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Abstract— This paper considers task allocation problems
where a group of agents must discover and allocate themselves
to tasks. Task allocation is particularly difficult when agents can
only exchange information over a limited communication range
and when the agents are initialized from a single departure
point. To address these constraints, we present a novel approach
that incorporates computational models of motivation into a
guaranteed convergence particle swarm optimization algorithm.
We introduce an incentive function and three motive profiles
to guaranteed convergence particle swarm optimization. Our
new algorithm is compared to existing approaches with and
without motivation under conditions of limited communication.
It is tested in the case where the agents are initialized from
a single point and random points. Results show that our
approach increases the number of tasks discovered by a group
of agents under these conditions. Furthermore, it significantly
outperforms benchmark PSO algorithms in the number of tasks
discovered and allocated when the agents are initialized from
a single point.

I. INTRODUCTION

In this paper, we consider a task allocation problem

where a group of agents is used to discover and allocate

themselves to tasks in a confined area [1]–[4]. Problems of

task allocation occur in applications such as detecting and

clearing mines [2] and finding and rescuing trapped victims

inside a destroyed building [3]. A number of variations of the

task allocation problem exist [5], [6]. This paper considers

task allocation problems under specific conditions, i.e. where

agents have a limited communication range and where agents

are initialized from a single point.

A critical aspect of physical multi-agent systems is that

agents will not be able to exchange information with other

agents that are outside their communication range. Another

aspect to consider is that agents are often required to start

searching from a single departure point [7]. An example of

such problems is the case where the agents enter a building

to search for targets from a single entrance [7]. When the

geometry inside the building is unknown, this complicates

the process of distributing the agents around the search space,

hence the ability to initialize the search from a single point

is essential. These aspects must be taken into consideration

when designing a multi-agent system for task allocation.

Taking the above conditions into account, the focus of this

paper is on problems where the tasks are able to broadcast

signals and the agents are able to sense the strength of those

Medria K. D. Hardhienata, V. Ugrinovskii, and Kathryn E. Mer-
rick are with the School of Engineering and Information Technol-
ogy, UNSW Canberra, Northcott Drive, Canberra, ACT-2600, Aus-
tralia. e-mail: medria.hardhienata@student.adfa.edu.au, (v.ougrinovski,
k.merrick)@adfa.edu.au.

signals. It is assumed that the strength of the signal sensed by

the agents reduces with distance from the tasks and reaches

a maximum value when the agent is at the task location. This

allows the agents to behave as if they take measurement of

an unknown fitness function. The task allocation problem is

hence cast in this paper as an optimization problem [1] with

the goal to maximize an unknown multimodal fitness func-

tion. To solve this problem, a population-based stochastic

optimization technique called Particle Swarm Optimization

(PSO) is used in this paper as a basic foundation.

The PSO algorithm was first introduced in [8] where

a swarm of particles was used to iteratively find the best

solution to an optimization problem. The algorithm has been

applied to a wide range of problems including the domains of

multi-agent search [4], [9] and task allocation [1]. Within the

context of task allocation, agents are associated with particles

in the optimization problem, and the tasks are associated with

the maxima of a fitness function. In this particular problem,

we are concerned with tasks of equal level of priority which

corresponds to a fitness function which has equal level of

maxima. It is assumed that the agents are able to quantify

the fitness function at their location, but they do not know its

shape or the locations and the number of its maxima/minima,

etc.

The original PSO algorithm assumes that the agents’ com-

munication range is regarded to be unlimited [10]. To mimic

agents in the multi-agent system with limited communication

capability, the PSO agents have been further designed to

only communicate with other agents within a predefined

communication range [4], [9]. The limitation of the work

in [4], [9] is that the approaches proposed in those papers

only solve task allocation problems with a single task in the

search space.

Other studies have been partially explored in [11], [12]

regarding the application of the PSO algorithm for solving

task allocation problems where there are multiple tasks. It

is, however, assumed in [11], [12], that the number of tasks

available in the search space was initially known by the

agents. Moreover, most PSO-based algorithms assume that

the positions of the agents are randomly initialized [4], [9],

[11], [12]. Using such an assumption, the agents are required

to move towards their initial starting points [13]. However,

in the situation where the agents are initialized from a single

point and the geometry of the search space is unknown, the

algorithms in [4], [9], [11], [12] can not be used to solve

such problems.

