
TURAN: Evolving Non-Deterministic Players
For The Iterated Prisoner’s Dilemma

M. Gaudesi, E. Piccolo, G. Squillero
DAUIN, Politecnico di Torino

Torino, Italy
Email: {marco.gaudesi,elio.piccolo,giovanni.squillero}@polito.it

A. Tonda
UMR 782 GMPA, INRA
Thiverval-Grignon, France

Email: alberto.tonda@grignon.inra.fr

Abstract—The iterated prisoner’s dilemma is a widely known
model in game theory, fundamental to many theories of coop-
eration and trust among self-interested beings. There are many
works in literature about developing efficient strategies for this
problem, both inside and outside the machine learning commu-
nity. This paper shift the focus from finding a “good strategy”
in absolute terms, to dynamically adapting and optimizing the
strategy against the current opponent. Turan evolves competitive
non-deterministic models of the current opponent, and exploit
them to predict its moves and maximize the payoff as the game
develops. Experimental results show that the proposed approach
is able to obtain good performances against different kind of
opponent, whether their strategies can or cannot be implemented
as finite state machines.

I. INTRODUCTION

The prisoner’s dilemma is a well-known game-theory
model, describing a simple situation that offers different re-
wards for a selfless and a selfish behavior, and where the
outcome is determined by both choices. It was originally
conceived by Merrill Flood and Melvin Dresher in 1950 as
part of the RAND Corporation1 investigations into game theory
and its possible applications to global nuclear strategy [1]. A
few years later, in order to make the idea more accessible to
psychologists, Albert Tucker depicted two criminals arrested
for an offense and placed in separate isolation cells. Each
villain could opt to cooperate with his accomplice by negating
any involvement in the crime, or betray the (former) partner
by confessing to the police [2], hence the name.

Intuitively, and disregarding moral considerations, in a
single turn the more convenient behavior is always the selfish
one. If one player is selfless, the most profitable action for
the other one is to exploit the good faith being selfish. On
the other hand, if one player is selfish, the best action for the
opponent is, again, being selfish too, minimizing the damage.
Hence, the situation has no strategic interest.

In the iterated prisoner’s dilemma (IPD), however, the
two players compete for an unknown, potentially infinite,
number of rounds, with a memory of the previous exchanges.
Noticeably, the above defection strategy fails badly to predict
the behavior of human players, leaving the field open to many
possibly viable alternatives. In particular, Aumann showed
that rational players interacting for indefinitely long games
can sustain a fully cooperative outcome [3]. While extremely
simple, the IPD is used in several fields to describe cooperation

1Research ANd Development Corporation, a nonprofit global policy think
tank formed to offer research and analysis to the United States armed forces

and trust, and research on the topic is still thriving, with
important contributions regularly appearing in literature.

In 1979, Axelrod organized the first important IPD’s tour-
nament, soliciting strategies from game theorists who had
published in the field [4]. The 14 entries were competed
along with a fifteenth one which cooperates or defects with
equal probability. Each strategy was played against all others
over a sequence of 200 moves. The winner of the tournament
was submitted by Anatol Rapoport, a Russian-born American
mathematical psychologist. His strategy was named Tit for Tat:
cooperate on the first move, and then mimic whatever the other
player did on the previous move. In a second tournament,
Axelrod collected 62 entries and, again, the winner was Tit for
Tat. Indeed, the tit-for-tat strategy is robust because it never
defects first and is never taken advantage of for more than one
iteration at a time.

Since then, new tournaments have been held regularly, with
sometimes counter-intuitive or baffling results. For example, in
2004 the Southampton School of Electronics and Computer
Science gained the first three positions by sending in the
tournament over 60 strategies that were able to recognize each
other with an initial 10-move handshake and then collude,
raising the score of selected members of their own team while
lowering the score of other players 2.

