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Abstract—This paper presents the Scientific Algorithms, a 
new metaheuristics inspired in the scientific research process. 
The new method introduces the idea of theme to search the 
solution space of hard problems. The inspiration for this class of 
algorithms comes from the act of researching that comprises 
thinking, knowledge sharing and disclosing new ideas. The ideas 
of the new method are illustrated in the Traveling Salesman 
Problem. A computational experiment applies the proposed 
approach to a new variant of the Traveling Salesman Problem 
named Car Renter Salesman Problem. The results are compared 
to state-of-the-art algorithms for the latter problem. 

Keywords—car renter salesman problem; metaheuristics; 
scientific algorithms; scientific research 

I.  INTRODUCTION 
Research is one of the essential processes for the 

construction of human insight, responsible for creating new 
knowledge and to develop understanding in different areas. 
The act of researching consists of seeking the truth by means of 
a formal procedure, a method of reflective thinking, allowing 
the discovery of new facts or data, relationships or laws in any 
field of knowledge, conducting a scientific process. The 
scientific method is a systematic procedure based on logic, 
rationality, efficiency and effectiveness, in order to assist 
decision-making of researchers in the task of producing 
scientific knowledge [1]. 

The scientific research processes inspired a new population 
based metaheuristics, named Scientific Algorithms. Unlike 
classical evolutionary algorithms in which individuals compete 
to reproduce and perpetuate their genetic, characteristics, 
research suggests cooperation between individuals for 
intellectual development, perpetuating their ideas. In this 
context, the intellectual evolution is just as natural and 
important to human beings as the genetic evolution, 
contributing significantly to survival. These algorithms bring 
the new idea of a theme to be researched, concentrating the 
search effort in different sets of variables during execution. 

This paper presents the Scientific Algorithms and illustrates 
its main steps with a didactic example on the Traveling 
Salesman Problem (TSP). To investigate the potential of the 
proposed class of algorithms, the approach is applied to a 
variant of the TSP named Car Renter Salesman Problem 

(CaRS) [2]. Several metaheuristics were applied to CaRS such 
as GRASP, VND, Ant Colony Optimization, Memetic 
Algorithms [2] and Transgenetic Algorithms [3]. 

This paper is organized in four sections, besides this one. 
Section II introduces the fundamentals of the proposed 
approach and section III its application to CaRS. Section IV 
reports the results of computational experiments on twenty 
instances with size ranging from 14 to 300 vertices. Finally, 
section V presents conclusions and remarks about future 
works. 

II. SCIENTIFIC ALGORITHMS 
This section presents the basic concepts of the Scientific 

Algorithms. The TSP is utilized as a didactic example to 
illustrate the main concepts of the algorithm. Given a weighted 
graph G = (V, E), where V = (1, 2, …, n) is the set of vertices, 
E = {(i, j) : i, j ∈ V, i ≠ j} is the set of edges and C = [cij] is the 
cost of the edge linking vertex i to vertex j, the TSP consists in 
finding the minimum cost Hamiltonian cycle in G [4]. The TSP 
is NP-Hard [5] and also one of the most intensely researched 
problems in Combinatorial Optimization. A review of the TSP 
is presented in [6]. 

In the scientific algorithms, the individuals of a scientific 
community are represented as a population of candidate 
solutions. In this paper, they are referred as researchers. The 
research topic corresponds to a set of variables of the 
investigated problem. The variables of the research topic are 
used to delimit the scope of the search, avoiding irrelevant 
regions to be explored in the solution space. In this paper, it is 
referred as search theme (or just theme, for short). The 
literature is thought as memory, or significant data about the 
search stored in a repository of information. This memory is 
used to bias the search, improving diversification or 
intensification. In this paper, it is referred as literature. The 
interactions of these three contexts result in the search 
procedure of the scientific algorithms. 

