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Abstract—Nonlinear system identification process, especially 

bilinear system identification process exploits global 
optimization algorithms for betterment of identification 
precision. This paper attempts to introduce a new optimization 
algorithm called as Lion algorithm to accomplish the system 
characteristics precisely. Our algorithm is a simulation model 
of the lion’s unique characteristics such as territorial defense, 
territorial takeover, laggardness exploitation and pride. 
Experiments are conducted by identifying a nonlinear rationale 
digital benchmark system using standard bilinear model and 
comparisons are made with prominent genetic algorithm and 
differential evolution. Subsequently, curse of dimensionality is 
also experimented by defining a large scale bilinear model, i.e. 
bilinear system with 1023 bilinear kernel models, to identify the 
same digital benchmark system. Lion algorithm dominates 
when using standard bilinear model, whereas it is equivalent to 
differential evolution and better than genetic algorithm when 
using large scale bilinear model.  
 

Keywords— Lion Algorithm (LA); bilinear system; system 
identification; territorial defense; territorial takeover. 

I. INTRODUCTION 
ONLINEAR system identification is a vital process to 
forecast the output of all the real world control systems, 
signal processing systems, chemical processing 

systems, etc [1-6]. Differential equations are suggested to be 
promising solutions for a simple system with well-known 
physical properties. Nevertheless, such systems are 
unrealistic and rare in practice because most of the times, 
only input and output signals are available for system 
identification [7]. Hence, numerous auto-regression models 
[8-10], auto-regression models with exogenous variables 
(e.g. ARX, ARMAX, NARMAX, etc) [11-15] and other 
nonlinear models such as Polynomial models [21, 22], 
Winner-Hammerstein models [20], Volterra series [16, 17, 
19] and bilinear series [18] were reported in the literature. 
Bilinear series is an extended form of Infinite Impulse 
Response (IIR) filter. It was initially formulated as a non-
recursive structure (no kernel model), but later, it has been 
framed as recursive structures (with kernel models for 
precise system identification [7].  

Numerous bilinear system identification methods have 
been reported in the literature in the recent past [27-30]. For 
example, Least Mean Square algorithm (LMS) and its 
variants [31], blind identification methods and many more 
[27-29]. In the past decade, global optimization algorithms 
have also been reported for bilinear system identification, 
among which Genetic Algorithm (GA) [35] and Differential 

Evolution (DE) [7, 32-34] are the most prominent 
algorithms.  

This paper makes an attempt to introduce a novel 
optimization algorithm, which is based on lion’s unique 
social behaviour, hence termed as Lion Algorithm (LA), for 
bilinear system identification. LA introduced in this paper is 
an extension of our previous work [37] in which a simple 
LA model was proposed to solve a benchmark minimization 
problem. Hence, the main contributions of the paper can be 
pinpointed as follows 
• Introduces a new optimization algorithm based on lion’s 

social behaviour 
• Applies the optimization algorithm for nonlinear system 

identification through bilinear series model 
• Expands the system identification problem as a Large 

scale global optimization problem, which is further 
referred as large scale system identification problem  

• Studies the performance competency of the algorithms 
when they are subjected to solve large scale system 
identification problem.  

The rest of the paper is organized as follows. Section II 
gives preliminaries about the bilinear series model and LA. 
Section III and IV details the system identification procedure 
and the simulations of steps of LA, respectively with 
required illustrations and mathematical models. Section V 
discusses the experimental results and Section VI concludes 
the paper.  

II. PRELIMINARIES 

A. Bilinear Series Model 
Bilinear model is one of the classes of nonlinear models, 

which has highly attracted researchers for deriving models 
for various real-time systems [19-25]. Given an input 
sequence, nu : 1,,1,0 −= Tn … , the output ny  from a bilinear 
series model can be given by Eq. (1), in which { }NMMN cccbbbaaa ,201,01021 ,,,,,,,,,,

,
………

 
is the set 

of kernels to be identified.   
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where, N and M are the number of past outputs and inputs, 
respectively. The cardinality of the kernel set, K  can be 
derived as 

N
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[ ] MMNK +++= 21        (2) 