Evolutionary algorithms (EAs) have been employed to
create competitive players since Axelrod’s initial experiments
[5]. A comprehensive survey of recent attempts to find effi-
cient strategies is reported in [6]. Fogel [7] uses evolution-
ary programming to investigate the conditions that promote
cooperative behavior. Franken and Engelbrecht [8] present
a particle swarm optimization technique to evolve competi-
tive strategies. Gohneim et al. used evolutionary computation
to efficiently allocate memory in one-against-many strategy
games [9]. Finally, in [10], an evolutionary algorithm able
to build FSMs is used to adaptively model opponents as the
game develops, eventually using the best model to optimize its
moves. While effective, this approach performs quite poorly
against adversaries that cannot be modeled by FSMs.

In this paper, a different approach to evolve players for
the iterated prisoner’s dilemma is presented: an evolutionary
algorithm is used to model and predict the opponent’s behavior,
while a simple brute-force algorithm select the best counter-
play. The evolutionary framework encodes strategies as non-

2University of Southampton team wins Prisoner’s Dilemma competition
http://www.southampton.ac.uk/mediacentre/news/2004/oct/04 151.shtml

21

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

deterministic finite automata, and evaluates them first on estab-
lished strategies in literature, and then on their predictive capa-
bility with regards to the opponent’s history of moves, building
an internal model of the adversary’s behavior that is at the same
time competitive, coherent, and compact. Experimental results
show that the proposed methodology is able to outperform
deterministic and non-deterministic strategies, eventually using
the best models to predict and counter opponent’s moves.

The rest of the paper is organized as follows: section II
provides the necessary concepts to introduce the scope of the
work. Section III details the proposed approach, while section
IV presents the experimental evaluation. Finally, section V
summarizes the conclusions of the work.

II. BACKGROUND

A. Formal definitions

The prisoner’s dilemma is a nonzero-sum game for two
players. The term nonzero-sum indicates that whatever benefit
accrues to one player does not necessarily imply a similar
penalty imposed on the other player. The prisoner’s dilemma
can also be defined as non-cooperative, to indicate that no
communication is allowed between the players, apart from
game actions. Nevertheless, analysis of cooperation and emerg-
ing cooperative behaviors are the typical objects of research
performed on the model.

In its base form, the game describes a situation faced by
two players where there are only two possible behaviors: the
first can be labeled as selfless and the other selfish. If both
players choose the former action, they can earn a high reward;
on the other side, if both act selfishly, they will get only a low
reward. But, if one is selfish and the other selfless, the first one
obtains a very high reward and the second endures a penalty
(very low reward, or no reward at all).

Let R be the payoff for a mutual selfless behavior (reward),
and P the payoff if both act selfishly (punishment). When
only one player acts selfishly, its payoff is denoted with T
(temptation), and the payoff of its opponent with S (sucker).
In order to make a stable cooperation preferable to an alternate
series of selfish and selfless moves, reward is greater than the
average of temptation and sucker. Thus, the requirement of the
puzzle can be formalized as:

T > R > P > S (1)

2 ⋅R > S + T (2)

Since in the Tucker’s formulation the final goal is min-
imizing a prison sentence instead of maximizing a reward,
equations (1) and (2) are reversed in some textbooks, but the
rationale is the same.

B. Non-deterministic finite automata

The first attempts to evolve strategies, back to the early
1980s, encoded individuals as simple bit vectors [11]. Bit
strings have also been used for neural networks [8]. More
recent solutions include lookup tables and functions generated
by Genetic Programming [12]. However, finite state machines
(FSMs) quickly became one of the most common ways to

A Z

B

x

y

y

x y

A {B,Z} {A}

B {Z} {B,Z}

Z ∅ ∅

Fig. 1. Sample non-deterministic finite automaton N =
({A,B,Z}, {x, y},Δ, A, {Z}). The transition relation Δ is defined
by the state transition table reported in the figure. Since both Δ(A, x) and
Δ(B, y) have more than one state, N is non-deterministic.

represent strategies [13], since they can behave like complex
Markov models.