Fig. 1 presents the general framework of a scientific 
algorithm. The initial population of researchers, referred as 
Scientific_community, is created in step 1 and the literature in 
step 2. Steps 3 through 11 are the main loop of the scientific 
algorithm. Step 5 generates a theme. The theme is a set of 
variables of the problem that will be the focus of the search. It 
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limits the scope to a restricted area of the space of solutions. 
Step 6 creates a new solution based on the current solution 
(researcher), the literature and the theme. The new solution 
must be as similar as possible to the researcher, except for the 
variables related to the theme, referred as thematic variables. 
The method used to set new values to thematic variables can be 
improved with additional information coming from literature. 
This procedure simulates the formulation of hypotheses in the 
proposed algorithmic metaphor. A hypothesis is a tentative 
solution. It is simulated using the researcher knowledge and the 
literature to build a provisory solution to the problem. Step 7 
searches for improvements on the new generated solution 
perturbing the thematic variables in the hypothesis. The 
variables in the solution that are not related to the theme should 
not be directly affected by this procedure. This step simulates 
the verification of hypotheses, colleting, classifying, analyzing 
and interpreting the research data to support or not the 
formulated hypothesis. Step 8 updates the researcher if some 
improvement was found, replacing it by the new solution. This 
step simulates the personal learning of the researcher from the 
investigation. Step 9 updates the literature, storing useful data 
regarding the theme. This process simulates the publication of 
scientific works, feeding the literature to increase the shared 
knowledge of the scientific community. Step 12 returns the 
best solution found during the execution of the scientific 
algorithm. 
Scientific Algorithm 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

Let Scientific_community be the population of solutions 
Let Literature be the repository of information 
Do 
  For each Researcher in Scientific_community do 
    Theme ← Select_theme (Researcher, Literature) 
    Hypothesis ← Raise_hypothesis (Researcher, Theme, Literature) 
    Verify_hypothesis (Hypothesis, Theme) 
    Update (Researcher, Hypothesis) 
    Publish (Researcher, Hypothesis, Theme, Literature) 
  End for 
While stopping criterion is not met 
Return the best solution found 

Fig. 1. Pseudo-code of the scientific algorithm. 

The development of solutions in a scientific algorithm is 
continuous, seeking to improve the set of candidate solutions 
iteratively. The iteration of the algorithm consists of selecting 
sets of variables of the problem and optimizing them in the 
solutions of the population. This procedure can be performed 
in parallel. The optimization process is a stochastic search with 
bias. This set of characteristics associates the scientific 
algorithms to the category of evolutionary algorithms [7]. 

One of the most obvious differences between scientific 
algorithms and genetic algorithms [8], memetic algorithms [9] 
and cultural algorithms [10] is the absence of the genetic 
context. Another fundamental difference between scientific 
algorithms and cultural algorithms is the representation of the 
concept of knowledge. Cultural algorithms regard knowledge 
as a mechanism to guide the search process, essentially 
supported on a genetic algorithm. In the scientific algorithms, 
knowledge is the very solution of the problem. While cultural 
algorithms treat the development of knowledge as a secondary 
task, the scientific algorithms treat the evolution of knowledge 
as an existential goal. Finally, a feature that makes the 

scientific algorithms unique is the concept of theme. Although 
it can be artificially simulated by other approaches, the theme 
is more than a simple additional structure in the memory. In the 
scientific algorithms, the theme manages the entire search, 
controlling the changes in researchers and in literature and the 
interactions of these contexts. 

To elucidate the process of the scientific algorithms, the 
steps of the general algorithm are illustrated on the TSP. Fig. 2 
shows the weighted graph that represents the TSP instance 
used in this example. 

 

Fig. 2. TSP graph of the didactic example. 

A solution to the TSP can be represented by a sequence of 
vertices visited in the graph. Any construction method can be 
used to generate the initial solutions, for instance, random 
generation. The literature should contain significant data to 
assist the generation of good solutions. In this example, the 
literature is used to achieve better diversification. It consists in 
a square matrix, L = [lij], of order m, m = |E|, where lij is the 
number of times the edge (i, j) is currently used in the 
population divided by the population size. 

Fig. 3 illustrates a researcher, S, randomly generated, for 
the graph in Fig. 2. S is represented as {1 - 4 - 3 - 5 - 2 - 6}. 
The cost of S is 256, the sum of the weights of the edges in the 
Hamiltonian cycle. 

 

Fig. 3. TSP researcher of the didactic example. 

