1716

It can be seen from Table III that both the ANN simulators

and the dynamic model were accurate at simulating the mo-

tion of the experimental robot, both having sub-cm average

accuracy in predicting ∆x and ∆y. The kinematic model was

much less accurate, as expected (Section V-A). The dynamic

physics model was, on average, more accurate than the ANN-

based simulators in predicting ∆x and ∆y, whereas the ANN

simulators were more accurate at predicting ∆θ.

After an ANOVA Omnibus test revealed statistically sig-

nificant differences between the average errors shown in

Table III, a Tukey’s HSD test [24] was performed using a

0.05 significance level. This test indicated that both the ANN

simulators and dynamic model were statistically significantly

more accurate than the kinematic model for the prediction

of each of ∆x, ∆y and ∆θ (all p-values were much smaller

than 0.05). Differences observed in the accuracies of the

ANN simulators and the dynamic model were not statistically

significant for ∆x (p = 0.612) and ∆θ (p = 0.138), but

were statistically significant in the prediction of ∆y (p =
0.013). Thus, in summary, both the ANN-based simulators

and the dynamic model dramatically outperformed the kine-

matic model, with comparable accuracies between the ANN

simulators and the dynamic model, although the dynamic

model was generally more accurate than the ANN simulators

(statistically significantly more accurate in predicting ∆y).

Considering that the ANN-based simulators were con-

structed without taking any of the physics related to the

operation of the real-world robot into consideration (as

was done by the physics-based simulators), the accuracy

achieved by these ANN-based simulators is encouraging.

The ANN-based simulators require no derivation of physics

equations and no determination of physical parameters as

was the case for the physics-based simulators, especially the

dynamic model (Section V-A.2). The accuracy offered by

these simulators thus clearly indicates that such ANN-based

simulators can be comparable to physics-based simulators in

terms of simulator accuracy, while arguably requiring much

less human effort in their construction.

B. Computational Efficiency of Simulators

As was established in Section II, the computational ef-

ficiency of robotic simulators used in the ER process is

of paramount importance. To evaluate the computational

efficiency of each of the developed simulators, the time

taken by each simulator to predict the motion of the experi-

mental robot corresponding to 100 000 randomly-generated

commands was measured. Tests for all the simulators were

performed on the same computer and all the simulators

were implemented in the same language (Java) to avoid any

biasing of results.

TABLE IV

TIME TAKEN BY EACH SIMULATOR TO SIMULATE 100 000 COMMANDS

Running time (ms)

ANN 484

Dynamic Model 16700

Kinematic Model 24

Table IV shows the results obtained. It can be seen from

this table that the kinematic model is extremely computation-

ally efficient. This follows from the fact that this model can

be expressed in the form of three closed-form equations (Sec-

tion V-A.1). This computational efficiency, however, comes

at the cost of accuracy (Section VII-A). Considering the level

of accuracy offered by the ANN-based simulators (Section

VII-A), the computational efficiency of these simulators is

promising. These simulators execute roughly 30 times faster

than the dynamic model, while still making predictions with

accuracy comparable to that of the dynamic model.
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C. Real-World Performance of Evolved Controllers

Since the ultimate goal of ER is to produce robotic

controllers that can perform required tasks adequately when

uploaded to real-world robots, the efficacy of the simulators

developed in this work was evaluated by comparing the real-

world behaviour produced by each evolved controller to that

expected in simulation. This was achieved by comparing

fitness values (equation (10)) produced by each evolved

controller in simulation, to the fitness values produced by

the same controller when executed on the real-world robot.

Results are provided in Table V. The data presented in

this table is based on the absolute difference between the

simulated fitness value of each of the 20 controllers evolved

using each of the simulators and the corresponding real-world

fitness value. The average, minimum and maximum of these

differences are given for each simulator, based on the 20

controllers evolved using said simulator. Also shown in Table

V are the number of controllers evolved using each simulator

that successfully allowed the real-world robot to pass through

all four blocks, and the number that caused the robot to miss

one or two blocks respectively (no controller missed more

than two blocks).

TABLE V

COMPARISON OF SIMULATORS BASED ON CORRESPONDENCE BETWEEN

SIMULATED AND REAL-WORLD FITNESS OF EVOLVED CONTROLLERS

ANN Dynamic Kinematic

Model Model

Average fitness difference 328.91 393.35 745.81

Minimum fitness difference 13.90 9.52 21.33

Maximum fitness difference 2299.27 2267.64 2271.56

# All Blocks Visited 17 15 11

# 1 Block Missed 1 4 6

# 2 Blocks Missed 2 1 3

Figure 1 shows, for each of the developed simulators, the

best and worst performing out of the 20 evolved controllers

in terms of the absolute difference between simulated and

real-world fitness values. In each case, these figures give the

real-world path followed by the robot and that predicted by

the relevant simulator. The points along each path indicate the

positions of the robot as predicted by the simulators and the

corresponding points on the real-world path followed by the

robot. It should be noted that these points were interpolated

to produce the provided figures and the lines in each figure

are thus only an approximation to the actual path followed

by the robot.

