
 
 

 

  

Abstract—Network-on-Chip (NoC) design is attracting more 
and more attention nowadays, but there is a lack of design 
optimization method due to the computationally very expensive 
simulations of NoC. To address this problem, an algorithm, 
called NoC design optimization based on Gaussian process 
model assisted differential evolution (NDPAD), is presented. 
Using the surrogate model-aware evolutionary search (SMAS) 
framework with the tournament selection based constraint 
handling method, NDPAD can obtain satisfactory solutions 
using a limited number of expensive simulations. The 
evolutionary search strategies and training data selection 
methods are then investigated to handle integer design 
parameters in NoC design optimization problems. Comparison 
shows that comparable or even better design solutions can be 
obtained compared to standard EAs, and much less 
computation effort is needed.   
 

I. INTRODUCTION 
Nowadays, due to the dramatic increase of integrated 

intellectual property (IP) cores in System-on-Chip (SoC), 
Network-on-Chip (NoC), serving as the underlying 
communication structure, is attracting more and more 
attention [1], [2], [3], [4]. NoC consists of a network 
constructed of multiple point-to-point data channels (links) 
interconnected by routers. The routers are connected to a set 
of distributed IPs and the communication among them usually 
utilizes a packet-switching method. An important application 
of NoC is chip multiprocessors (CMPs). In a CMP, the 
number of cores is projected to increase rapidly, and good 
utilization of such cores is becoming an apparent challenge. 
The performance and energy consumption of a CMP is 
largely determined by the used NoC architecture and design 
parameters.  
    This motivates the design of the Hybrid Wire-Surface wave 
Interconnects (W-SWI) architecture to provide a 
communication fabric that meets this near future demand. 
Hybrid network architecture could retain the broadcasting 
capability of the buses and reduce inter-node average hop 
 

M.Wu is with Faculty of Engineering Technology, Katholieke 
Universiteit Leuven, Leuven, Belgium and Department of Computing, 
Glyndwr University, Wrexham, U.K. (email: 
Mengyuan.Wu@student.kuleuven.be).   

A. Karkar and A. Yakovlev are with School of Electrical and Electronic 
Engineering, Newcastle University, U.K. (email: {a.j.m.karkar, 
Alex.Yakovlev}@newcastle.ac.uk).  

B. Liu and V. Grout are with the Department of Computing, Glyndwr 
University, Wrexham, U.K. (e-mail: {b.liu, v.grout}@glyndwr.ac.uk, 
liubo168@gmail.com) 

G. Gielen is with ESAT-MICAS, Katholieke Universiteit Leuven, 
Leuven, Belgium. (e-mail: Georges.Gielen@esat.kuleuven.be).  

count while maintaining high interconnect scalability when 
high performance interconnect is adopted as the bus system 
(e.g., SWI). This technology has been presented in [5], [6] 
and the proposed architecture utilizing this technology has 
shown excellent scalability and performance features (e.g., 
energy consumption and delay) [7], [8], [9]. Therefore, the 
W-SWI architecture for NoC is used in this paper.  

Many designers prefer to adopt regular predefined 
topologies (including design parameters) when designing 
NoC due to the complexity of the problem [10]. Clearly, this 
may fail to achieve optimal performance in various network 
traffic cases. Much performance improvement can be made if 
the design parameters for NoC are optimized. Some case 
specific methods to optimize one or a few key design 
parameters have been proposed (e.g. the placement of 
repeaters in global communication links [11]), and improved 
designs have been obtained. However, there is a lack of 
generality of most available methods and many design 
parameters cannot be optimized, including some critical ones. 
This paper therefore aims to provide a general method for 
NoC design optimization considering all design parameters.   

NoC design optimization is a simulation-based (black-box) 
optimization problem, for which explicit analytical formulas 
are not available. Hence, this problem falls into the field of 
evolutionary algorithms (EAs). However, NoC simulation 
can be computationally expensive with the increase of the 
dimension of the network. Hence, directly applying EA to 
NoC optimization may cost too long or even intractable 
computation time. Surrogate model assisted evolutionary 
algorithms (SAEAs), which are attracting increasing attention, 
could be an effective way to reduce the heavy computational 
burden of NoC design optimization problems. In SAEA, 
surrogate models are constructed to predict performance of 
some candidate design solutions in order to avoid expensive 
simulations to them (i.e., improving the efficiency).  