The optimization of S starts by choosing the theme. This 
decision involves the size of the theme and the assigned values 
to its variables, chosen at random or by a defined method. In 
this example, the theme is defined as a set of 4 sequential 
vertices in S (a path of length 3), randomly chosen in procedure 
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Select_theme( ) as t = {3, 5, 2, 6}. The thematic variables are 
the edges connected to those vertices, i.e., theme = {(4,3), 
(3,5), (5,2), (2,6), (6,1)}. 

The construction of the hypothesis h, implemented in 
procedure Raise_hypothesis( ), is shown in Fig. 4. In this 
example, a copy of the researcher is created. Then, all vertices 
in the theme are removed from the initial solution, creating an 
intermediary solution containing vertices 1 and 4. The 
intermediary solution is initialized as the incomplete route h = 
{1 - 4}. A constructive method is used to create a path 
containing the vertices of the theme. The constructive method 
used to complete the solution is based on the nearest neighbor 
algorithm for the TSP [6]. Starting from an arbitrary vertex a in 
theme, the algorithm consists in visiting this vertex and finding 
the closest non-visited vertex in theme, b. If edge (a, b) has a 
frequency over 50%, i.e., lab > 0.5, a random vertex in theme, 
including b, is chosen to replace b. The procedure is restarted 
from the last vertex and repeats until all vertices in theme are 
visited, when a path containing the vertices of theme is built. 
Finally, the path is inserted in h at the original position of the 
removed vertices, in the direction that leads to the lowest cost 
of the solution. In this example, the initial vertex was 2. To 
simplify the process, it is assumed that no edge has frequency 
over 50%. At the end of this operation, the solution h = {1 - 4 - 
5 - 6 - 3 - 2} with cost 108 is set as the hypothesis. 

Theme Initial solution Intermediate Solution 
{3, 5, 2, 6} {1 – 4 – 3 – 5 – 2 – 6} {1 – 4} 

Current Vertex Intermediate route Nearest Neighbor 
2 {2} 3 
3 {2 – 3} 6 
6 {2 – 3 – 6} 5 
5 {2 – 3 – 6 – 5} – 

Direction Resulting solution Cost 
Forward {1 – 4 – 2 – 3 – 6 – 5} 201 

Backward {1 – 4 – 5 – 6 – 3 – 2} 108 

Fig. 4. Construction of the solution in the didactic example. 

After constructing the hypothesis h, the scientific algorithm 
proceeds to the perturbation in the procedure 
Verify_hypothesis( ), as illustrated in Fig. 5. In the example, the 
solution h is submitted to local search with the 2-shift 
neighborhood. A solution h' is a neighbor of h if there is a 
switching between two vertices in t that transforms h in h'. 
After the perturbation, the solution h = {1 - 4 - 5 - 6 - 2 - 3} is 
found with cost 70. Once the hypothesis h has a cost better than 
S, the former replaces the latter in the current population. This 
step is executed in procedure Update( ). Once the population is 
updated, the matrix representing the literature has to be 
updated as well, in procedure Publish( ). 

Theme Initial solution Cost 
{3, 5, 2, 6} {1 – 4 – 5 – 6 – 3 – 2} 108 

Switching vertices Resulting solution Cost 
(3, 5) {1 – 4 – 3 – 6 – 5 – 2} 225 
(2, 3) {1 – 4 – 5 – 6 – 2 – 3} 70 
(3, 6) {1 – 4 – 5 – 3 – 6 – 2} 179 
(5, 2) {1 – 4 – 2 – 6 – 3 – 5} 272 
(5, 6) {1 – 4 – 6 – 5 – 3 – 2} 138 
(2, 6) {1 – 4 – 5 – 2 – 3 – 6} 155 

Fig. 5. Perturbation of the solution in the didactic example. 

Those steps are repeated for all researchers until the 
stopping criterion is met, returning the best solution found by 
the scientific algorithm. 

III. APPLICATION TO THE CARS 
CaRS is a generalization of the TSP where one must visit a 

given set of cities, starting and finishing in the same city, using 
rental vehicles for transportation. The goal is to perform the 
route with the lowest possible cost. Various vehicle types are 
available for rent, each with its own characteristics and 
operating costs. These costs include fuel consumption, toll fees 
and the amount paid for the rental. In addition to these costs, 
there is an additional fee to be paid to return a vehicle to the 
city where it was rented, if it is delivered in a different city. 
CaRS is defined on a complete graph G = (V, E), where V = {1, 
2, …, n} is the set of vertices and E = {(i, j) : i, j ∈ V, i ≠ j} is 
the set of arcs. In addition, a set H = {1, 2, …, q} of cars is 
defined. A cost matrix Ck = [ck

ij] indicates the total rental cost 
per distance traveled, fuel and possible toll rates between any 
two cities i and j with vehicle k. Matrix Dk = [dk

ij] indicates the 
cost to return vehicle k rented in vertex i and delivered in 
vertex j, i ≠ j, dk

ij = 0 if i = j. The objective function is to 
minimize the total cost of the route plus the return cost of 
vehicles. 