To address the problems mentioned above, we present a

novel approach to the task allocation problem for agents un-
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der conditions of limited communication. In order to endow

the basic PSO algorithm with the ability to discover and

allocate agents to multiple tasks, we embed the agents with

models of motivation. Three models of motivation, namely,

affiliation, achievement, and power models, were introduced

in [14] which permit artificial agents to exhibit different

behaviors in goal-selection with respect to incentives. Agents

with affiliation, achievement, and power motive profiles are

characterized with a preference for low, intermediate, and

high incentive goals respectively [14]. Based on this idea,

we incorporate models of motivation into PSO to allow the

agents to exhibit different characteristics in task selection.

In contrast to [11], [12], the use of motivation together with

the PSO algorithm allows our algorithm to deal with the

condition where the number of tasks is not known a priori.

To further prevent the agents from stagnation and prema-

turely converge on suboptimal solutions, we use a specific

variant of the PSO algorithm, namely the guaranteed particle

swarm optimization (GCPSO) algorithm [15]. In this paper,

we combine the GCPSO algorithm with models of motiva-

tion. The new algorithm is further referred to as Motivated-

Guaranteed Convergence Particle Swarm Optimization (M-

GCPSO).

The idea to combine PSO and models of motivation was

first proposed in our previous work on Motivated Particle

Swarm Optimization (MPSO) without communication con-

straints [13]. One of the contributions of this paper is to

extend our study in [13] to specifically address situations

where the agents only communicate with neighbors that are

within a predefined communication range. Compared to its

previous version in [13], the algorithm in this paper employs

a new incentive function that is more sensitive to changes in

the number of agents around a potential best-found position

of a task. The construction of this function takes roots

in the domain of risk-sensitive decision making [16]. The

modification of the incentive function using the principles

of risk-sensitivity is the second contribution of this paper.

In addition, we consider a wider range of motive profiles to

create agents with different preferences for certain kinds of

incentives.

In comparison with the standard GCPSO algorithm that

does not employ motivated agents, simulation results indi-

cate that the M-GCPSO algorithm increases task discovery.

Moreover, a significant increase in the number of tasks

discovered and allocated agents is observed when the agents

are initialized from a single point. The results also show

that the proposed algorithm significantly improves the per-

formance of the original MPSO algorithm under limited

communication constraints.

This paper is divided into four sections. We explain

our approach for solving task allocation problems and the

procedure of the M-GCPSO algorithm in Section II. The

simulation setup and the results of the simulations are pre-

sented in Section III. The paper concludes with a summary

of the proposed approach and a discussion of future work in

Section IV.

II. MOTIVATED GUARANTEED CONVERGENCE PARTICLE

SWARM OPTIMIZATION UNDER CONDITIONS OF LIMITED

COMMUNICATION

This section presents our approach for solving task al-

location problems and describes the proposed Motivated

Guaranteed Convergence Particle Swarm Optimization (M-

GCPSO) algorithm.

A. The M-GCPSO algorithm

Let S denotes an ordered set of M agents S =
{

s1, s2, ..., sm, ..., sM
}

and xm
t denotes the position of agent

sm at iteration t respectively. At each iteration, the set of

neighbors of agent sm in the present M-GCPSO algorithm

is defined as

Nm
t =

{

sb : ‖xm
t − xb

t‖ < δ
}

, (1)

where δ is the maximum communication range of the agents,

δ > 0 [17].

Each agent sm is assumed to be able to remember the

location of the highest signal strength it has sensed so far

(personal best position), ymt . The value of ymt in the M-

GCPSO algorithm is updated based on the standard PSO

procedure at each iteration as follows [8]:

ymt+1 =

{

ymt if f(xm
t+1) ≤ f(ymt ),

xm
t+1 if f(xm

t+1) > f(ymt ),
(2)

where f is a fitness function that is defined by the strength

of the signal field created by all tasks. Note that to perform

this update, only values of f are used and precise knowledge

of f is not required. Now we introduce the set Sm consisting

of personal best positions of the agents in Nm, Sm
t =

{

ybt : s
b ∈ Nm

t

}

.

To calculate the position of the highest signal strength,

gmt , found by the neighborhood, each agent sm in the M-

GCPSO algorithm will first consider all potential neigh-

borhood best positions. Let the highest sensed value of

a signal in the neighborhood of agent sm be attained at

ŷmt = arg max
yz

t
∈Sm

(f(yzt )), the set of potential neighborhood

best positions, Gm
t , is calculated as

Gm
t = {yzt | yzt ∈ Sm

t ∧ |f(ŷmt )− f(yzt )| ≤ µ} . (3)

In the above equation, the value of µ is set to 0.1 as it

has been observed in [13] that this value leads to good

performance. Next, the set Gm
t is augmented with an artificial

randomly generated position in the search space, y∗, which

results in a new set Gm∗
t . That is,

Gm∗
t = Gm

t ∪ {y∗t } . (4)

The above equation is used to prevent the agents from

concentrating within a small region in the search space [13].