To construct an SAEA for efficient and effective NoC 
optimization, one needs to consider the following issues: 
•  Which SAEA framework should be used?  
•  How to handle the constraint(s)? 
•  How to handle the integer design variables? (NoC 

design parameters are often integers.) 
Three SAEA frameworks are attracting more and more 

attention in SAEA research, which are surrogate model 
assisted memetic evolutionary search (SMMS) framework 
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[12] (it is also called trust-region enabled local search 
framework), meta-model assisted EA (MAEA) framework 
[13] and surrogate model-aware evolutionary search (SMAS) 
framework [14]. These three SAEA frameworks are 
compared in [14], and experiments based on benchmark 
problems show that SMAS obtains comparable or better 
results with SMMS and MAEA in terms of optimality, while 
using about 12.5% to 50% exact evaluations of them. The 
SMAS framework is improved and applied to mm-wave IC 
design optimization in [15], showing highly optimized design 
solutions in a very practical time. Hence, in this paper, the 
SMAS framework is selected.  

Practically, there is only one or two inequality constraint(s) 
in NoC design optimization problem. Hence, for simplicity, 
the constraint handing technique chosen for this problem is 
tournament selection-based constraint handling method [16]. 
This method has been integrated with the SMAS framework 
in [15] and shows successful results.  
    However, in NoC design optimization problems, the design 
variables are often integers. To the best of our knowledge, 
there are few research works focusing on computationally 
expensive integer optimization problems. Inexpensive 
optimization research shows that when directly using integers 
for encoding, the population diversity will decrease and it is 
much easier to be trapped in a local optimum. Therefore, the 
quantization method is often applied [17], which still uses 
floating point values to handle discrete variables in 
evolutionary operators and quantizes the floating point values 
to their nearest allowed values only in function evaluation. 
However, it is an open question that whether simply applying 
the quantization method is enough for SAEAs or not. Our 
pilot experiments on NoC problems show that satisfactory 
results can be obtained but the robustness needs to be 
improved when only applying the quantization method in 
several SAEA methods. This paper therefore investigates a 
search strategy and a training data selection method based on 
the selected SAEA framework and the constraint handling 
method for tackling the integer variables in NoC design 
optimization. An algorithm, called NoC design optimization 
based on Gaussian process model assisted differential 
evolution (NDPAD), is proposed.  
  The remainder of this paper is organized as follows. Section 
II introduces the definition of the problem. Section III 
introduces the basic techniques. Section IV describes the 
NDPAD method and its implementation. Section V tests 
NDPAD with real-world NoC design optimization problems. 
Comparisons and verifications are also carried out. Section 
VI concludes the paper. 
 

II. PROBLEM DEFINITION 
NoC design optimization can be modeled as a constrained 

optimization problem that minimizes the average delay (D) 
with a constraint on energy consumption (E). For a NoC 
design of N N×  mesh dimension: 

1 1 2 2

1 1 2 2

minimize ( , , , , , ,..., , )

s.t. ( , , , , , ,..., , ) E
c p N N

c p N N MAX

D N S X Y X Y X Y

E N S X Y X Y X Y ≤
 (1) 

where Nc is the number of virtual surface wave channels, Sp is 
the number of global SWI arbiter grant period and (X1, Y1), 
(X2, Y2)… (Xn, Yn) are the locations of master nodes, which are 
not overlapping. All the design variables are integers.  
 To obtain the average delay and energy consumption, 
simulation is necessary. The simulation time of NoC 
increases with the dimension. For example, NoC of 20×20 
mesh dimension for a multicast 0%-hotspots traffic mode 
takes 2.5 hours to finish a single simulation and standard EAs 
often need hundreds to thousands of such evaluations to finish 
the optimization. Therefore, only very efficient SAEAs are 
capable of solving the medium and large-scale NoC design 
optimization problem considering practical design time.  
 

III. BASIC TECHNIQUES 

A. Gaussian process surrogate modeling 
    Like [14], Gaussian process (GP) surrogate modeling and 
the lower confidence bound (LCB) prescreening are used in 
NDPAD.  