In [2] vertex 1 is considered the starting (and ending) point 
of the tour, thus, a vehicle must be rented at vertex 1. In this 
paper, it is considered the version of CaRS where each vehicle 
can be rented only once. 

A. Researchers 
Solutions are represented in 2-dimensional arrays, as 

illustrated in Fig. 6, where the tour is represented in one 
dimension and the vehicles in the other. The gray array 
represents the tour and the white represents the vehicles. In the 
solution represented in Fig. 6 vehicle 1 is rented in vertex 1 and 
delivered in vertex 5, vehicle 2 is rented in vertex 5 and 
delivered in vertex 4 and vehicle 3 is rented in vertex 4 and 
delivered in vertex 1. 

 

Fig. 6. Representation of a solution. 

The solutions are generated by a random procedure, using a 
random number of vehicles. The initial population of candidate 
solutions has 100 researchers. This value was used in [3] as the 
population size. 

B. Literature 
The literature consists in a list of 10 distinct vertices for 

each vertex in G, where Li is the list corresponding to the i-th 
vertex. This list is used to store the source vertex of edges in 
good solutions. Computational experiments have shown that 
increasing the size of the list does not contribute significantly 
to finding better solutions. Initially, these vertices are set 
randomly. During the execution of the scientific algorithm, 
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they are replaced by the previous vertices of i in the best 
solutions found. In addition, the literature stores a pointer to the 
population of solutions. 

C. Theme 
The theme is a set of vertices, as represented in Fig. 7, built 

at random, with probability p of containing each vertex in G. 
More precisely, p = 0.3 when n ≤ 50 and p = 0.8 when n > 50. 
This probability was defined empirically and a study of this 
parameter is shown in the computational experiments. The 
thematic variables are the arcs connected to the vertices in the 
theme and the rental of vehicles at those vertices. In the 
solution represented in Fig. 6, the thematic variables are the 
arcs (6, 1), (1, 2), (7, 3), (3,4), (5, 7) and vehicles 1 and 2 
assigned to vertices 1, 3 and 7. 

 

Fig. 7. Representation of a theme. 

D. Hypotheses 
The method used to generate hypotheses selects at random 

one of four constructive operators, γ1, γ2, γ3 and γ4, and applies 
it to the solution. 

The operator γ1 creates a copy from the researcher. In 
practice, this operator allows a solution to be directly optimized 
by the hypothesis verification method. 

The operators γ2, γ3 and γ4 creates a copy of the researcher 
then removes all vertices in the theme from the solution, one 
by one, removing their respective arcs and adding a new arc 
between the previous and next vertices, forming an initial 
route. The result of this procedure in the solution represented in 
Fig. 6 using the theme represented in Fig. 7 is the incomplete 
solution represented in Fig. 8. The operators γ2, γ3 and γ4 use 
three different methods to reinsert the removed vertices in this 
solution. 

 

Fig. 8. Representation of an incomplete solution after the first step of 
operators γ2, γ3 and γ4. 

The method used to reinsert the removed vertices in γ2 is 
based on the random insertion algorithm for the TSP [6]. One 
of the removed vertices is randomly chosen and inserted in the 
path between the two vertices that cause the smallest increase 
in cost using the same vehicle as the new previous vertex. This 
procedure is repeated for the remaining removed vertices until 
all vertices in G are part of the route, forming a feasible 
solution. Fig. 9 shows an example of the insertion of vertex 7 
after vertex 4 in the incomplete solution represented in Fig. 8. 
The vehicle used in vertex 7 is the same used in vertex 4. 

 

Fig. 9. Example of vertex insertion in an incomplete solution. 