 

B. Lion Algorithm (LA) 
In 2012, LA (termed as lion’s algorithm) was introduced 

by us [37] based on the raw inspiration from lion’s unique 
social behaviour [36]. This can be interpreted in algorithmic 
perspective as follows 
• A solution (territorial lion) should be strong enough to 

defeat a random solution (nomadic lion) 
• The weak solutions (weak lions, may be cubs also) are 

either vanished from the solution pool or driven out 
from the solution pool 

• A solution, which is derived from the successful 
solution (succeeded lion in territorial defense or 
territorial takeover) is stronger than a solution, which is 
derived from failed solution (laggard lion in territorial 
defense or territorial takeover) 

However, we have restructured the basic model of the 
algorithm proposed in [37] along with the introduction of 
fertility evaluation phase.  We have also changed crossover 
operation and gender clustering method with subsequent 
strengthening in the survival fight. The restructured version 
of the proposed LA is illustrated in Fig. 1. However, the 
algorithm steps are detailed in the Section IV.  
 

 
Fig 1. Major blocks/functions involved in the proposed LA 

III. SYSTEM IDENTIFICATION PROCEDURE 
The system identification method using LA is illustrated 

in Fig 2. It interprets that the LA tunes the kernel models 
based on the output variation between the actual system and 
the bilinear model. Hence, the system identification 
procedure can be modelled as a minimization problem as 
follows  
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where, optK  is the optimal set of kernel models, ny  is the 
bilinear system model as given in Eq. (1) and nA is the 
actual system to be modelled. LA attempts to solve the 
minimization problem and determines the optimal kernel 
models.  

 

 
Fig 2. Bilinear System Identification Process using LA 

IV. SIMULATION STEPS 
Step 1: Pride Generation 

Initialize maleX , femaleX  and nomadX1  of which maleX  

and its lioness femaleX  constitute pride. The lions interpret 
the solution vectors i.e. set of kernel models K . The 

elements of maleX , femaleX  and nomadX1 , i.e., )(lxmale  ,
 

)(lx female and, )(1 lxnomad respectively are arbitrary integers 
generated within the minimum and maximum limits, where, 

Ll ,,2,1 …= . Here, L  refers number of kernel models to be 
optimized, i.e., K . Here, one of the two nomadic lions is 
initialized while the other nomadic lion will be initialized at 
the time of territorial defense only.  

 
Step 2: Fitness Evaluation 

The fitness of all the three lions, termed as ( )maleXf , 

( )femaleXf  and ⎟
⎠
⎞⎜

⎝
⎛ nomadXf 1 , are determined using Eq. (1) 

followed by the error calculation in Eq. (3). For the further 
steps, we set ( )maleref Xff =  and 0=gN , where gN  is 
the generation counter, which may be used for checking 
termination criterion. Also, we store maleX  and ( )maleXf  

 
Step 3: Fertility Evaluation 

This stage evaluates and ensures the fertility of the 
territorial lion and lioness. In other words, the stage intends 
to avoid converging in local optima. The processing steps 
are discussed in the pseudo code given in Fig. 3.  

 
Process: Fertility Evaluation 

Input: maleX , femaleX , reff , rL and rS   

Output: maleX , femaleX , reff , rL and rS  

// maleX  Evaluation 
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If ( )maleref Xff ≤  
 1+← rr LL  
else 

Reset rL  

( )maleref Xff ←  
End if 
// femaleX  evaluation 
If rS  is not tolerable 

 Set cu  and cg  to zero 
 Do 
  Calculate +femaleX  
  1+← cc gg    

 If ( ) ( )femalefemale XfXf <+  
   1←cu  

   +← femalefemale XX  
   Reset rS  
  End if 
 Until cg reaches max

cg   
End if 

Fig. 3. Pseudo code for Fertility evaluation 
 

In Fig. 3, +femaleX , reff , rL , rS , cu and cg
 
are updated 

female lion, reference fitness, Laggardness rate, sterility rate, 
female update count and female generation count 
respectively. When the LA begins, rL and rS  are initialized 
as zero, and at every call for fertility evaluation, rL and rS  
get lastly determined value. Checking the tolerance of rS  is 
nothing but checking whether they exceed their maximum 
limit max