More precisely, most approaches employ Moore machines,
that is, FSMs whose output value are determined only by the
current state and not by the value of the inputs. A few works
utilize FSMs where the output is a function of the current
state and of the input, called Mealy machines. Indeed, Moore
and Mealy machines are equivalent: it is trivial to translate the
former in the latter, and it is always possible to translate the
latter in the former by adding new states.

Indeed, while it is easy to define a player for the IPD using
an FSM, it must be noted that doing so it is not always possible.
Non-deterministic strategies that include random behaviors
cannot be represented as FSMs, because the output is not a
function of the input. Moreover, deterministic strategies that
include counters or variables could require too many states to
be modeled with FSMs in practice.

Many recent developments fall in these categories. For
instance, Press and Dyson [14] showed the unexpected exis-
tence of ultimatum strategies, called “zero-determinant” (ZD).
Such strategies were later proved by Adami and Hintze to be
evolutionary unstable [15]; and recently, in [16], Stewart and
Plotkin demonstrate that a subset of the latter strategies, called
“generous”, is stable in large populations. All these strategies
contain random moves and cannot therefore be modeled using
a FSM.

This paper resorts to an alternative representation, called
non-deterministic finite automaton (NFA), or non-deterministic
finite state machine. In automata theory, an NFA is a FSM
that (i) does not necessarily require input symbols for state
transitions and/or (ii) is capable of transitioning to zero or two
or more states for a given start state and input symbol [17]. In
a traditional FSM, all transitions are uniquely determined, and
an input symbol is required for all state transitions. Although
NFAs and FSMs have distinct definitions, all NFAs can be
translated to equivalent DFAs using the subset construction
algorithm [18], i.e., constructed DFAs and their corresponding
NFAs recognize the same formal language. An example of a
NFA is reported in Figure 1.

Formally, a NFA N is represented by a 5-tuple
(Q,Σ,Δ, q0, F), where

∙ Q is a finite set of states;

22

∙ Σ is a finite set of input symbols;

∙ Δ is a transition relation so that Δ : Q×Σ→ P (Q);

∙ q0 ∈ Q is the initial (or start) state;

∙ F ⊆ Q is a set of of accepting (or final) states.

P (Q) denotes the power set of Q, that is, the set of all
subsets in Q, including the empty set and Q itself.

C. Established strategies

A considerable number of different strategies for the IPD
have been developed, intended as serious competitors or
merely as corner cases that a candidate player should be able to
deal with efficiently. What follows is a partial list of strategies
that are of relevance for the present work:

TFT (Tit for Tat) maybe one of the most famous
strategies, starts by cooperating and then copies
the last move of the opponent.

CN (Crazy Nut) plays completely random.
TFT+ (Super Tit for Tat) after the first move that is com-

pletely random, replicates the opponent’s previous
action.

TFT- (Unreliable Tit for Tat) replicates the opponent’s
previous action with probability p = 0.9, other-
wise plays the opposite move.

2TFT (Two Tits For Tat) cooperates unless the opponent
defects. To retort, it defects twice. Then, if the
opponent cooperated, it starts cooperating again.

TF2T (Tit For Two Tats) cooperates until the opponent
chooses two consecutive defections. At this point,
it defects and keeps on defecting until the oppo-
nent cooperates two times in a row. Then it starts
cooperating again, and so on.

5TM (Five is Too Much), similarly to Tit for tat, if the
opponent defects the player takes a revenge in the
next turn. However, when the opponent cooperates
five times in a row, it defects twice.

EXT2 (Extort2) is a “Zero-Determinant” strategy: it im-
poses a linear relationship A-P = 2(B-P), where
A and B are respectively the payoff of this player
and of his opponent, between the scores of the two
player. This formula guarantees to Extort2 twice
the share of payoffs above P, compared to those
received by the opponent.

FS (Fair Strategy) defects and cooperates randomly,
using a probability equal to the frequency of
defection and cooperation moves played by the
opponent.