The results presented in Figure 1 indicate that all the

simulators allowed for the successful evolution of controllers

that could perform the required navigation task in simulation.

However, it can clearly be seen that the evolved controllers

transferred to the real-world robot with varying degrees of

success. The best performing controllers evolved using each

of the three simulators allowed the robot to perform the

required task well in the real world, with the ANN and dy-

namic simulators allowing for slightly better performance on

the real-world robot than the kinematic model: a cumulative

error is visible in that the robot does not accurately return

to its original position in Figure 1(c). The worst performing

controllers can all be seen to produce real-world behaviours

which differ quite drastically from the robotic behaviours

expected in simulation. Since the controllers evolved in this

study are open-loop (Section VI), a certain amount of devia-

tion between simulated and real-world robotic behaviours is

inevitable.

Although only minor differences are visible between the

different simulators in Figure 1, Table V does indicate clear

disparities between these simulators. It can be seen from

this table that the ANN-based simulators evolved controllers

which, on average, transferred more successfully to the real-

world robot as compared to either of the physics-based

simulators. This is evident from the fact that the average

absolute difference between real-world and simulated fitness

values is smallest for the ANN-based simulators and that

17 out of the 20 controllers evolved using the ANN-based

simulators allowed the robot to pass through all four blocks

successfully in the real world (the most of all the simulators).

It is believed that the ANN-based simulators lead to the

evolution of the most successful controllers due to the high

accuracy offered by these simulators in predicting ∆θ (Table

III). Errors in robotic orientation prediction have a large

influence on the correspondence between simulated and real-

world paths: See, for example, Figure 1(d)-(f), where the

real-world paths clearly deviate from the simulated paths due

to errors in orientation prediction. It can further be seen from

Table V that the dynamic model also produced controllers

that performed relatively well on the real-world robot. The

fact that both the ANN-based simulators and the dynamic

physics model produced controllers that transferred relatively

well to the real-world robot, follows directly from the fact

that both these simulators were accurate in predicting the

robot’s motion (Section VII-A). Similarly, the relatively low

accuracy offered by the kinematic physics model (Section

VII-A) was likely the cause of poor transferability of con-

trollers evolved using this simulator. This poor transferability

is clear from the fact that barely one half (11 out of 20) of

the controllers evolved using the kinematic model allowed

for the real-world robot to successfully pass through all four

blocks.

VIII. CONCLUSIONS AND FUTURE WORK

This study endeavoured to compare ANN-based and

physics-based approaches to simulator development in ER.

The results presented clearly indicate that ANNs do, at

least for the robotic system considered in this study, offer

a viable alternative to more commonly-used physics-based

simulators. This follows from the fact that the ANN-based

simulators were simpler to construct than the physics-based

simulators, since no prior knowledge was required of the

physics governing the robotic system being simulated in

order to construct ANN-based simulators to operate in said

system. In addition, the ANN-based simulators were shown

to be computationally efficient (more efficient than the dy-

namic physics model by a factor of 30) and made predictions

that were comparable to the more accurate physics model

(the dynamic model). As a result of the accurate predictions
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(a) ANN Best

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Global x−coordinate (cm)

G
lo

b
a

l 
y

−
c

o
o

rd
in

a
te

 (
c

m
)

 

 

(b) Dynamic Model Best
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(c) Kinematic Model Best
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(d) ANN Worst
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(e) Dynamic Model Worst
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(f) Kinematic Model Worst

Fig. 1. Best and worst performing controllers evolved using each motion simulator (dotted line = simulated path, solid line = real-world path)

made by the ANN-based simulators, these simulators also

enabled the evolution of controllers which showed greater

transferability to the real-world robot when compared to the

physics-based simulators.

From what has been demonstrated in this study, the

authors thus contend that ANN-based simulators may offer

a valuable tool in ER. This study illustrated that such

simulators can offer an excellent trade-off between accuracy

and computational efficiency, both of which are vital in the

ER process. Although encouraging results were obtained

in this study, the suitability of ANN-based simulators for

usage in ER can only truly be established through further

investigation. Since the robotic platform considered in this

study is relatively simple, more research is needed in order

to determine how ANN-based simulators will compare to

physics-based simulators for more involved robotic systems

governed by more complex physical laws.
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