rS . max
rS  is set as four as the median duration of 

estrus is four days for lions [38]. However after some trial 
and error evaluation, we finalized this as three. In order to 
avoid conflict and to maintain uniformity, we include both 

max
rL  (will be referred in Step 6) and max

rS irrespective of 

gender. max
cg is set as 10 based on trial and error method 

(Results are affixed in Section V). +femaleX  ( +⊃ female
lx ) 

can be calculated as  
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where, +female
lx and +female

kx are the thl  and thk  vector 

elements of +femaleX , respectively, k  is a random integer 
generated within the interval [ ]L,1 , ∇ is the female update 

function, 1r  and 2r are random integers generated within the 
interval [ ]1,0 .  
 
Step 4:  Mating 

In the mating, we include two primary steps called as 
crossover and mutation, which are found as significant 
operators for any evolutionary optimization [39-42]. We 
follow the maximum natural littering rate, i.e., four cubs 
(mostly) in a lioness pregnancy [43] and so we get four cubs 
‘ cubsX ’ from the crossover, which is of uniform in nature 
with random crossover probability rC . The mathematical 
representation of the crossover operation can be given as  

 
( ) female

p
male

p
cubs XBXBpX DD +=  : 4,3,2,1=p    (7) 

 
where, B is crossover mask of length L  in which 1s and 0s 
are filled randomly based on rC , B is the one’s complement 
of B , vector operator ‘D ’ represents Hadamard product or 
schur product and ( )pX cubs  is the thp  cub obtained from 

crossover. The cubsX  are subjected to uniform mutation 
with the mutation probability as rM  and hence equal 

number of new cubs newX are obtained. The obtained newX  
(from mutation) and cubsX  (from crossover) are placed in 
the cub pool and subjected to further processes.  

A secondary step, called gender clustering [37], is also 
included here to extract a single male cub and a female cub 
from the cub pool. Based on the lion’s physical nature [44-
47], we select the cubs, which have the first and second best 
fitness, as the male cub cubmX _  and female cub cubfX _ , 
respectively. Once the cubmX _  and cubfX _ are obtained, 
set their ages (commonly referred as cubs’ age) cubA  as 
zero. 
 
Step 5: Cub Growth Function 

Cub growth function is a local solution search function in 
which the cubmX _ and cubfX _ are subjected to uniform 
random mutation at a rate of rG . If the mutated cubmX _ and 

cubfX _ are better than old cubmX _ and cubfX _ , then the 
mutated cubmX _ and cubfX _ replace old cubmX _ and

cubfX _ , respectively. cubA  is incremented by one at every 
execution of cub growth function to illustrate the cubs’ 
growth towards maturity. rG  should be less enough 

(possibly <0.2) to search the fine local solutions of cubmX _

and cubfX _ and need not be equal to rM .  
 
Step 6: Territorial Defense 

Territorial defense [37] is one of the primary lion 
operators to direct the algorithm to analyze the search space 
in a wider way. The territorial defense can be sequenced 
here as forming nomad coalition, survival fight and then 
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pride and nomad coalition updates. Pseudo code for 
Territorial defense is given in Fig. 4. 

 
Process: Territorial Defense 
Get nomad coalition 

Select nomadex _  

if nomadex _ wins 
nomademale xx _←  

Remove nomadex _ from nomad world 

Kill cubmx _ & cubfx _  
Reset age(cubs) 
Defense result←1 

Else 
Update nomad coalition 
Defense result←0 

End if 
Fig. 4. Pseudo code for Territorial defense 

 
Getting nomad coalition as given in Fig. 4 represents 

introducing two nomadic lions of which nomadX 1 has been 

initialized at Step 1, whereas nomadX 2  
is initialized as based 

on rL .  Succinctly, nomadX 2
is initialized as like nomadX 1 , 

when maleX  is not laggard (i.e., max
rr LL ≤ ). Otherwise, 

nomadX 2 is initialized as an updated version of maleX  

through uniform mutation (as described in Step 4), with a 
mutation rate of rM−1 . 