FRT3 (Fortress3) is a “Group” strategy. It tries to rec-
ognize the opponent by playing the sequence
DDC. If the opponent plays the same sequence, it
cooperates until the opponent defects. Otherwise,
if it doesn’t recognize the opponent as a friend, it
defects until the opponent defects on continuous
two moves, then cooperates on the next.

FRT4 (Fortress4) is similar to Fortress3, but the hand-
shake is a DDDC sequence and, if the opponent
is not recognized, it defects until the opponent
defects for three moves, then cooperates on the
next.

P (Pavlov) starts with a cooperative move. Then, the
player repeats the last action if it was profitable,
i.e., if it brought an advantage over the opponent.
Otherwise, it changes actions.

RL4 (PseudoRL[4]) tries to estimate the payoff for
sequences of 4 moves using an algorithm similar
to reinforcement learning, then plays randomly
using the values as a probability.

ZD’s (Zero Determinants) base their next choice on its
payoff in the last round. The choice to cooperate
or defect is made with a certain probability for
each of the four possible outcomes; in particular,
we will use ZDGTFT2 extortion and ZDGTFT2
fixed, see [16] for details.

III. PROPOSED APPROACH

Building on the approach published in [10], a novel evolu-
tionary player named Turan is proposed. It internally encodes
candidate models as Moore NFAs, and tests their behavior
first by having them compete with a small set of sparring
mates; then by comparing the output produced by the model
against the previous moves of its current adversary; and finally,
a parsimony metric is used to favor NFAs with as few isolated
states as possible. The use of NFAs enable to overcome the
main problems of [10], that is its inability to cope with
strategies that cannot be modeled as FSM.

At each iteration, the best individual in the population is
used as a model of the opponent’s behavior in order to plan
ahead, predicting its next N moves and computing the set of
counter-moves that gives the best overall payoff. This parame-
ter is listed as Planning ahead in Table I. Ultimately, the first
move of the computed sequence is sent to the opponent. A
scheme summarizing the work flow of Turan is presented in
Figure 2.

A. Individual description

Individuals in Turan are Moore NFAs that all use the
same set of input symbols {c, d} (cooperate, defect), where
each symbol represents a move performed by the opponent
in a previous game. The set of final states F can be empty,
depending on the configuration of each NFA, and is not set a
priori. Thus, each individual i is fully described by a set of
states Qi, each one associated with an output Oq ∈ {c, d},
an initial state q0 and a transition relation Δi, internally
represented as a list of possible transitions. When two or
more transitions Δ1, ...,Δn lead to different states, starting
from the same state q with the same symbol �, for simplicity
the probability of each transition is set to the same value,
P (Δ1) = P (Δ2) = ... = P (Δn).

B. Initial population

The initial population is created randomly, following a
procedure that always produces valid individuals, that is,
Moore NFAs with two outgoing arcs for each state, one for
input c (cooperate), one for input d (defect). First, the number
of states is set, following a stochastic distribution with average
a and standard deviation s; then, one deterministic transitions
for each input is added to each state. Finally, if every state of
the NFA is reachable, the procedure ends; otherwise, all arcs

23

Next

move

Evolutionary

Core
Fitness #1

(Competitiveness)

Fitness #2

(Coherence)

Fitness #3

(Compactness)

Best Model

Population

Find best payoff

over next N moves

Sparring

Mates

Opponents’

Moves

Unvisited

States

Fig. 2. Scheme of the proposed approach. The first fitness function is
computed by having each individual compete against a small set of established
strategies taken from literature. The second fitness function evaluates the
ability of each candidate model to predict the behavior of the current opponent.
The third fitness function exploits information gathered during the computation
of the first two to penalize NFAs with unvisited states. At the end of each
population evaluation, the best individual is used to predict the next N moves
of the opponent and a corresponding sequence of N moves is generated to
maximize Turan’s payoff. Finally, the first move of the sequence is sent to the
opponent and the loops restarts.

are deleted and replaced until a completely connected NFA is
produced. As a result of this procedure, all transitions in the
initial population are deterministic.