GP predicts a function value ( )y x  at some design point x 
by modeling ( )y x  as a stochastic variable with mean μ  and 

variance σ . For two points ix  and jx , their correlation is 
defined as:  
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where d is the dimension of x and lθ  is the correlation 
parameter which determines how fast the correlation 
decreases when ilx  moves in the l direction. Parameter lp  is 
related to the smoothness of the function with respect to ilx . 
The optimal values of μ , σ  and θ  are determined by 
maximizing the likelihood function of the observed data. The 
function value ( )y x∗  at a new point *x  can be predicted as: 
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Vectors 1 2( , , )nx x x x= "  and 1 2( , , )ny y y y= "  represent 
the already evaluated data points and their objective function 
values, respectively. I is a ( 1n × )-dimensional vector of ones. 
The prediction uncertainty is: 

2 * 2 1 1 2 1 1
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           (4) 

More details about GP can be found in [21]. 
Given a predictive distribution, 2ˆ ˆ( ( ), ( ))N y x s x , the LCB 

value of ˆ ( )y x  is:  
ˆ ˆ( ) ( ) ( ), [0, 3]lcbf x y x s xω ω= − ∈                      

(5) 
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Using the LCB value can balance the search between 
promising areas that with good ˆ( )y x  and less explored areas 
that with large ˆ( )s x . 

B. Differential Evolution 
    Differential evolution (DE) [17] is used as the search 
engine in this work. DE uses a simple differential operator to 
create new candidate solutions and a one-to-one competition 
scheme to greedily select new candidates. There are different 
types of DE mutation and crossover operators and those 
investigated in this paper are in (6)-(9). 
DE mutation: 

DE/rand/1 

( )3 1 2   r r r
iv x F x x= + × −                         (6) 

DE/best/1 

( )1 2   rbest r
iv x F x x= + × −                             (7) 

DE/current-to-best/1 

( ) ( )21    be r r
i

i istv Fx x x F x x= + − + × −×             (8) 

where bestx  is the best individual of the population, ix  is the 
ith individual of the population and rix  are different solutions 
randomly selected from the population and are also different 
from bestx  and ix . iv  is the ith mutant vector after mutation. 
F∈(0, 2] is the scaling factor [17].  
DE crossover:  

,

,
,
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x t otherwise
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(9) 
where ( , )rand i j is an independent random number uniformly 
distributed in [0,1]. randn(i) is a randomly chosen index from 
{1, 2, , }d… . [0,1]CR ∈  is a constant called the crossover 
rate.  
 

IV. THE NDPAD METHOD 

A. Procedure of the NDPAD Method 
The NDPAD method for NoC design optimization works 

as follows: 
Step 1:  Randomly sample α  solutions (often small) from 

the design space. Perform simulation to all of them 
and add their performance values to the database. 

Step 2:  If the preset stopping criterion is met, output the best 
solution from the database; otherwise go to step 3. 

Step 3:  Select λ best solutions from the database according 
to the ranking rules to form a population P. 

Step 4: Apply the DE operators on P to generate λ child 
solutions.  

Step 5: Use the individual solution-based training data 
selection (ISS) method to construct surrogate models 
for the objective function and constraint(s). 

Step 6: Use the surrogate models to prescreen the λ child 
solutions generated in Step 4 and rank them 
according to the ranking rules. 

Step 7:  Perform simulation to the predicted best candidate 
solution from Step 6 and add its performance values 
to the database. Go back to Step 2. 

B. The SMAS Framework  
It can be seen that the SMAS framework is used in NDPAD. 

After a small initial sample of α  solutions (often around 
5 d×  [15]), in each iteration, the top λ  (population size) 
design solutions in the database are selected to act as the 
parent population, from which the λ child solutions are 
generated and the predicted best candidate design in the child 
population is chosen and is simulated.  

