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Abstract—In this work, a genetic algorithm was used to design
combinational logic circuits (CLCs), with the goal of minimizing
the number of logic elements in the circuit. A new coding for
circuits is proposed using a multiplexer (MUX) at the output of
the circuit. This MUX divides the truth table into two distinct
parts, with the evolution occurring in three sub-circuits connected
to the control input and the two data inputs of the MUX. The
methodology presented was tested with some benchmark circuits.
The results were compared with those obtained using traditional
design methods, as well as the results found in other articles,
which used different heuristics to design CLCs.

I. INTRODUCTION

Designing a combinational logic circuit (CLC) requires

considerable knowledge and human creativity [1], and can

be considered as a discrete optimization problem [2]. The

design of a CLC is based on the data from a truth table that

lists all possible combinations of input logic levels with the

corresponding output logic level. Given a certain truth table,

it is possible to identify the CLC that meets the conditions

provided by the truth table using traditional techniques and

metaheuristics [3]. Because the global optimum (the circuit

with the lowest costs) is unknown for most logic functions,

using metaheuristics is appropriate for designing CLCs [4].

Alba [2] points out that in the design of CLCs, the size

of the search space grows very rapidly as the number of

input variables to the circuit increases, and because all the

constraints imposed by the truth table must be satisfied, the

problem can be considered to have a large number of hard

equality constraints.

To design a CLC and obtain a reduced Boolean function,

the traditional techniques that are most used are the Karnaugh

map [5] and the Quine-McCluskey algorithm [6], [3], which

provide a CLC as a sum of products or product of sums. After

applying these methods, it is possible to use Boolean algebra

theorems to simplify the result. However, it is not obvious

which theorem must be applied to produce the simplest result,

since, depending on the sequence in which the theorems and

postulates are applied, more than one simplified form can be

obtained [2]. Therefore, there is no way to establish whether

the expression is in its simplest form, and as a result, this

simplification process becomes problematic. In addition, the

number of input variables increases [3], the algebraic manipu-

lation comes to depend entirely on the designers intuition due

to the fact that the final solutions are rarely unique [7].

The Karnaugh map is a graphical method for finding a CLC

corresponding to a truth table in a simple manner, but the

usefulness of the Karnaugh map is limited to a maximum of

six input variables [8]. Furthermore, different solutions can be

found. The Quine-McCluskey method is theoretically useful

for any number of variables, but as it is an exhaustive method,

it is used in practice for systems of only a few variables.

Sasao [9] implemented CLCs using only AND and XOR

gates. Another traditional way of designing CLCs is building

a network of MUXs through Shannon decomposition [10].

In the early 1990s, a new field of research arose called

Evolutionary Hardware. This represented a paradigm shift in

electronic circuit design [11] because it then became possible

to design a CLC autonomously. The evolutionary design

explores a much richer set of possibilities, and it is not limited

by the conventional knowledge of the designer [12]. Many

studies have been conducted on the design of CLCs using

genetic algorithms [7], [2], [13], genetic programming [14],

[15] particle swarm optimization (PSO) [3], [16] and ant

colony optimization (ACO) [17], [11].

The complexity of a CLC is related to the number of circuit

components, while a general measure of circuit optimization

is the total number of logic gates, regardless of their type

[2]. The main objective of this paper is to propose and test a

new coding method for the design of CLCs that minimises the

number of logic elements used. Experiments were conducted

on four benchmark problems, and their output quality was

compared with traditional techniques and results found in the

literature that used other heuristics.

The remainder of this paper is organized as follows: Sec-

tion II shows some heuristics used for the same benchmark

problems addressed here; Section III provides the details

of the encoding that was used and the algorithm that was
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implemented; Section IV shows the results and compares them

with the best results in the literature; and finally, in Section V

the conclusions and possible future work are presented.