Using Equation (4), the neighborhood best position gmt in

the M-GCPSO algorithm is calculated as follows:

gmt ∈ arg max
yl

t
∈Gm∗

t

Tres(I
m
t (ylt)), (5)
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where Imt (·) is the incentive function and Tres(·) is the mo-

tivation function of agent sm. The construction of Imt (·) and

Tres(·) will be explained in the following two subsections. In

the case where Equation (5) results in more than one point,

the point nearest to the agent is selected to be gmt .

Once each agent sm has computed its neighborhood best

position gmt , it updates its velocity and position as follows:

v̂mt+1 =































χ(vmt +ϕ1r1(y
m
t − xm

t )

+ϕ2r2(g
m
t − xm

t ))
, if

gmt 6= ymt

∧gmt 6= y∗t
(6a)

χvmt − xm
t + gmt

+ρt(1− 2r3),
if gmt = ymt (6b)

χvmt + λ(1− 2r4), if gmt = y∗t (6c)

vmt+1 =







v̂mt+1 if −vmax ≤ v̂mt+1 ≤ vmax

vmax if v̂mt+1 > vmax

−vmax if v̂mt+1 < −vmax ,

(7)

xm
t+1 = xm

t + vmt+1 . (8)

where vmt denotes the velocity of agent sm at time step t;

vmax is the maximum allowed velocity; λ is a constant and ρt
is a scaling factor that are both used to scale the contribution

of the random search. Here, we set λ = 2 as it has been

observed in this case to provide good performance; χ is a

constriction coefficient which is calculated based on χ =
2

|2−ϕ−
√

ϕ(ϕ−4)|
with ϕ = ϕ1+ϕ2 = 4.1 [18]. In this paper,

we set ϕ1 = ϕ2 = 2.05 and χ = 0.729844 as suggested in

[18]; r1, r2, r3 and r4 are random values in the range [0, 1],
sampled from a uniform distribution.

Note that three cases are considered in Equation (6) to

update the velocity of the agents in the M-GCPSO algorithm.

The first two cases, Equations (6a) and (6b), are based on the

GCPSO algorithm [15]. At each iteration, the scaling factor

used in Equation (6b), ρt, is updated based on an adaptive

search procedure as described in [15]. Note that the general

form of Equations (6a) and (6b) is presented in [15] using

the inertia model which is mathematically equivalent to the

constriction model [10].

To further prevent the agents from concentrating within a

small region in the search space [13], Equation (6c) is used in

the M-GCPSO algorithm. As ymt and gmt are not involved in

Equation (6c), the agents will not be forced to move towards

their personal best and neighborhood best positions. This

allows the agents to perform a broader search in the search

space.

Note also that we implement the constriction model (6)

while enforcing the limit on the agent’s velocity (7) as this

combination has been observed to increase the convergence

rate [19]. In the case where xm
t+1 is outside the search space,

the agent will be pulled back to the search area by projecting

its position to the boundary line. The velocity of the agent in

the direction orthogonal to the boundary line will be changed

by taking a random value from the interval (−1, 0) [20].

In Sections II-B and II-C, we will further describe how

the incentive function, I , and motivation function, Tres, are

used in the M-GCPSO algorithm.

B. The Incentive Function

In the motivational psychology theory, incentive is defined

as a situational characteristic that relates to a motive’s

satisfaction [21]. It has been observed in [21] that individuals

with different motive profiles have different preferences for

certain kinds of incentives. As a result, they select goals dif-

ferently. Within the context of task allocation, this incentive

function is presented in this paper based on the situational

characteristics ‘distance to the task’ and ‘number of agents

around the task’. Three motive profiles that have different

preferences for this incentive are then presented.