A contradiction for SAEA is that to obtain highly optimized 
solutions, high quality surrogate model(s) is/are often 
necessary, but this may imply more expensive simulations, 
whose results will serve as training data points.  For an SAEA 
based on a standard EA, the training data points around the 
child solutions to be predicted may not be sufficient if the 
number of expensive simulations is limited to maintain the 
efficiency. This is because of the search trajectories of most 
standard EAs. SMAS, on the other hand, does not use 
standard EA, but provides a new evolutionary search method 
for the sake of building high quality surrogate models while 
maintaining search ability. In the SMAS framework, the 
search focuses on the current promising subregion because it 
always uses λ best solutions as the parent population. In each 
iteration, there is at most one replacement to the parent 
population, so the predicted best candidates from the child 
population in several consecutive iterations are very likely to 
be near, which will then be used as the training data points. 
Therefore, the surrogate model quality around the focused 
promising subregion can be much higher than using standard 
EA. Meanwhile, the promising subregion is moving gradually 
for exploration.  Due to this, SMAS can obtain a high quality 
result using a limited number of simulations. This property is 
highly needed for NoC design optimization due to its 
expensiveness.  

C.  Ranking rules 
In Step 3 and Step 7, the candidate designs need to be 

ranked considering both average delay (objective function) 
and energy consumption (constraint). NDPAD uses the 
tournament selection [16] based constraint handling method. 
The ranking rules used to rank the candidate designs are:  

1.    The feasible design solutions, i.e., satisfying the 
constraint on energy consumption in eqn (1), (if any) 
rank higher than the infeasible design solutions. 

2.    The feasible design solutions (if any) are ranked based 
on the sorting of the objective function values in 
ascending order. 

3.    The infeasible design solutions are ranked based on the 
sorting of the constraint violation values in ascending 
order. 

    Separate surrogate models are constructed for the objective 
function and the constraint. LCB prescreening is only applied 
to the objective function to avoid selecting many near feasible 
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(but infeasible) solutions. Note that SMAS only simulates a 
single candidate design in each iteration.  

D. DE Search Strategy  
DE operators are used in Step 4. Section III introduces 

three widely used DE mutation strategies. Considering the 
population diversity reduction for expensive optimization 
problems with integer variables, which mutation strategy 
should be used needs more investigation.  

DE/rand/1 leads to highest population diversity among the 
three mutation strategies and is widely used in standard DE. 
However, our pilot experiments show that it provides more 
diversity than necessary and is not appropriate for SMAS. In 
many occasions, child solutions spread in different 
subregions of the design space, which is contradict to the 
basic idea of SMAS. On the other hand, DE/best/1 and 
DE/current-to-best/1 are suitable for SMAS because of 
reasonable diversity. DE/best/1 has faster convergence speed, 
while DE/current-to-best/1 shows more population diversity.  

Whether the additional population diversity of DE/current 
to-best/1 compared to DE/best/1 has substantial help or not 
needs to be verified by real-world NoC test problems. 
However, a general analysis is that DE/best/1 should be able 
to obtain a reasonably good design because of the success of 
benchmark and real-world problems [14], [15] with 
continuous variables. The DE/best/1 strategy is especially 
useful for NoC with large dimension when each simulation is 
very time consuming because of its high convergence speed. 
DE/current-to-best/1 should have higher ability to obtain 
even better results and has higher robustness, but more 
simulations may be needed. Therefore, DE/current-to-best/1 
is more suitable for NoC with small-dimension. For 
verification, both methods are examined in Section V. 

E. Individual solution-based training data selection (ISS) 
method 
    Surrogate models are constructed in Step 5 using integer 
design variables. [15] solves constrained expensive 
optimization problems with continuous variables using 
SMAS and with a method called promising area-based 
training data selection (PAS) method to select training data 
points for surrogate model construction in each iteration. That 
method selects several of λ points that are nearest to the 
median of the λ child solutions as the training data points. 
For integer variables, because of the rounding, the training 
data points around the promising area are fewer than those of 
continuous optimization problems. Also, the landscape to be 
approximated is discontinuous that is more difficult to 
approximate. When using the PAS method, either not 
sufficient training data points or training data points far from 
the current promising subregion may be selected, which 
affects the quality of the surrogate model negatively. To 
address this problem, we propose a method called individual 
solution-based training data selection (ISS) method. The ISS 
method works as follows: 

1.   For each solution in the λ child solutions, take the 
nearest c d×  solutions in the database (based on 
Euclidean distance) as temporary training data points. 