II. RELATED WORK

Several bio-inspired algorithms have been proposed for

the design of CLCs [7]. Coello [1] implemented a genetic

algorithm GA with a two-dimensional matrix encoding to

represent the circuit. Each element of the matrix represents

a logical element (AND, NOT, OR, XOR and WIRE) with

its entries, as a result of which it is possible to represent

any CLC [1]. An important point of the presented encoding

was the use of an alphabet of cardinality n, where n refers to

the number of rows in the matrix, resulting in this GA being

named NGA. The cardinality n allowed the manipulation of

shorter chromosomal chains decreasing the complexity of the

coding. The GA that was implemented works in two phases; in

the beginning of the research, only the validity of the outputs

is considered, and the GA explores the search space. Once

a solution appears, the suitability is modified such that the

valid designs compensate for each included wire so that the

functionality of the CLC remains. In [18] Coello proposed a

multi-objective genetic algorithm (MGA) in which the outputs

of the circuit were considered as equality constraints to be

satisfied. In [3] a hybrid evolutionary algorithm called QEPSO

was proposed, which was based on the quantum-inspired

evolutionary algorithm (QEA) [19], and the technique of

particle swarm optimization (PSO). This implementation was

efficient and produced circuits that were equivalent to those

obtained by the reference algorithm MGA.

ACO has also been applied to the design of CLC, and

some examples are shown in [17] in which the results of

ACO outperformed the binary GA. Mostafa [11] commented

that in ACO, in addition to the agents cooperating among

themselves (ants), characteristics of other heuristics can also

be easily incorporated to improve the solution [11]. Moreover,

he also proposed a modified ACO that has been compared to

benchmark problems.

Coello [2] conducted a comparative study of serial and

parallel heuristics used to design CLCs and found that hy-

bridization of a GA with a local search algorithm (simulated

annealing) is beneficial and that the parallelization not only

increases speed but improves the solutions that are found. The

hybrid algorithm that was implemented was called GASA2.

Genetic Programming (GP) was also applied to the design

of CLCs [14]. Karakatic [14] designed benchmark circuits and

compared them with the best results of the NGA and the MGA

and found that, unlike GA, GP avoids premature convergence.

In addition to the logic gates, a CLC can also be designed

using 2x1 MUXs that have two data inputs and a control input.

Since any Boolean function can be implemented using a MUX,

this is considered to be a universal module [20], One form

of implementing a Boolean function using only multiplexers

is through Shannon decomposition [21]. GP was applied to

synthesize underlying logical functions using only MUXs [4].

Traditional design techniques do not use MUXs and logic gates

simultaneously, but Miller [12] designed arithmetic CLCs

using MUXs and logic gates with GA.

III. DESCRIPTION OF CIRCUIT’S APPROACH AND

REPRESENTATION

The design of CLCs is highly sensitive to the coding that is

used, as well as to the degree of interconnectivity between the

gates[2]. The determination of an appropriate geometry for a

Boolean problem is not trivial. A large geometry increases the

search space unnecessarily, while a small geometry might not

be sufficient to solve the problem [7]. A structure of variable

size, as is the case with a traditional GP, is interesting, but

it can generate swelling, i.e. the uncontrolled growth of the

tree. A good solution has been adopted by Coello [7], who

proposed a matrix wherein the number of columns and rows

can be increased gradually while a feasible circuit is not found.

Various published works addressing the design of CLCs

through evolutionary computing [2], [12], [18], [13], ACO

[11], [17], PSO [3], [16] and hybrid algorithms [3] use a two-

dimensional matrix to represent a CLC.

As already pointed out by Alba [2], the search space grows

exponentially with the number of inputs of the circuit which

requires the use of heuristics. As a result, the search for more

efficient encodings is justified.

This paper proposes a new coding method for CLCs. Instead

of using only one matrix, at the output of the matrix, we have

connected a MUX that provides the output of the circuit. Thus,

the system consists of three sub-circuits and a MUX, as shown

in fig. 1. The matrix provides three sub-circuits, identified as

circuits 1, 2, and 3, which in turn are connected to the two data

inputs and the MUX control input, respectively. The choice of

a MUX coupled to the output of the circuit allows, through

the control inlet (circuit 3), the truth table to be split into

two independent parts: when the output of the control circuit

is one, the data input of MUX I1 is activated, and circuit 1

is selected; when the output of the control circuit is zero, the

data input I0 of the MUX is selected, and circuit 2 is activated.