C. Individual reproduction

Individuals are selected for reproduction through a standard
binary tournament selection [19]. Turan employs several kinds
of mutations and a single recombination operator. Mutations’
probability of activation are self-adapted over the course of
a run: the probability of activating a specific mutation is
proportional to the number of individuals in the current popu-
lation sired by the very same operator. To avoid completely
excluding some operators, every time a mutation is to be
applied, a random number R in (0, 1) is generated: self-adapted
probabilities are used if R ≤ 0.75; otherwise, mutations are
chosen with a flat probability over all available operators.

More in particular, the mutations can:

a) Add a state: A new state with a random output
(cooperate, defect) is added to the NFA, and linked to an
existing state by modifying a random existing transition. Two
transitions, one for cooperate and one for defect, are then added
to the new state, and linked to two randomly selected states.

b) Remove a state: A randomly selected state is re-
moved from the NFA, along with all transitions starting from
it and going into it. The individual is the patched to ensure
correctness.

c) Add a non-deterministic transition: A transition with
input symbol � is added to a state that already features a
transition with the same input. If the former transition was
the only one with symbol �, a non-deterministic transition is

created; otherwise, the previously existing non-deterministic
transition can now bring the NFA to one more different state.

d) Remove a non-deterministic transition: A non-
deterministic transition with input symbol � is removed from
a state.

e) Change a transition: The ending state of a transition
is randomly changed to another.

f) Change an initial state: The initial state of the NFA
is randomly changed to another.

g) Add an initial state: Another initial state is added to
the NFA. Management of multiple initial states is described in
Subsection III-D.

h) Remove an initial state: An initial state of the NFA
is removed.

i) Change a state’s output: The output of a randomly
selected state is changed to the opposite ({c} becomes {d}
and viceversa).

Recombination operates by adding a NFA to another, thus
generating a single NFA with (at least) two initial states and
two branches that are not connected. The presence of multiple
initial states is taken into account during fitness evaluation,
described in Subsection III-D.

D. Fitness function

Three different fitness functions are employed to achieve
the objective of creating a competitive, coherent and compact
internal model of the opponent: the first function drives the
evolution towards competitive NFAs, able to deal with per-
forming opponents taken from literature; the second rewards
candidate models that most closely approximate the opponent’s
behavior; and the third penalizes individuals with unreachable
states. The fitness functions are evaluated in lexicographical
order, giving precedence to competitiveness over coherence
and compactness: thus, individual A is better than individual
B if its competitiveness score is better; it the competitiveness
score is the same, the two individuals are then compared on
coherence; and finally, if the coherence score is again the same,
the two are compared on compactness.

Every time an individual is matched against a particular
strategy, rules from Axelrod’s second IPD tournament are
used. The score for each player is the sum of the payoffs
obtained over 5 games, and after each move (that is, the
choice to cooperate or defect) the probability that the game
will continue is set to pc = 0.99654. In this way, strategies
cannot exploit regularities in games made of a fixed number
of moves. This choice is also coherent with recent software
developed specifically for running IPD tournaments [20].

1) Competitiveness: One of the assumption of the proposed
approach is that the opponent is actually competitive. Creating
a model of the adversary from scratch, considering only its
past moves, could lead the evolutionary algorithm to creating
overfitted NFAs with one state per move. Such a model would
have no predictive capability.

Since an opponent can be assumed to be quite competitive,
the first fitness function has the aim of favoring the emer-
gence of compact and competitive individuals. In particular,

24

A

B

C

E

F

D

Path 1

Path 2

Path 3

Fig. 3. Example of concurrent exploration of multiple paths in a NFA. Both
A and E are initial states, giving birth to Path 1 (arrows in bold black) and
Path 2 (arrows in bold grey). State D has a non-deterministic transition, so
all its possible destination states are explored, creating a new Path 3, that is
overlapped with Path 2 until state D.

each candidate model is matched against 5 sparring mates,
established strategies taken from literature. Since individuals
in the EA are non-deterministic and can feature multiple initial
states, multiple paths are explored at the same time and the
next move is randomly drawn from the set of outputs of all
current states. See Figure 3 for an example.