Survival fight takes place between one of the two lions of 
nomad coalition and the pride, despite coalition between 
nomadic lions are also common [48]. Instead of engaging 
nomad coalition for territorial defense, we apply winner take 
all approach [49] so that only winning nomadic lion

nomadeX _  among the coalition engage in territorial defense. 

The survival fight result comes in favour of the selected 
nomadeX _

if the following criteria are met 
 

( ) ( )malenomade XfXf <_     (8) 

( ) ( )cubmnomade XfXf __ <    (9) 

( ) ( )cubfnomade XfXf __ <    (10) 
 

Pride is updated by replacing maleX  by nomadeX _ after 

removing it from nomad coalition, which happens only when 
maleX  is defeated in the territorial defensre. Likely, nomad 

coalition is updated only when nomadeX _

 
is defeated. The 

update process is done by selecting only one nomadX , which 
has nomadE  greater than or equal to exponential of unity. 

For instance, nomadX1 is selected if eE nomad ≥1 , nomadX 2

otherwise, where, nomadE1 can be calculated as follows 
 

( )
( ) ( )( )

( )nomad

nomadnomad
nomad

Xf
XfXf

dd
dE

1

21

21

1
1

,max
,max

exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=      (11) 

 
In Eq. (11), 1d  is the Euclidean distance between 
nomadX1  and maleX , 2d  is the Euclidean distance between 

nomadX 2  and maleX . If the defense result is zero, maleX  

and ( )maleXf are stored and  the process is reiterated from 
Step 3.  
 
Step 7: Territorial Takeover 

Territorial takeover takes place only if maxAAcub ≥ , 
otherwise the process is reiterated from Step 5. It is a 
process of giving territory to the cubmX _ and cubfX _ after 
they mature and become stronger than maleX  and femaleX . 
The pseudo code, which is given in Fig. 5, depicts the 
processing steps of the territorial takeover operation. If 

cubfX _  is found to be better than femaleX , cubfX _  retains 
femaleX  position. Such cubfX _  is probably fertile and 

hence rS  is set back to zero in the territorial takeover. Here 

maxA  is associated with attaining sexual maturity by cubs. 
Naturally, cubs mature in 1.5-2 years [38] or 2-4 years [50]. 
We refer the later, and hence we fix the median as maximum 
age for cub maturity, i.e., 3max =A .  Now, one generation 

shall be considered as completed and hence is gN  
incremented by one. 

 
Process: Territorial Takeover 

If ( ) ( )cubmmale XfXf _>  
cubmmale XX _=  

Endif 
femaleold XX =  

If ( ) ( )cubffemale XfXf _>  
              cubffemale XX _=  
Endif 

If 
oldfemale XX ≠  

               Clear rS  
Endif 

Fig. 5. Pseudo code for Territorial takeover 
 
Step 8: Termination Criteria 

Here, the algorithm execution is terminated when any one 
of the following two termination criteria is met, otherwise 
the process is reiterated from Step 3, after storing maleX  and 

( )maleXf .  
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( ) T
male eXf ≤      (12) 

max
ff NN >    (13) 

 
where, fN is the number of function evaluations, which is 
also initialized with zero and incremented by one, when a 

fitness evaluation is performed, max
fN  and Te  are the 

maximum number of function evaluations and target error, 
respectively.   

V. EXPERIMENTAL RESULTS 
The algorithm is executed in MATLAB R2013a and 

experimented in a PC with Intel Pentium Dual Core 
Processor @ 2.13GHz Clock speed, 2 GB RAM and 
Windows 7 OS. An extremely nonlinear rationale digital 
system presented by Y. Liu et. al. [57] as given in Eq. (14) is 
considered.  
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This exemplary system takes the sinusoidal signal as 

input, which is represented as 
 

5000;
25

2sin2.0
125

sin5.0 ≤≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= nπnπnun . (15) 

 

The experimental investigation is carried out by setting 
the bilinear series model parameters M and N as 4 and 5, 
respectively, as recommended in [7]. Hence, 35=K ,i.e., the 
dimension of the optimization problem becomes 35. Error 
deviation between the actual system output and the 
identified system output for 50 test executions are noted 
along with the number of function evaluations. For all those 
measures, the best and worst among every measure, mean, 
median and standard deviation are calculated and tabulated 
in Table I.  