Specifically in the M-GCPSO algorithm, the incentive

function serves as a means of evaluating each potential

neighborhood best position in the set Gm∗
t [13]. Let dmt (y) be

the distance between the current position xm
t and the point

y, and a(y) be the number of agents within a circle of a

given radius h centered at y (in this paper, h = 2 is chosen

as it has shown to provide good performance). Let dmt,max be

the maximum distance between agent sm and any element

of the set Gm
t , dmt,max = max

yz

t
∈Gm

t

dmt (yzt ). It is important to

choose a scaling parameter, dmt,max, so that the set Gm
t can

be normalized before it is augmented with the additional

position y∗t . Note that the value of dmt,max yields zero when

xm
t ∈ Gm

t .

To describe how the value of the incentive relates to the

components of the distance and the number of agents around

the point y, we introduce a function I(a,D) in the M-

GCPSO algorithm as follows:

I(a,D) = c1(a) + c2(a)e
−(1−D)eα(

M−a

M ), (9)

with D ∈ [0, 1], a ∈ [0,M ], α > 0, and functions c1, c2, are

defined in Equation (11) below. The constant α defines how

sensitive the incentive function is to changes in a. Here, we

use α = 2.5 as it creates the desired shape of the incentive

curve.

Using Equation (9), the incentive function Imt (y) is de-

fined as:

Imt (y) =

{

I
(

a(y),
dm

t
(y)

dm

t,max

)

, if y 6= y∗,

I (0, 1) , if y = y∗.
(10)

There are two cases considered in Equation (10):

• Case y 6= y∗ : This case determines the incentive value

of position y in the set Gm∗
t where y is not the additional

point, y∗. In the case where dmt,max = 0, the value of

1− dm

t
(y)

dm

t,max

is set to zero. To make the incentive function

more sensitive to large distance changes, the distance

component in the incentive function is expressed in

an exponential form [13]. Furthermore, the component

of the number of agents around the position y is also

expressed in an exponential form, and thus makes the

incentive more sensitive to changes in a.

• Case y = y∗: This case determines the incentive value

assigned to the additional position y∗. In contrast to the

first case where the incentive value depends on dmt (y)
and a(y), the additional position y∗ is assigned an
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incentive Imt (y∗) = c1(0)+ c2(0)e
α = Imt (0, 1), which

is the highest incentive value. This is to encourage some

agents to pursue this position, and hence, encourage

them to perform global exploration of the search space.

The incentive control parameters, c1(a), c2(a), control the

shape of the incentive function and are set according to [22]:

c1(a) =

{

c
(1)
1 if a ≤ 2,

c
(2)
1 if a > 2,

(11a)

c2(a) =

{

c
(1)
2 if a ≤ 2,

c
(2)
2 if a > 2.

(11b)

In this paper, we use c
(1)
1 = 0.6, c

(1)
2 = 0.025, c

(2)
1 =

0, c
(2)
2 = 0.05 as these values have been empirically found

to provide good performance. A discussion on the effect

of different incentive values on the performance of the

algorithm is provided in [22].

In Equation (11), two different profiles were chosen for

a ≤ 2 and a > 2. This is to give higher incentives to those

positions where there are only two or fewer agents in the

position y, and to provide lower incentives where the number

of agents around y is greater than two. Fig. 1 shows the graph

of the I(a,D) function for all possible values of a in the case

M = 30.
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Fig. 1. The graph of I(a,D) function for all possible values of a, in the
case M=30 and D ∈ [0, 1].

C. The Motivation Function

To mimic certain aspects of human behavior in goal

selection, the shape of the motivation curve for the agents

is constructed by replicating the shape suggested by psycho-

logical studies of human behavior [14]. While in the MPSO

algorithm [13] we have constructed affiliation-motivated

agents which have a high preference for goals with lower

incentives (Profile 1), this paper considers a wider range

of agents by introducing two new motive profiles, namely

Profiles 2 and 3. Compared to the motive profiles proposed

in [13], the new profiles are significantly different in that

they exhibit different goal-selection characteristics for certain

kinds of incentives. In this paper, Profile 2 is characterized

by a high preference for goals with intermediate incentives

and a moderate preference for goals with high incentives,

while Profile 3 is characterized by a high preference for

goals with high incentives and a moderate preference for

goals with intermediate incentives. By endowing agents with

one of the three motive profiles, we expect the agents to

exhibit different characteristics such as those who tend to:

prioritize allocation to tasks (Profile 1), prioritize allocation

but also have an intermediate tendency to explore (Profile

2), and prioritize exploration but also have an intermediate

tendency to allocate (Profile 3). The motivation curves of

the corresponding motive profiles 1-3 are presented in Figs.

2(a)-2(c).