The method used to reinsert the removed vertices in γ3 is 
inspired on the literature review in the metaphor of scientific 
research. For each vertex i in the theme, this procedure try to 
insert i in the path after the vertex in Li that causes the smallest 
increase in cost using the same vehicle as the new previous 
vertex. Vertices that cannot be inserted in this way are added to 
the route by the random insertion method presented in the 
operator γ2. 

The method used to reinsert the removed vertices in γ4 is 
inspired on the collaboration between two researchers in the 
metaphor of scientific research. This operator uses the pointer 
to the population of solutions in the literature. Let S2 be a 
random solution from the population. For each vertex i in the 
theme, this procedure try to insert i in the path after the 
previous vertex of i in S2 using the same vehicle as the new 
previous vertex. Vertices that cannot be inserted in this way are 
added to the route by the random insertion method, presented 
in the operator γ2. 

E. Hypotheses Verification 
The method used to verify hypotheses applies five 

improvement operators to the solution, λ1, λ2, λ3, λ4 and λ5, in a 
random sequence. 

The goal of operator λ1 is to insert a new vehicle in the 
hypothesis. For each vertex i in the theme, this procedure 
checks the cost variation of renting each unrented vehicle at i 
and delivering at some vertex j. If the cost of the perturbed 
hypothesis is improved, the new vehicle is rented at i and the 
solution is updated. Fig. 10 shows an example of this operator 
renting vehicle 4 at vertex 7 in the solution represented in Fig. 
6. The new vehicle is delivered at vertex 4. 

 

Fig. 10. Example of the operator λ1. 

The operator λ2 aims at extending the route of a vehicle in 
the hypothesis. For each vertex i in the theme, this procedure 
checks the cost variation of anticipating the rental of the next 
vehicle to i. If no improvement is found, this procedure checks 
the cost variation of delaying the rental of the current vehicle to 
i. If some improvement in cost is found, the vehicle is rented at 
i and the solution is updated. Fig. 11 shows an example of this 
operator behaving at vertex 7 in the solution represented in Fig. 
6. The first solution anticipates vehicle 3 to be rented at vertex 
7 and the second solution delays vehicle 2 to be rented at 
vertex 7. 
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Fig. 11. Example of the operator λ2. 

The operator λ3 aims at changing the position of a vertex in 
the hypothesis. For each vertex i in the theme, this procedure 
removes i from the route, removing its respective arcs and 
adding a new arc between the previous and next vertices. Then, 
i is reinserted after the vertex in the tour that causes the 
smallest increase in cost using the same vehicle as the new 
previous vertex. This operator does not affect vertices where 
vehicles are rented. Fig. 12 shows an example of this operator 
changing the position of vertex 7 in the solution represented in 
Fig. 6. The vehicle used to traverse vertex 7 is the same used at 
vertex 1, now previous vertex of 7. 

 

Fig. 12. Example of the operator λ3. 

The operator λ4 reverses an interval of the hypothesis. This 
procedure takes each pair of vertices (a, b) in the theme such 
that the path between a and b is traversed by a single vehicle 
and checks the cost variation of reversing the direction of this 
path. If some improvement in cost is found, the direction of the 
path is reversed and the solution is updated. Fig. 13 shows an 
example of this operator reversing the path between vertices 3 
and 5 in the solution represented in Fig. 6. 

 

Fig. 13. Example of the operator λ4. 

The operator λ5 exchanges the position of two different 
intervals of the hypothesis. This procedure takes each two pairs 
of vertices (a, b) and (c, d) in the theme such that the path 
between a and b and the path between c and d are traversed by 
a single vehicle and checks the cost variation of exchanging the 
position of those paths. If some improvement in cost is found, 
the positions of the paths are exchanged and the solution is 
updated. Fig. 14 shows an example of this operator. The first 
solution is the hypothesis and the second solution is the result 
of exchanging the path between vertices 1 and 2 and the path 
between 7 and 3. 

 

Fig. 14. Example of the operator λ5. 

F. Literature Update 
The procedure to update literature is executed as follows. 

For each vertex i in the theme, this procedure checks if the 
previous vertex of i in the hypothesis, a, is already in Li. If it is 
not, the procedure inserts a in Li and removes the vertex in Li 
that was updated by the highest cost solution. An auxiliary data 
structure is used to store the costs of the solutions that updated 
the vertices. 