The 5 sparring mates are CN, TFT+, TFT-, TF2T and
2TFT (described in II-C). Different games are played against
each each sparring mate, the probability of continuing one of
these games after each move is 1/10 of the corresponding
probability for standard games, that is p = 0.099654.

2) Coherence: Each candidate NFA is compared against
the known history of moves performed by the current oppo-
nent, and rewarded accordingly, depending on the accuracy
of its predictions. Since individuals are non-deterministic and
can feature more than one initial state, multiple paths are
explored at the same time, and multiple sequences of output
are produced. The sequences are compared to the opponent’s
behavior, and if at least one of the sequences matches, the
NFA is considered coherent. For computational efficiency, the
simulation is not exact and does not take into account rejoining
paths. An example is portrayed in Figure 3.

The total number of paths is considered to strongly discour-
age non-deterministic models. Turan introduces non determin-
ism when strictly essential to model the opponent. Moreover,
to take into account the eventuality that the opponent is also
adapting its strategy, the coherence is weighted: being coherent
in the recent moves of the game is more important than being
coherent in the old ones.

3) Compactness: The visited states are marked during
the evaluation of the previous fitness functions, and NFAs
that present unvisited states are penalized, depending on the
number of unreached states. Moreover, a small penalty is added
considering the overall number of states.

TABLE I. PARAMETERS USED DURING THE EXPERIMENTAL
EVALUATION.

Parameter Value
Evolutionary algorithm

Population size 50
Offspring size 20

Replacement strategy � + �
Initial population

Initial population size 100
Initial states (average) 5

Initial states (non determinism) 0.2
Payoff

P (punishment) 1
R (reward) 3
S (sucker) 0

T (temptation) 5
Games

Planning ahead 10 moves
Number of games 3

Probability of continuing a game after each move 0.99654

E. Extinction

From preliminary runs, it becomes evident how attaining
coherence is the hardest task for the evolutionary process.
The population might be invaded by high-performing NFAs
with almost null representativeness of the current opponent.
In order to avoid this problem, if at the beginning of a
generation no individual has a coherence fitness value higher
than �coℎerence and there has been nstagnation generations with
no improvement of the best individual, an extinction procedure
is performed, taking inspiration from [21]. In particular, only
� individuals are preserved, while the rest of the population is
filled with randomly-generated NFAs.

IV. EXPERIMENTAL RESULTS

Turan is first matched against the well-known Tit for Tat,
with the objective to verify its opponent modeling capabilities.
Subsequently, to assess its efficiency, it is played against
several established strategies. During all experiments, the evo-
lutionary framework is configured with parameters reported in
Table I.

A. Modeling the TFT

In the first part of the experiments, Turan is matched
against the TFT. A single run of Turan is executed, spanning 3
different games, and the best individuals is visually inspected
at regular intervals. Figure 4 shows the progression, with four
individuals selected at pivotal points over the generations.

It is interesting to notice how Turan starts with an ex-
tremely complex, non-deterministic NFA that nevertheless
captures the TFT predisposition to cooperation: individual a’s
state 1 has output c and a loop that returns in the state if the
opponent cooperates. In a second phase, Turan oversimplifies
TFT’s behavior, with a minimal NFA (b) assimilable to an
AC. In a third phase the EA extendes its internal representa-
tion again, trying to model the outcome of defections, while
maintaining the good building block of continual cooperation
(state 1 in c). Finally, in the last part of the evolution, Turan
stably converges on the correct model (d).