In this paper, the three motive profiles were defined and

implemented using a motivation function, Tres(I), of the

form:

Tres(I) = T1(I) + T2(I) + T3(I)

Tres(I) =
S1

1+e
ρ
+

1
(I−M

+

1
)
− S1

1+e
ρ
−
1

(I−M
−
1

)

+ S2

1+e
ρ
+

2
(M

+

2
−(1−I))

− S2

1+e
ρ
−
2

(M
−
2

−(1−I))

+ S3

1+e
ρ
+

3
(M

+

3
−I)

− S3

1+e
ρ
−
3

(M
−
3

−I)

where I is the incentive variable; Tθ(I) is the motivational

tendency; M+
θ , M−

θ are each the turning points of approach

and avoidance of a goal; ρ+θ , ρ−θ are gradients of approach

and avoidance of a goal respectively; Sθ denotes the relative

motivation strength that controls the strength of a particular

motive compared to other motives; and θ = 1, 2, 3 represent

the constant indexes corresponding to the motivational ten-

dencies for choosing goals with low, intermediate, and high

incentives respectively.

Using Equation (12) and the constants presented in Table

I, we created the three motive profiles mentioned above as

shown in Figs. 2(a)-2(c). In this paper, the shape of the

motivation profiles were selected as those shapes have been

empirically found to create agents with desirable behaviors

in task allocation.

III. VALIDATION AND PERFORMANCE OF THE M-GCPSO

ALGORITHM

To evaluate the efficacy of the new algorithm where

motivation is used, we first compare the proposed algorithm

with the corresponding GCPSO variant [15] that does not

employ motivated agents. In this paper, the GCPSO algo-

rithm is configured with the same communication constraints

as defined in Equation (1). Note that the standard GCPSO

algorithm differs from the M-GCPSO algorithm in that

the neighborhood best position gmt is calculated using the

sensed value f(yzt ) directly, i.e., gmt = arg max
yz

t
∈Sm

(f(yzt )).

Furthermore, at each iteration, the agents in the GCPSO

algorithm only update their velocity based on Equations (6a)

and (6b).
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TABLE I

CONSTANTS OF THE MOTIVATION FUNCTION

Constants

M-GCPSO

Profile 1 Profile 2 Profile 3

S1 2 1 1

M+

1
0.3 0.3 0.3

M−

1
0.1 0.1 0.1

ρ+
1

20 20 20

ρ−
1

20 20 20

S2 0.8 2 1.5

M+

2
0.4 0.4 0.4

M−

2
0.6 0.6 0.6

ρ+
2

20 20 20

ρ−
2

20 20 20

S3 1 1.8 2

M+

3
0.7 0.7 0.7

M−

3
0.9 0.9 0.9

ρ+
3

20 20 20

ρ−
3

20 20 20
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(b) Profile 2
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(c) Profile 3

Fig. 2. Three different motive profiles that are used in the Motivated-
Guaranteed Convergence Particle Swarm Optimization algorithm.

The second algorithm to compare with the proposed al-

gorithm is the MPSO algorithm in [22] that is configured

in this paper under the same communication constraints as

defined in Equation (1). This algorithm is chosen to evaluate

how the proposed modification of the MPSO algorithm that

is introduced in this paper and described in Section II

improves the performance of the MPSO algorithm under

limited communication constraint. A comparison between the

topology that is used in the original MPSO and the one used

for the MPSO algorithm in this paper is shown in Fig.3.

A. Metrics

In this section, we summarize the definitions of perfor-

mance metrics introduced in [22] and used in this paper.

s1

s2

s3

s4

s5

(a)

s1

s2

s3

s4

s5

(b)

Fig. 3. An example of different communication topologies of the MPSO
algorithm when the agents are positioned as shown. (a) The communication
topology of the original MPSO with unlimited communication constraints
[13], (b) The modified communication topology of the MPSO algorithm
with limited communication constraints.

1) Average number of tasks to which the agents are

allocated [22]: Task n is said to be allocated if there is at

least one agent that stays at the task for at least τ consecutive

time steps. For the simulations, we use τ = 20. Notice that

the value of τ can be set depending on how long one wants

an agent to stay at the task to consider the agent as being

allocated to the task. The average number of tasks to which

the agents are allocated over J simulations is computed as

Q̄ = 1
J

∑J

j=1 Q̂j , where Q̂j refers to the number of tasks to

which the agents are allocated in simulation j.