G. Stopping Criterion 
The algorithm is terminated when the best solution of the 

population is not improved for 30 consecutive iterations, 
indicating convergence. To avoid loss of diversity, only 30% of 
the solutions are allowed to be identical, preventing new 
similar solutions to be added to the population in the update 
step. 

IV. COMPUTATIONAL EXPERIMENTS 
The scientific algorithm was implemented in C++ using 

GCC compiler. The machine used in the experiments is 
equipped with processor Intel Core i5 2.6 GHz, 4 Gb of RAM 
and Microsoft Windows operating system. The test was 
performed on twenty non-Euclidian instances proposed in 
Asconavieta [2] (available in http://www.dimap.ufrn.br/lae/ 
en/projects/CaRS.php). Thirty independent runs of the 
algorithm were performed for each test case. The scientific 
algorithm was implemented in C++ using GCC compiler. The 
machine used in the experiments is equipped with processor 
Intel Core i5 2.6 GHz, 4 Gb of RAM and Microsoft Windows 
operating system. The test was performed on twenty non-
Euclidian instances proposed in Asconavieta [2] (available in 
http://www.dimap.ufrn.br/lae/ en/projects/CaRS.php). Thirty 
independent runs of the algorithm were performed for each test 
case. 

The parameters of this scientific algorithm were set on a 
preliminary experiment and are: the population size = 100, the 
size of the vertex lists in the literature = 10 the number of 
consecutive iterations without improving the best solution in 
the stopping criterion = 30 and the number of vertices in the 
theme as defined in item C of Section III. 

Fig. 15 and Fig. 16 illustrate the impact of the size of the 
theme in solution quality and runtime, respectively, of the 
scientific algorithm in the BrasilNE50n instance, considering 
mean values on thirty runs. A similar behavior was observed 
on the other instances. A theme containing n vertices (size 
100%) is equivalent to not limiting the algorithmic search and 
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may be interpreted as the absence of the concept of theme in 
the scientific algorithm. 

 
Fig. 15. Variation of the gap relative to the size of the theme in the instance 
BrasilNE50n. 

 

Fig. 16. Variation of the time relative to the size of the theme in the instance 
BrasilNE50n. 

The study reveals that limiting the search of the scientific 
algorithm to a subset of the vertices of the problem allows 
finding better solutions when compared to the search without 
theme restraint. In Fig. 15, it is noted that the worst solutions 
are found with themes containing 10% or 100% of the vertices 
of the problem. In the former, the search is limited to a very 
small region in the solution space, failing to achieve enough 
diversification. In the latter, the search can explore the entire 
solution space, failing to achieve enough intensification. The 
best solutions are found with themes containing 30% or 80% of 
the vertices of the problem. These values represent the near 
optimal behavior of the scientific algorithm regarding 
intensification and diversification in the set of instances 
studied. A theme of size 30% leads to better solutions when the 
instance has up to fifty vertices and a theme of size 80% is 
more efficient when the instance has more than fifty vertices. 

Fig. 16 shows that, surprisingly, the highest runtime was 
found with theme containing 70% of the vertices of the 
problem. This behavior is easily explained by the stopping 
criterion defined for this scientific algorithm: convergence of 
solutions. The execution time of each operator of the scientific 
algorithm is proportional to the size of the subject. However, 
certain levels of intensification and diversification of the search 
can make the solutions converge more or less rapidly. This can 

affect the number of times each operator will be executed by 
the algorithm. 

Table I shows the results of the scientific algorithm. The 
columns show: the instance name, in which the number 
represents the number of vertices in the graph, the best known 
solution in the literature, the number of times the scientific 
algorithm found its best solution, the best, worst and average 
solution found by the scientific algorithm. 

TABLE I.  RESULTS OF THE SCIENTIFIC ALGORITHM TO SOLVE THE 
CARS. 