B. Established strategies

In this second tranche of experiments, Turan is tested
against effective strategies, both deterministic and non-

25

(a) (b) (c) (d)

Fig. 4. Opponent’s model created by Turan over an evolutionary run against
TFT, from the first generations (left) to the end of the evolution (right). Here,
states with a single double circle have output cooperate, while states with a
single circle have output defect.

deterministic. It is interesting to notice that, while some of
them can be precisely modeled as NFAs, the behavior of
others can only be approximated to a NFA. A single run
of Turan is executed for each opponent, spanning 3 different
games. Results are summarized in Table II: since the number
of moves in each game may vary, the average points-per-move
is reported.

Against relatively simple strategies, such as Pavlov, 5TM
and CN, Turan is able to completely learn the opponent’s be-
havior during Game 1, subsequently maximizing its behavior.
Even with the TFT+, the EA is able to find the best solution
and steadily increase its payoff. Interestingly, Turan is also
able to quickly detect the handshake sequences of both FTR3
and FTR4, exploiting their internal models to quickly gain an
edge.

When dealing with simple adaptive strategies, such as
PseudoRL[4], the proposed approach is able to outperform the
adversaries from the beginning. The Fair Strategy proves to
be a more difficult opponent: after a close loss in Game 1,
Turan manages to win by a short margin in Game 2, only
to lose again in Game 3. Results against this strategy need
further analysis, in order to better understand the interactions
between the two adaptive opponents. ZDs and EXT2 are by
far the hardest matches: against extortion strategies, Turan is
able to slowly increase its total payoff, but three games are
not enough to overcome the opponents, albeit the proposed
approach comes close to the objective against EXT2.

V. CONCLUSIONS

This paper presents Turan, an evolutionary player for the
Iterated Prisoner’s Dilemma that is able to build an internal
model of its opponent as the game goes on, eventually exploit-
ing the model to predict the adversary and maximize its payoff.
Since internal models are Non-deterministic Finite Automata,
Turan is able to model non-deterministic strategies as well as
deterministic ones.

Preliminary experimental results show that the proposed
approach is able to correctly model a Tit-for-tat opponent over
the course of three games, and it performs well against several
established strategies, losing only against extortion and zero-
determinant adversaries.

A thorough analysis of new results and their implications
is currently under way, as well as the run of complete tourna-
ments using Oyun [20], where Turan can measure its overall
performance against other effective strategies.

REFERENCES

[1] E. N. Zalta and S. Abramsky, “Stanford encyclopedia of philosophy,”
2003.

[2] W. Poundstone and N. Metropolis, “Prisoner’s dilemma: John von
neumann, game theory, and the puzzle of the bomb,” Physics Today,
vol. 45, p. 73, 1992.

[3] R. J. Aumann, “Acceptable points in general cooperative n-person
games,” Contributions to the Theory of Games, vol. 4, pp. 287–324,
1959.

[4] R. Axelrod, “Effective choice in the prisoner’s dilemma,” Journal of
Conflict Resolution, vol. 24, no. 1, pp. 3–25, 1980.

[5] R. M. Axelrod, The complexity of cooperation: Agent-based models of
competition and collaboration. Princeton University Press, 1997.

[6] G. Kendall, X. Yao, and S. Y. Chong, The Iterated Prisoners’ Dilemma:
20 Years on. World Scientific Publishing Co., Inc., 2007.

[7] D. B. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,”
Evolutionary Computation, vol. 1, no. 1, pp. 77–97, 1993.

[8] N. Franken and A. Engelbrecht, “Particle swarm optimization ap-
proaches to coevolve strategies for the iterated prisoner’s dilemma,”
Evolutionary Computation, IEEE Transactions on, vol. 9, no. 6, pp.
562–579, 2005.

[9] A. Ghoneim, G. Greenwood, and H. Abbass, “Distributing cognitive
resources in one-against-many strategy games,” in Evolutionary Com-
putation (CEC), 2013 IEEE Congress on, June 2013, pp. 1387–1394.