2) Average number of discovered tasks [22]: Task n at

x́n is said to be discovered if there is at least one agent sm

such that it satisfies ‖xm
t − x́n‖ ≤ ε. In this case, we specify

ε = 0.4 which indicates that an agent has discovered a task

if its distance to the task position is ≤ 0.4. Note that this

value can be set according to the desired level of accuracy.

The average number of discovered tasks over J simulations

is calculated as W̄ = 1
J

∑J

j=1 Ŵj where Ŵj is the number

of discovered tasks in simulation j.

3) Distribution of agents among tasks [22]: As mentioned

earlier in this paper, the desired distribution from the perspec-

tive of this paper is to have a uniform distribution of agents

among the tasks. To quantify how well the agents distribution

among the tasks follows this desired distribution, we present

a relative entropy type metric to measure the difference

between the observed population density of allocated agents

at each task, pO, and the uniform distribution, pU . In this

case, a uniform distribution of agents refers to an ideal

situation where each task n ∈ {1, . . . , N} is allocated the

same number of agents.

Let M̂n denotes the number of agents allocated to task n

and M̂ is the total number of allocated agents. The observed

probability (relative frequency) distribution of agents among

N tasks is computed as pO(n) = M̂n

M̂
, n = 1, . . . , N .

Note that pO ∈ R
N , pO ≥ 0 and

∑N

n=1 pO(n) = 1.

The uniform distribution of agents among N tasks, on the

other hand, is defined as pU (n) =
1
N
, n = 1, . . . , N . To

quantify the discrepancy of pO from pU , the relative entropy
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of the two distributions is calculated as follows:

R(pO||pU ) =
N
∑

n=1

pO(n) log
pO(n)

pU (n)
, (12)

where R(pO||pU ) ≥ 0, with equality only if pO = pU .

Here, we follow the convention that pO(n) log
pO(n)
pU (n) = 0,

whenever pO(n) = 0, according to the continuity arguments

given in [23]. Note this definition requires that pU > 0 for

all n which is the case for the uniform distribution.

According to the above definition, a relative entropy of 0

indicates a situation where the observed density is equal to

the reference density. Even though the quantity of relative en-

tropy is not a true distance between probability distributions

in the mathematical sense, it is commonly used to assess

how close a probability distribution is to a reference. Lower

values of relative entropy are interpreted as an indication

of a stronger similarity between the probability distributions

compared. In our case, lower values of relative entropy point

to a more uniform distribution of the agents among the tasks.

To obtain sufficient statistical evidence of how uniformly

the agents are distributed among the tasks, multiple simu-

lations are conducted in this study. We hence consider the

average relative entropy over J̌ simulations which is defined

by:

R̂(pO||pU ) =
1

J̌

J̌
∑

j

Rj(pO||pU ), (13)

where Rj(pO||pU ) is the relative entropy between the ob-

served and uniform distributions of agents among tasks in

simulation j.

B. Simulation Setup

The simulations were conducted using Matlab version

7.8.0 (R2009a). To evaluate the performance of the algo-

rithms in a more realistic situation, the parameters used in our

simulations are derived from the multi-agent search scenario

in [4]. That is, we use a fixed communication range (δ) of 2.0
m, and set the agent’s maximum velocity and time per itera-

tion (T ) to 0.1287 m/s and 9.6 s respectively based on [4]. To

represent tasks with equal priority, a multimodal test function

based on [24] is applied and modified to have equal maxima

values, f(x1, x2) = max
∀n

fn(x1, x2), with fn(x1, x2) defined

as fn(x1, x2) = Hn

1+ωn[(x1−Xn)2+(x2−Yn)2]
. Here, (Xn, Yn)

denotes the coordinates of task n, Hn denotes the signifi-

cance (level of priority) of task n, and ωn determines how

fast the signals from task n reduce with distance. All tasks

were set with ω = 1 and H = 1. This setting gives all tasks

an equal priority, hence we expect that agents will allocate

themselves to the tasks evenly.

To maintain the same task density as in [4], the size of the

search space used in the simulations is adjusted following the

scale used in [4]. The search space is defined in the range

of 0 < x1 < 24 and 0 < x2 < 24 with nine tasks (N =
9) distributed in the search region with fixed positions. The

value of vmax in the algorithm is obtained by multiplying

the agent’s maximum velocity with the time per iteration.

In all simulations, the algorithms were tested using 30

agents, enough to allocate agents to all the tasks. For the M-

GCPSO algorithm, a proportion of 2:2:1 between the number

of agents with Profile 1, Profile 2, and Profile 3 was chosen.