Instance Best Hits Min Max Av 
BrasilRJ14n 167 30 167 167 167.00 
BrasilRN16n 188 30 188 188 188.00 
BrasilPR25n 226 30 226 226 226.00 
BrasilAM26n 202 6 202 203 202.80 
BrasilMG30n 271 9 271 276 272.50 
BrasilSP32n 254 5 254 263 257.10 
BrasilRS32n 269 21 269 270 269.30 
BrasilCO40n 576 1 574 582 576.87 
BrasilNO45n 551 1 543 556 550.97 
BrasilNE50n 619 1 609 622 614.73 

Londrina100n 1189 1 1166 1184 1176.13 
Osasco100n 993 1 975 989 982.93 

Aracaju200n 1966 1 1910 1927 1918.40 
Teresina200n 1423 1 1381 1395 1389.40 
Curitiba300n 2240 1 2150 2165 2159.63 
berlin52nA 1328 1 1308 1330 1322.20 

ch130n 1706 1 1671 1693 1682.83 
d198n 3207 1 3140 3171 3159.57 

kroB150n 2983 1 2931 2958 2948.37 
rd100nB 1421 1 1377 1398 1390.83 

The results show that the proposed algorithm found thirteen 
new best results for the investigated set of instances. Columns 
Max and Av in Table I show that the proposed algorithm found, 
respectively, nine and twelve worst and average results better 
than the previous best results. 

TABLE II.  COMPARISON: STATE OF THE ART AND THE SCIENTIFIC 
ALGORITHM. 

Instance Transgenetic Algorithms  Scientific Algorithms 
Gap (%) Time (s) Gap (%) Time (s) 

BrasilRJ14n 0.00 1.70 0.00 0.17 
BrasilRN16n 0.00 3.40 0.00 0.21 
BrasilPR25n 0.88 13.60 0.00 0.55 
BrasilAM26n 0.49 13.60 0.40 0.52 
BrasilMG30n 2.58 27.20 0.55 0.98 
BrasilSP32n 1.96 33.15 1.22 1.12 
BrasilRS32n 0.74 34.00 0.11 1.16 
BrasilCO40n 0.86 71.40 0.15 2.26 
BrasilNO45n 1.27 88.40 -0.01 2.98 
BrasilNE50n 1.61 124.95 -0.69 3.13 

Londrina100n 1.09 940.95 -1.08 20.26 
Osasco100n 1.30 849.15 -1.01 20.64 

Aracaju200n 1.22 6246.65 -2.42 68.13 
Teresina200n 3.09 7551.40 -2.36 88.44 
Curitiba300n 1.83 31782.35 -3.59 346.70 
berlin52nA 1.73 153.85 -0.44 6.94 

ch130n 1.87 2406.35 -1.36 42.02 
d198n 1.43 10194.05 -1.48 91.97 

kroB150n 1.24 3801.20 -1.16 50.61 
rd100nB 1.47 1063.35 -2.12 21.09 

878



Table II presents a comparison with the transgenetic 
algorithm proposed in [3]. The transgenetic algorithm 
outperformed the GRASP, VND and memetic algorithms 
presented in [2]. Column Gap shows the percent deviation 
from the best results presented in [3] of the average of the 
solutions found by both algorithms in their independent 
executions. Column Time presents the average processing time, 
in seconds, spent by each algorithm. 

Positive values in column Gap indicate that the average is 
over the previous best result, while a negative value indicates 
an average below that value. The computational times of the 
transgenetic algorithm are converted to the equivalent time in 
the platform of the scientific algorithm. This conversion is 
performed finding the processing factors of both platforms and 
multiplying the ratio of those values to convert the processing 
times. 

The results show clear superiority of the scientific 
algorithm to the state of the art. The scientific algorithm has a 
processing time from ten to one hundred times faster than the 
transgenetic algorithm, finding equal or better solutions on all 
instances. 

V. CONCLUSION 
This paper proposed a new approach to solve optimization 

problems. The proposed algorithm is inspired in the process of 
knowledge evolution by means of scientific research, 
characterized as an evolutionary algorithm. The viability of the 
scientific algorithm is verified by computational experiments 
on CaRS, comparing the results with the state of the art. 

The scientific algorithms allow focusing the computational 
effort on a small set of variables of the problem, reducing the 
computational cost. This enables the use of more robust 
techniques for solving the problem. This feature, added to the 
good results of computational experiments, supports the 
hypothesis that the metaphor of scientific research can be used 
to develop algorithms to solve optimization problems 
efficiently. 

In future works, this approach will be extended to different 
problems including multi-objective, to investigate the 
robustness of the scientific algorithms. 
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