[10] A. Uthor, “An article,” in A Conference, 2011.
[11] R. Axelrod and W. D. Hamilton, “The evolution of cooperation,”

Science, vol. 211, no. 4489, pp. 1390–1396, 1981.
[12] J. R. Koza, Genetic Programming: vol. 1, On the programming of

computers by means of natural selection. MIT press, 1992, vol. 1.
[13] A. Rubinstein, “Finite automata play the repeated prisoner’s dilemma,”

Journal of economic theory, vol. 39, no. 1, pp. 83–96, 1986.
[14] W. H. Press and F. J. Dyson, “Iterated prisoner’s dilemma contains

strategies that dominate any evolutionary opponent,” Proceedings of
the National Academy of Sciences, vol. 109, no. 26, pp. 10 409–10 413,
2012. [Online]. Available: http://www.pnas.org/content/109/26/10409.
abstract

[15] C. Adami and A. Hintze, “Evolutionary instability of zero-determinant
strategies demonstrates that winning is not everything,” Nature Com-
munications, vol. 4, p. Online, August 2013.

[16] A. J. Stewart and J. B. Plotkin, “From extortion to generosity,
evolution in the iterated prisoner’s dilemma,” Proceedings of
the National Academy of Sciences, 2013. [Online]. Available:
http://www.pnas.org/content/early/2013/08/28/1306246110.abstract

[17] M. O. Rabin and D. Scott, “Finite automata and their decision prob-
lems,” IBM journal of research and development, vol. 3, no. 2, pp.
114–125, 1959.

[18] J. C. Martin, Introduction to Languages and the Theory of Computation.
McGraw-Hill New York, 2003, vol. 2.

[19] A. Brindle, “Genetic algorithms for function optimization,” Ph.D.
dissertation, Edmonton: University of Alberta, Department of Computer
Science, 1981.

[20] C. H. Pence and L. Buchak, “Oyun: A new, free program for iterated
prisoner’s dilemma tournaments in the classroom,” Evolution: Educa-
tion and Outreach, vol. 5, no. 3, pp. 467–476, 2012.

26

TABLE II. RESULTS FOR TURAN AGAINST ESTABLISHED STRATEGIES. SINCE EACH GAME FEATURES A DIFFERENT NUMBER OF MOVES, THE AVERAGE
POINTS PER MOVE ARE REPORTED. THE COMPLEXITY IS THE NUMBER OF DIFFERENT STATES IN THE BEST NFA AT THE END OF THE EVOLUTIONARY

PROCESS.

Strategy Game 1 Game 2 Game 3 ComplexityTuran Opponent Turan Opponent Turan Opponent
5TM (Five is too much) 2.738 2.023 2.786 1.696 2.781 1.984 42
CN (Crazy Nut) 2.530 1.370 2.886 0.936 2.467 1.569 16
EXT2 (Extort2) 0.994 1.024 1.008 1.217 1.108 1.222 7
FS (Fair Strategy) 1.911 2.208 2.869 2.855 1.085 1.984 17
FRT3 (Fortress3) 2.946 2.619 2.950 2.825 2.765 2.307 46
FRT4 (Fortress4) 2.185 0.815 2.259 0.755 2.281 0.729 10
P (Pavlov) 2.333 1.917 2.504 1.655 2.608 1.644 18
RL4 (PseudoRL[4]) 4.738 0.095 4.933 0.017 4.739 0.065 7
TFT+ (Super Tit for Tat) 2.881 2.881 2.866 2.866 2.971 2.971 11
ZDGTFT2 extortion 0.994 1.024 1.047 1.228 1.072 1.578 9
ZDGTFT2 fixed 2.036 2.690 2.019 2.841 1.941 2.497 33

[21] G. Greewood, G. B. Fogel, and M. Ciobanu, “Emphasizing extinction in
evolutionary programming,” in Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, vol. 1. IEEE, 1999.

27