2.   Combine all the temporary training data points and 
remove the duplicated ones.  

To trade-off the model quality and the training cost, 
empirical results suggest c ∈[0.5, 1]. It can be seen that ISS 
considers training data points around each candidate solution 
in the child population. Note that a single surrogate model is 
trained for a whole population, which is found to be better 
than training separate surrogate models for each candidate 
design [18]. 

 

V. EXPERIMENTAL RESULTS AND COMPARISONS  
In this section, the NDPAD algorithm is tested with two 

NoC design problems. As have been said, NoC with high 
mesh dimensions may cost a long time to finish a single 
simulation, and NDPAD is designed for such problems. 
However, when using those problems for testing, it is very 
difficult to compare NDPAD with standard EAs, because 
standard EAs may cost more than 1 year to finish the 
optimization that is intractable. Owing to this, NoC design of 
6×6 mesh dimension is chosen to make standard EAs cost 
tractable optimization time for comparison. However, this 
favors standard EA because of the small search space. [14] 
shows that the SMAS framework has clear advantages for 
problems with 20 and 30 variables and large search space. 
Hence, more speed enhancement can be expected for NoC 
with higher mesh dimensions, which is the targeted problem.  

The two examples are all constrained optimization 
problems as in (1). The number of virtual surface wave 
channels, the number of global SWI arbiter grant period and 
the locations of the master nodes are tuned to minimize the 
average delay (clock cycle) considering energy consumption 
less than a required value. Average delay of packets 
navigating via the NoC fabric from their source to their final 
destination(s) is an important NoC performance metric. The 
first example takes about 10s for a simulation, while the 
second example takes about 3min for a simulation. For 
NDPAD, we assume 1000 simulations are available. The 
specifications are set based on the experience of the designer. 
The NoC simulator is programmed in SystemC language. The 
reference method we used is selection-based differential 
evolution algorithm (SBDE) [19], which uses the same 
tournament selection method with the standard DE algorithm. 
SBDE with DE/current-to-best/1 is applied. SBDE has been 
used as the reference method in many applications [20] and 
shows highly optimized results although computationally 
expensive. The examples are run on a PC with Intel 2.66 GHz 
Dual Xeon CPU and 70GB RAM on Linux operating system. 
No parallel computation is applied yet in these experiments. 
All time consumptions in the experiments are wall clock time. 

A. Test Example 1 
The first example is a 6×6 NoC in multicast 10% - uniform 

traffic mode with constraint EMAX=0.00335J. The design 
variables are 1 1 2 2 3 3 4 4, , , , , , , , ,c pN S X Y X Y X Y X Y  (see eqn. (1)), 
where Nc ∈ [1, 16], Sp ∈ [1, 12] and all others ∈ [1, 6]. All 
of them are integers. According to the parameter setting rules 
of SMAS [15] and our empirical studies, both α  and λ  are 
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set to 50 ( 5 d× ), ω  is set to 2, F is set to 0.8, CR is set to 0.8 
and c is set to 0.5. 

To observe the performance of NDPAD, NDPAD is 
compared with SBDE. In SBDE, F and CR are the same as 
NDPAD and the population size is set to 40, which is a 
normal setting considering both efficiency and population 
diversity [17]. The experimental results are presented in 
Table I. It can be seen from the Table I that NDPAD provides 
comparable result to SBDE. The median of the 5 runs for both 
methods are extracted. It is found that NDPAD converges 
when using 890 simulations (without improvement in the 
consecutive iterations). To obtain this performance, SBDE 
uses 1920 simulations. It can be seen that NDPAD uses less 
than 50% of the computational effort of SBDE to obtain 
comparable results. To obtain a satisfactory average delay (D) 
below 24 clock cycles, only 250 simulations are needed for 
NDPAD.  
    NDPAD uses ISS as the training data selection method. 
NDPAD and NDPAD with PAS (NDPADP) is compared to 
verify the effectiveness of ISS. All other algorithm 
parameters in NDPAD and NDPADP are the same. The 
experimental results are shown in Table II. It can be seen that 
NDPAD with ISS performs better than NDPAD with PAS 
and is more robust.  