However, many real world problems have high 
dimensional parameters to be optimized, which results in 
curse of dimensionality [51, 52]. Hence, in our second 
experiment, we investigate the system identification problem 
as a large scale optimization problem, as already referred as 
large scale system identification. The parameters M and N 
defines the number of kernel models to be optimized as 
illustrated in Fig. 6. A large scale system identification 
problem can be formulated when 31, >NM , because the 
number of kernel models to be optimized becomes greater 
than 1000. Conventional meta-heuristic search algorithms 
[53-55] have been reported as lagging to solve large scale 
optimization problems because of its degenerating 
performance when search space dimension increases [56]. 
Hence, we further subjected LA to solve this large scale 
system identification problem by setting M=31 and N = 32, 
so that 1023=K  . This means that the number of kernel 
models to be optimized is 1023 and so the length of the lion,

1023=L . For simple observation, five executions are made 
in this investigation and similar measures (as mentioned in 
Table I) are tabulated in Table II.  

 
TABLE I 

SYSTEM IDENTIFICATION PERFORMANCE OF GA, DE AND LA USING STANDARD BILINEAR MODEL 
Performance measures |Error| Number of function evaluations 

Methods GA (Rank) DE 
(Rank) 

LA 
(Rank) 

GA 
(Rank) 

DE 
(Rank) 

LA 
 (Rank) 

Target 1×10-6 1×10-6 1×10-6 1×105 1×105 1×105 
Best 0.00251 (3) 0.002218 (1) 0.002373 (2) 100005 (2) 100020 (3) 100002 (1) 
Worst 0.006018 (1) 0.016543 (3) 0.006881 (2) 100005 (1) 100020 (2) 100032 (3) 
Mean 0.00391 (2) 0.005767 (3) 0.003892 (1) 100005 (1) 100020 (3) 100015.9  (2) 
Median 0.003739 (2) 0.004652 (3) 0.003573 (1) 100005 (1) 100020 (3) 100018 (2) 
Standard deviation 0.000823 (1) 0.003423 (3) 0.001009 (2) 0 (1) 0 (1) 8.153421 (3) 
Average Rank 1.8 2.6 1.6 1.2 2.4 2.2 
Final Rank 2 3 1 1 3 2 

 
TABLE II 

SYSTEM IDENTIFICATION PERFORMANCE OF GA, DE AND LA USING LARGE SCALE BILINEAR MODEL 
Performance measures |Error| Number of function evaluations 

Methods GA (Rank) DE 
(Rank) 

LA 
 (Rank) 

GA 
(Rank) 

DE 
(Rank) 

LA 
 (Rank) 

Target 1×10-6 1×10-6 1×10-6 1×105 1×105 1×105 
Best  4.32631 (3) 0.270486 (1) 2.56987 (2) 100005 (1) 100020 (3) 100008 (2) 
Worst  7.52724 (3) 5.08779 (2) 3.54709 (1) 100005 (1) 100020 (2) 100021 (3) 
Mean  5.641038 (3) 1.676307 (1) 2.93411 (2) 100005 (1) 100020 (3) 100015.2 (2) 
Median 5.22757 (3) 0.966493 (1) 2.74654 (2) 100005 (1) 100020 (3) 100018 (2) 
Standard deviation 1.365057 (2) 1.935896 (3)  0.429375 (1) 0 (1) 0 (1) 6.685806 (3) 
Average Rank 2.8 1.6 1.6 1 2.4 2.4 
Final Rank 3 1 1 1 2 2 
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Fig. 6.  Increase in no. of kernel models to be optimized with respect M and 
N, which are no. of past inputs and outputs, respectively. No. of kernel 
models crosses 1000 , when M and N are greater than 30.   