Thus, circuit 1 only has to satisfy some restrictions of the truth

table, and circuit 2 will have to attend to the other constraints.

The choice of those constraints will be attended to by circuit

1, and circuit 2 is controlled by circuit 3.

In the optimal design of circuits, one would like to minimize

the total cost of fabrication. However, due to the practical

difficulties in measuring all costs involved, several simplified

design metrics have been adopted in the literature. One idea

is to minimize the total number of transistors employed

[22]. Perhaps more commonly, the total number of logical

gates is adopted [2]. To replicate the same unit as much as

possible, even leading to the use of more gates, is another

possibility [23]. Yet another metric is to minimize the number

of components making no distinction between a simple gate

and a MUX [12], [24], [25]. This last approach will be adopted

here. An example of a more detailed representation of the

proposed coding is shown in fig. 2, in which a 3 x 3 matrix

represents the three sub-circuits, and each matrix element

(gene) represents a component (AND, OR, XOR, NOT and
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Control
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Circuit 1

Circuit 3

Circuit 2

MUX

Fig. 1. Representation of circuit composed of three sub-circuits connected to
MUX. Output of circuit is called F

Fig. 2. Detailed representation of circuit: matrix with three subcircuits
connected to MUX

WIRE) with their respective entries. The elements in the first

column have the Boolean variables of the truth table (A, B, C

and D) as inputs. In the second and third columns, the elements

can have Boolean variables as inputs and the outputs of the

gates of the previous levels (G1, G2, etc.), with one of the

inputs of each gate having to be connected to an output of

the previous level that was previously not connected. When a

particular gene represents a NOT gate (it has only one input)

or a WIRE, the input of the gate that is not connected to

the previous level will be disregarded, thus guaranteeing that

there will be no discontinuity in the circuit and that all of the

individuals that are generated will be feasible. The inputs of

the MUX (G7, G8, G9) are fixed, and the function of the MUX

is to select, through the control, which output of sub-circuit

G8 or G9 will be connected at the output of F.

IV. CASE STUDY

Four benchmark examples, taken from [14], [2], [17], [18],

[3], were chosen to verify the effectiveness of the adopted

encoding. All the chosen examples have four input variables

and one output.

The representation of the circuit is done by means of a

fixed 3 x 3 matrix connected to a MUX as shown in fig.

2. A steady-state mutation-only GA with a population of 50

individuals evolving for 80,000 generations was implemented

in MATLAB1. Within about 5 runs, it was observed that the

best individuals obtained are competitive with those found in

the literature.

1http://www.mathworks.com

The computational experiments were performed in a note-

book with an AMD A6-3400M processor, 4GB RAM, and

Windows 7 Home Premium 64 bits. The elapsed time of each

independent run was around 20 minutes. Here, the objective is

to obtain the best design (the one with the minimum number

of logic elements) and, thus, no analysis is presented with

respect to the computational cost.

For each experiment, the truth table is constructed consid-

ering the control input of the MUX (output of circuit 3) and

its data inputs, I0 and I1 (outputs of circuits 1 and 2, respec-

tively). The output of the circuit is selected by the control of

the MUX, and corresponds to outputs of the sub-circuits 1

or 2. The unused sub-circuits are considered as “don’t care”

(-). For all experiments, the truth table, an illustration of the

best obtained circuit by the proposed algorithm, and a table

comparing the solution found with those from the literature are

presented. Each truth table contains: the minterm (the decimal

representation of the binary string of the inputs variables), the

inputs (A, B, C, and D), the control of the MUX, the data

inputs of the MUX (I0 and I1), and the output of the circuit.

Notice that the truth tables include not only the input and

output variables, but also information regarding the control

and data inputs of the MUX.