This choice was made to maintain similar proportion as used

in the MPSO algorithm [13] where a higher proportion is

given to the types of agents who tend to prioritize allocation

and a lower proportion to the agents who tend to prioritize

exploration. In the previous MPSO algorithm [13], a ratio of

3:2 between the affiliation- and power-motivated agents was

used for a small number of agents and a ratio of 4:1 was set

for a large number of agents. In this paper, we assume that 30

agents falls in the category of a large number of agents, and

thus a proportion of 4:1 is chosen. However, as there are

two types of agents in the M-GCPSO algorithm that tend

to prefer allocation (i.e. agents with Profiles 1 and 2), we

divide the proportion for those two types of agents into two

equal proportions. Thus, a proportion of 4:1 in the previous

MPSO algorithm is considered to be equal to a proportion

of 2:2:1 in the M-GCPSO algorithm. In these simulations,

the GCPSO algorithm is set with 30 homogenous agents.

The MPSO algorithm, on the other hand, uses a proportion

of 4:1 between the affiliation-motivated and power-motivated

agents as considered in the previous paper in [13].

Furthermore, the number of agents used in the simulations

is denoted here as numbers within brackets. M-GCPSO

(12+12+6), for instance, means that the M-GCPSO algorithm

is generated using 12 agents with Profile 1, 12 agents with

Profile 2, and 6 agents with Profile 3.

In this paper, we conducted four simulations as follows:

1) Simulation 1: This simulation is designed to investigate

the effect of varying communication ranges in the case

where the agents are initialized from random points. In

this simulation, nine tasks are distributed in the search

space and a total of 30 agents are employed. For the

purpose of measuring the impact of having different

communication ranges, in this simulation we focus on

performance in terms of the average number of tasks to

which agents are allocated.

2) Simulation 2: This simulation has the same setup as

Simulation 1, but the agents are initialized from a

single point. In this simulation, we again focus on the

number of tasks to which the agents are allocated as the

performance metric.

3) Simulation 3: The third simulation is conducted to

investigate the performance of the algorithms using

broader performance metrics that are presented in Sec-

tion III-A. In this simulation, the agents are initialized

from random positions. This simulation is tested with

nine tasks and 30 agents. Different from Simulations 1

and 2, for this simulation the value of the communica-

tion range is fixed to 2 as used in the multi-agent search

scenario proposed in [4].

4) Simulation 4: This simulation has the same config-
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uration as Simulation 3, except that the agents are

initialized from a single point. In this simulation, the

same set of metrics as used in Simulation 3 is employed.

The maximum number of iterations is set to 300. To obtain

a significant statistical results, the simulations were repeated

50 times with different random seeds. All other parameters

take values specified in Section II.

C. Results

1) Effect of varying communication ranges (Simulations

1 and 2): The results of the first simulation indicate that

both the M-GCPSO and GCPSO algorithms have a higher

number of tasks allocated when smaller communication

ranges are used as shown in Fig. 4(a). As the communication

range increases, fewer sub-swarms are created, and hence,

the performance of the two algorithms gradually decreases.

This suggest that having a very large communication range

can potentially degrade the performance of the M-GCPSO

and GCPSO algorithms. Conversely, the performance of the

MPSO algorithm under limited communication constraints is

relative poor as it never manages to allocate agents to more

than 70% of the total number of tasks; see Fig. 4(a).

In Simulation 2, there is a decrease in the number of

allocated tasks compared to the first simulation as can be

seen in Fig.4(b). This is because a smaller part of the search

area is initially covered by the agents with a single point

initialization. Compared with the M-GCPSO algorithm, the

performance of the GCPSO and MPSO algorithms in this

simulation drops significantly and remains poor regardless

the communication range.

2) Effect of initial positions (Simulations 3 and 4):

Table II summarizes the performance of the algorithms under

different initial positions after the maximum iterations has

been reached. Different from the previous two simulations,

the performance of the algorithms in Simulations 3-4 is

quantified using broader metrics which also include the

average number of discovered tasks as well as the distribution

of agents among tasks.

The results of Simulation 3 in Table II (column 3) indicate

that the M-GCPSO algorithm substantially discovers more

tasks than the GCPSO algorithm at the 95% confidence

level. Compared with the GCPSO algorithm, the M-GCPSO

algorithm has a mechanism to ensure that agents who have

higher values of incentive function are able to carry out a

wider exploration. This mechanism significantly contributes

to the increase in the number of discovered tasks. In terms of

the average number of tasks allocated, it is shown in Table

II (column 4) that the performance between the M-GCPSO

and GCPSO algorithms is comparable when the agents are

initialized randomly. In this case, there is no significant

difference at the 95% confidence interval between the two

algorithms in how uniformly the agents are distributed among

the tasks; see Table II (column 5).