 

 
Fig. 7.  Error absolute calculated between the actual system and the system 
identified by the algorithms. It depicts best and worst error minimization at 
every time sample along with the cumulative minimization capability 
throughout the 100 time samples.  

 

 
Fig. 8.  Output characteristics of bilinear systems identified by global 
optimization algorithms versus actual system and the corresponding input.  
 

However, many real world problems have high 
dimensional parameters to be optimized, which results in 
curse of dimensionality [51, 52]. Hence, in our second 
experiment, we investigate the system identification problem 
as a large scale optimization problem, as already referred as 
large scale system identification. The parameters M and N 
defines the number of kernel models to be optimized as 
illustrated in Fig. 6. A large scale system identification 
problem can be formulated when 31, >NM , because the 
number of kernel models to be optimized becomes greater 
than 1000. Conventional meta-heuristic search algorithms 
[53-55] have been reported as lagging to solve large scale 
optimization problems because of its degenerating 
performance when search space dimension increases [56]. 
Hence, we further subjected LA to solve this large scale 
system identification problem by setting M=31 and N = 32, 
so that 1023=K  . This means that the number of kernel 
models to be optimized is 1023 and so the length of the lion,

1023=L . For simple observation, five executions are made 
in this investigation and similar measures (as mentioned in 
Table I) are tabulated in Table II.  

A. Discussion 

LA is operated by various parameters such as max
rS , 

max
rL , etc, for better searching. As stated earlier, those 

parameters get values from the biological motivation, except
max
cg . In Section IV, max

cg was said as set through trial and 
error method. The illustration, which is given in Fig. 9, 
could better justify that 10 is the best fit value for c, when 

experimenting on standard bilinear model with max
cg varied 

between 1 to 25. Coming to the experimental investigation, 
Table I demonstrates that LA dominates over the other two 
algorithms in terms of error minimization. However, number 
of function evaluations carried out by LA is more than GA, 
but less than DE. Please note that the ranks are based on five 
measures such best, worst, mean and median error 
convergences and the standard deviation of convergences in 
the 50 test executions. An illustration for error deviation is 
given in Fig. 7 to depict the absolute error between the 
actual system and identified system at every time sample. 
Least error point marked here should not be confused with 
the best error value (0.00251) mentioned in Table I, because 
values in Table I are the average of error absolute obtained 
at all the time samples (here, 100 samples).  The system 
characteristics is plotted against the input and system 
identified by the algorithms along with the actual system in 
Fig. 8. These two illustrations construe the nature of the 
algorithms on accomplishing error minimization.  

From the summary of Table II, we can say that GA fails to 
minimize the error in all the cases (best, worst, mean and 
median performances). LA and DE compete equally if we 
observe LA domination in consistent error minimization and 
relatively less worst convergence, whereas DE accomplished 
best convergence among the five executions, average and 
median error accomplishment. However, DE is found to be 
the last in minimizing the error consistently. The eventual 
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ranking system based on the average ranks reveals LA and 
DE are equivalent to each other, but better than GA. On the 
other hand, GA consumes relatively less number of function 
evaluations, whereas LA and DE are equivalent to each 
other. Nevertheless, LA is not constant on evaluating fitness 

functions.  As a performance remark based on only mean 
and median of Table I and Table II, LA is found to be first 
and second dominating algorithm for system identification 
using standard and large scale bilinear model, respectively.

 

 
Fig. 9. Impact of max

cg  on LA performance 
 

VI. CONCLUSION AND FUTURE WORK 
We have introduced LA for solving nonlinear system 

identification problem for which Bilinear series model was 
used. Experiments were carried out to estimate the behaviour 
model of a nonlinear rationale benchmark digital system. In 
the first case, standard bilinear model was used in which LA 
dominated over the standard GA and DE. In the second case, 
large scale bilinear model was used to test the algorithms in 
which LA outperformed GA and proved as equivalent to 
DE. The obtained results are encouraging, if the depth of 
experimentation is not considered. Hence, the future work 
has to be conducted with wide experimental study in terms 
of large scale problems along with systematic comparisons. 
Further, we have planned to extend the work for other 
nonlinear models such as volterra series, cognitive systems, 
etc.  
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