To investigate the effective of mutation strategies, NDPAD 
using DE/ best/1 (NDPADB) serves as a reference method to 
compare with NDPAD. ISS is used in both methods. 1000 
and 1500 simulations are used and the results are shown in 
Table III. All methods meet the constraint when the 
optimization is finished. It can be seen that NDPADB 
performs better when 1000 simulations are performed. But if 
another 500 simulations are added, NDPAD with 
DE/current-to-best/1 gives better design solutions and is more 
robust. This verifies our analysis in Section IV (D). For NoC 
with higher mesh dimension that is computationally very 
expensive, DE/best/1 is suggested to be used.  

A typical optimized design is shown in Fig. 1. 
 

TABLE I 
COMPARISON OF NDPAD WITH SBDE (EXAMPLE 1) 

 NDPAD SBDE 
No. of runs D/cycle Constraint 

satisfaction 

D/cycle Constraint 
satisfaction 

1 23.0399 Yes 22.3288 Yes 
2 23.0424 Yes 22.4656 Yes 
3 22.2593 Yes 22.4656 Yes 
4 22.5811 Yes 22.3722 Yes 
5 23.4306 Yes 22.4656 Yes 

 
TABLE II 

COMPARISON OF NDPAD WITH NDPADP (EXAMPLE 1) 
 NDPAD NDPADP 
No. of runs D/cycle Constraint 

satisfaction 

D/cycle Constraint 
satisfaction 

1 23.0399 Yes 24.3883  Yes 
2 23.0424 Yes 24.5919  Yes 
3 22.2593 Yes 24.5171  Yes 
4 22.5811 Yes 22.5811  Yes 
5 23.4306 Yes 23.5859  Yes 

 
TABLE III 

COMPARISON OF NDPAD WITH NDPADB (EXAMPLE 1) 
METHOD NDPAD NDPADB NDPAD NDPADB 

(1000) (1000) (1500) (1500) 
1 23.0399 22.8761  22.4656  22.8761  
2 23.0424 22.5718  22.4656  22.3288  
3 22.2593 22.6749  22.9562  22.7198  
4 22.5811 22.2593  22.4876  22.5811  
5 23.4306 23.1815  22.4004  22.4004  

 
TABLE IV 

COMPARISON OF NDPAD WITH SBDE (EXAMPLE 2) 
METHOD NDPAD SBDE 

Details D/cycle Constraint 
satisfaction 

D/cycle Constraint 
satisfaction

1 21.2552 Yes 22.6200 Yes 
2 21.3382 Yes   
3 21.2282 Yes   

 

 
Fig. 1. A Typical Optimized Design of Example 1 

 

B. Test Example 2 
The second example is a 6 × 6 NoC in multicast 0% - 

hotspots traffic mode with increased load. The constraint 
EMAX is set to 0.0105J. The design variables and their ranges 
and parameter settings are the same as those in example 1.  

Due to the longer simulation time, only a single run of 
SBDE (costing 5 weeks) is used as the reference result to 
compare with NDPAD. We run NDPAD for three times 
(using 1000 simulations for each run) and the time 
consumption is about 2 days. The optimized performances are 
shown in Table IV. The medium result of NDPAD is used for 
the comparison of speed enhancement. NDPAD uses 935 
simulations to get the average delay of 21.2552 cycles, while 
SBDE uses 6840 simulations to get the result of 22.6200 
clock cycles. Hence, about 13% of the computation effort is 
used by NDPAD. It can be seen that not only NDPAD makes 
this problem to be solved in a practical time but also NDPAD 
shows even improved design quality. [15] discusses the 
reason why SAEA can obtain better results than standard EAs 
for some problems.  
 

VI. CONCLUSIONS 
In this paper, the NDPAD algorithm is proposed for NoC 

design optimization, achieving both highly optimized design 
solutions and high efficiency. Experiments show that 
NDPAD is a promising method for real-world NoC design, 
which has potential to replace the current off-the-shelf and 
experience-based design methods. Thanks to the SMAS 
framework, highly optimized solutions can be obtained with 
limited number of simulations. Thanks to the ISS method, the 
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challenges in terms of surrogate modeling brought by integer 
variables are tackled. DE mutation strategies and their use for 
the targeted problem are also studied. Future works include 
handling very stringent (or high) design specifications for 
NoC design optimization. 
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