Furthermore, it can be seen in Table II (column 3-4)

that the M-GCPSO algorithm in Simulation 3 significantly

increases the number of discovered tasks and allocate the
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(b) Simulation 2

Fig. 4. The effect of different communication ranges on the average number
of tasks to which the agents are allocated for M-GCPSO (12+12+6) (black),
GCPSO (30) (gray), and MPSO (24+6) (white) in the case where the agents
are initialized from: (a) random points, (b) a single point.

agents to more tasks than the MPSO algorithm. The M-

GCPSO algorithm also distributes the agents more uniformly

among the tasks which is indicated by having a lower relative

entropy than the MPSO algorithm; see the last column of

Table II.

In the case where the agents are initialized from a single

point (Simulation 4), the M-GCPSO algorithm achieves a

significant higher number of discovered tasks and allocates

the agents to more tasks than the GCPSO algorithm (Table II

(column 3-4)). In this simulation, the M-GCPSO algorithm

also distributes the agents more uniformly among the tasks.

This is indicated by having a lower relative entropy value

than the GCPSO algorithm which is statistically significant

at the 95% confidence level.

In comparison to the MPSO algorithm, the M-GCPSO

algorithm in Simulation 4 has a higher number of tasks

discovered and allocated as can be seen in Table II (column

3-4). In this case, the new algorithm also improves the

performance of its previous version by distributing the agents

more uniformly among the tasks; see Table II (column 5).

Note that there is a decrease in the overall performance of

the M-GCPSO algorithm when the agents are initialized from

a single point. It has been observed that this is because the

agents with Profile 1 in this case did not critically contribute

to the success of the system. When the agents are initialized
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TABLE II

PERFORMANCE COMPARISON OF THE MOTIVATED-GUARANTEED

CONVERGENCE PSO (M-GCPSO), GUARANTEED CONVERGENCE PSO

(GCPSO), AND THE MOTIVATED PSO (MPSO) ALGORITHMS IN THE

CASE N = 9.

Average
number of
discovered
tasks

Average
number of
tasks to which
the agents are
allocated

Average
relative
entropy

Random
Initialization
(Simulation 3)

M-GCPSO
(12+12+6)

8.600±0.148 7.440±0.238 0.452±0.052

GCPSO (30) 8.060±0.205 7.620±0.167 0.431±0.036

MPSO (24+6) 7.080±0.262 3.980±0.260 1.499±0.107

Single Point
Initialization
(Simulation 4)

M-GCPSO
(12+12+6)

6.980±0.338 5.100±0.401 1.521±0.119

GCPSO (30) 1.000±0.000 1.000±0.000 3.170±0.000

MPSO (24+6) 2.580±0.217 1.300±0.232 2.424±0.301

from a single point, these agents tend to prefer a position

where there is a large number of agents around that position

and converge into a single task. This shows that in this

simulation the agents with Profile 1 posses the same behavior

as the ordinary GCPSO agents in that they prefer to stay at

the task rather than exploring the search space when they are

initialized from a single point.

IV. CONCLUSION

In this paper, we have presented a novel approach to solve

a task allocation problem under the constraint of limited com-

munication. This approach incorporates models of motivation

into the guaranteed convergence particle swarm optimization

algorithm. In comparison with the basic approach without

motivation, the new approach has significantly increased

the number of discovered tasks given that the agents are

initialized from random points. Moreover, it has significantly

outperformed the PSO benchmark algorithm in terms of tasks

discovered and allocated when the agents are initialized from

a single point. Results of the simulations also indicate that

the new approach has significantly improved the ability of

the original approach when the agents can only communicate

within a predefined communication range.

One potential direction for the future research is to conduct

further analytical investigation of the sensitivity of differ-

ent parameter values to the performance of the algorithm.

Another relevant future work is to investigate the effect

of changing the proportion of each type of agents since

at this moment this is still set a priori. It would also be

interesting to explore other situational characteristics for

the incentive function. These include the level of difficulty

(priority) of a task as well as the distance between agents.

Such characteristics can potentially be incorporated in the

incentive function to cover broader aspects of task allocation

problems.
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