A. Example I

The first example was used in [14], [2], [17], [18]. The truth

table is presented in Table I and the best result obtained by

the proposed algorithm is presented in fig. 3. One can see in

Table II that the best circuit found by the proposed technique

is composed by 5 logic gates and 1 MUX, totalizing 6 logic

elements. Also, the same table shows that the best circuit from

the literature is composed by 7 logic elements.

TABLE I
TRUTH TABLE FOR THE CIRCUIT OF THE EXAMPLE 1

Minterm A B C D Control I0 I1 F

0 0 0 0 0 0 1 - 1
1 0 0 0 1 0 1 - 1
2 0 0 1 0 1 - 0 0
3 0 0 1 1 1 - 1 1

4 0 1 0 0 0 0 - 0
5 0 1 0 1 0 0 - 0
6 0 1 1 0 1 - 1 1
7 0 1 1 1 1 - 1 1

8 1 0 0 0 0 1 - 1
9 1 0 0 1 0 0 - 0
10 1 0 1 0 1 - 1 1
11 1 0 1 1 1 - 0 0

12 1 1 0 0 0 0 - 0
13 1 1 0 1 0 1 - 1
14 1 1 1 0 1 - 0 0
15 1 1 1 1 1 - 0 0
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Fig. 3. Best circuit found by the proposed algorithm for example 1

TABLE II
COMPARISON OF BEST RESULTS OF EXAMPLE 1 FOUND IN THE

LITERATURE USING DIFFERENT HEURISTICS

Algorithm Size

Proposed Algorithm (AGMUX) 5 gates , 1MUX

Genetic Programming [14] 7 gates

Hybrid (GASA2) [2]
Genetic Algorithm and Simulated Annealing 7 gates

Ant System [17] 7 gates

Genetic Algorithm (MGA) [18] 8 gates

Genetic Algorithm (NGA) [18] 10 gates

Human Designer 1 [18] 11 gates

Human Designer 2 [18] 12 gates

SASAO [9]
Technique based ANDs, XOR 12 gates

B. Example 2

[17], [18] used this second example in their computational

experiments. The truth table is presented in Table III and the

best result obtained by the proposed algorithm is presented in

fig. 4. It is shown in Table IV that the best circuit found by

the proposed technique is composed by 4 logic gates and 1

MUX, totalizing 5 logic elements. Notice that the best result

from the literature is composed by 7 logic elements.

TABLE III
TRUTH TABLE FOR THE CIRCUIT OF THE EXAMPLE 2

Minterm A B C D Control I0 I1 F

0 0 0 0 0 0 1 - 1
1 0 0 0 1 1 - 0 0
2 0 0 1 0 0 0 - 0
3 0 0 1 1 1 - 0 0

4 0 1 0 0 0 1 - 1
5 0 1 0 1 1 - 1 1
6 0 1 1 0 0 1 - 1
7 0 1 1 1 1 - 1 1

8 1 0 0 0 1 - 1 1
9 1 0 0 1 0 1 - 1

10 1 0 1 0 1 - 1 1
11 1 0 1 1 0 0 - 0

12 1 1 0 0 1 - 0 0
13 1 1 0 1 0 1 - 1
14 1 1 1 0 1 - 0 0
15 1 1 1 1 0 1 - 1

1
I

0
I

Control

F

B

C

A D

A

B

Fig. 4. Best circuit found by the proposed algorithm for example 2

TABLE IV
COMPARISON OF BEST RESULTS OF EXAMPLE 2 FOUND IN THE

LITERATURE USING DIFFERENT HEURISTICS

Algorithm Size

Proposed Algorithm (AGMUX) 4 gates , 1MUX

Ant System [17] 7 gates

Genetic Algorithm (MGA) [18] 7 gates

Genetic Algorithm (NGA) [18] 7 gates

Human Designer 1 [18] 9 gates

Human Designer 2 [18] 10 gates

C. Example 3

The third example was used in [3]. The truth table is

displayed in Table V, and the best result obtained by the

proposed algorithm is presented in fig. 5. One can see in

Table VI that the best circuit found by the proposed technique

is composed by 3 logic gates and 1 MUX; that is, 4 logic

elements. Also, the same table shows that the best circuit from

the literature is composed by 5 logic elements.
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TABLE V
TRUTH TABLE FOR THE CIRCUIT OF THE EXAMPLE 3

Minterm A B C D Control I0 I1 F

0 0 0 0 0 0 0 - 0
1 0 0 0 1 0 0 - 0
2 0 0 1 0 0 1 - 1
3 0 0 1 1 0 1 - 1

4 0 1 0 0 1 - 0 0
5 0 1 0 1 1 - 0 0
6 0 1 1 0 1 - 0 0
7 0 1 1 1 1 - 0 0

8 1 0 0 0 0 1 - 1
9 1 0 0 1 1 - 1 1

10 1 0 1 0 0 0 - 0
11 1 0 1 1 1 - 1 1

12 1 1 0 0 1 - 1 1
13 1 1 0 1 0 1 - 1
14 1 1 1 0 1 - 1 1
15 1 1 1 1 0 0 - 0

1
I

0
I

Control

F

A

A

C

A

B

D

Fig. 5. Best circuit found by the proposed algorithm for example 3

TABLE VI
COMPARISON OF BEST RESULTS OF EXAMPLE 3 FOUND IN THE

LITERATURE USING DIFFERENT HEURISTICS

Algorithm Size

Proposed Algorithm (AGMUX) 3 gates , 1MUX

Hybrid (QEPSO) [3]
Quantum Evolution and Particle Swarm 5 gates

Particle Swarm(PSO) [3] 5 gates

Genetic Algorithm (MGA) [3] 5 gates

D. Example 4

This fourth example was also solved in [3]. The truth table

is presented in Table VII, and the best result obtained by

the proposed algorithm is illustrated in fig. 6. It is shown

in Table VIII that the best circuit found by the proposed

technique is composed by 4 logic gates and 1 MUX, totalizing

5 logic elements. Notice that the best result from the literature

is composed by 6 logic elements.

TABLE VII
TRUTH TABLE FOR THE CIRCUIT OF THE EXAMPLE 4

Minterm A B C D Control I0 I1 F

0 0 0 0 0 0 1 - 1
1 0 0 0 1 0 1 - 1
2 0 0 1 0 1 - 0 0
3 0 0 1 1 1 - 0 0

4 0 1 0 0 0 1 - 1
5 0 1 0 1 0 1 - 1
6 0 1 1 0 1 - 1 1
7 0 1 1 1 1 - 1 1

8 1 0 0 0 0 0 - 0
9 1 0 0 1 0 0 - 0
10 1 0 1 0 1 - 1 1
11 1 0 1 1 1 - 0 0

12 1 1 0 0 0 0 - 0
13 1 1 0 1 0 0 - 0
14 1 1 1 0 1 - 0 0
15 1 1 1 1 1 - 1 1

1
I

0
I

Control

F

A

B

C

A

A

D

Fig. 6. Best circuit found by the proposed algorithm for example 4

TABLE VIII
COMPARISON OF BEST RESULTS OF EXAMPLE 4 FOUND IN THE

LITERATURE USING DIFFERENT HEURISTICS

Algorithm Size

Proposed Algorithm (AGMUX) 4 gates , 1MUX

Hybrid (QEPSO) [3]
Quantum Evolution and Particle Swarm 6 gates

Particle Swarm(PSO) [3] 6 gates

Human Designer [3] 12 gates

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new encoding for automatic design

of combinational logic circuits (CLCs). The inclusion of a

multiplexer allowed the expansion of the search space in a

targeted manner because two individuals with a low fitness due

to not meeting all the restrictions imposed by the truth table

can complement each other according to the MUX control
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and have a good fitness. Therefore, this encoding allows for a

relaxation in the restrictions imposed by the truth table. The

results obtained using the proposed encoding are better than

those from the literature, when the number of logic elements

is to be minimized.

An approach to improving these results is to use the

proposed encoding within other optimization techniques that

have provided good results in the design of CLCs, such as

genetic programming and ant colony optimization algorithms.
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