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Abstract—This paper considers the general problem of func-
tion estimation via Genetic Programming (GP). Data analysts
typically select a model from a population of models, and then
proceed as if the selected model had generated the data. This
approach ignores the uncertainty in model selection, leading to
over-confident inferences and lack of generalisation.

We adopt a coherent method for accounting for this uncer-
tainty through a weighted averaging of all models competing in
a population of GP. It is a principled statistical method for post-
processing a population of programs into an ensemble, which
is based on Bayesian Model Averaging (BMA).

Under two different formulations of BMA, the predictive
probability density function (PDF) of a response variable is
a weighted average of PDFs centered around the individual
predictions of component models that take the form of either
standalone programs or ensembles of programs. The weights
are equal to the posterior probabilities of the models generating
the predictions, and reflect the models’ skill on the training
dataset.

The method was applied to a number of synthetic symbolic
regression problems, and results demonstrate that it generalises
better than standard methods for model selection, as well as
methods for ensemble construction in GP.

I. INTRODUCTION

In the general function estimation problem, one is given
a set of training examples {(xi, yi)}, i = {1, . . . , N}, where
y ∈ R is the response variable and x ∈ Rd is a vector
of explanatory variables. The goal is to find a function
F ∗(x) that maps x to y, such that over the joint distribution
P (x, y) the expected value of some specified loss function
L(y, F (x)) is minimised:

F ∗(x) = arg min
F (x)

Ex,y[L(y, F (x))] (1)

The application of Genetic Programming (GP) [1] to a
regression problem proceeds with the evolution of a popula-
tion of candidate solutions using typically the squared error
loss L(y, F (x)) = (y−F (x))2, and returns a single model 1

at the end of the evolutionary run. In the end result of this
training-error-guided learning process there exists an inherent
source of uncertainty as to which model to select in light of
a finite set of training data, since the ultimate objective is
that of generalisation and not that of merely training-error
minimisation. That is, we are aiming to minimise the in-
sample error as much as possible and at the same time
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1When referring to GP, the terms model and program refer to the same
entity and will be used interchangeably.

ensure that this error estimate can act as a proxy for the
non-ascertainable out-of-sample error. This uncertainty is
usually addressed via model selection that is based on the
error assessment of competing programs on an independent
validation dataset in order to select the one with the smallest
such error.

Ensembles of learning systems have stimulated a great
research interest in the Machine Learning (ML) community
thanks to their ability to enhance prediction performance over
single models. Evidence suggests that combining the output
of multiple accurate models (base models), each able to
specialise on different parts of the input space, the ensemble
can improve generalisation. Very importantly, it is often
advantageous to use under-regularised base models, which
are models that can potentially overfit the training data [2],
[3].

The formation of ensembles arises naturally in GP that
maintains a population of solutions, and several scholars have
developed methods for combining individual members of
a population [4]. As [5] points out, the key to successful
ensemble methods is to construct accurate base models which
are uncorrelated as far as making errors on the training set of
examples is concerned. In GP, diversity was previously en-
forced via the use of explicit objectives like negative correla-
tion learning and pairwise failure crediting in a Pareto-based
multi-criterion fitness function [6], island architectures [7],
and cooperating co-evolutionary approaches [8].

This paper applies a statistical post-processing method,
Bayesian Model Averaging (BMA) to construct ensembles
of genetic programs drawn from the population of the
final generation. The version of BMA, first proposed by
Raftery [9], pools across various models while meaningfully
incorporating a priori uncertainty about the “best” model. It
generates ensemble predictions similar to a weighted average
of component model predictions, where the weight assigned
to each model is calibrated according to its performance in
some training set of examples. BMA was applied to diverse
problem domains, and was shown to improve the generali-
sation performance of the resulting ensemble as pointed out
in [10] and the references found therein.

We study two main ways in which GP ensembles can
be constructed using BMA. First, Bayesian inference can
be used to generate a weighted average of the programs
in the population, integrating out uncertainty as to which
model is correct is the sense of being the data generating
model. Second, BMA can be modified to produce a weighted
average of different-sized ensembles constructed from a
population of programs, this time integrating out uncertainty
about ensemble selection (the process of choosing which base
models from a population to include in the final ensemble)
and ensemble size [11], [12].

The work presented in this paper differs from previous
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work in three major aspects. First, the majority of papers
in the literature study the effect of fitness function, se-
lection/replacement, and output combination methods in a
setting where they are collectively rewarded according to
the performance of the resultant ensemble in some training
data. This allows the model to specialise on certain parts of
the input space and at the same time tune the combination
of their outputs in order to minimise the in-sample error
of the ensemble. In contrast, ensemble BMA follows two
independent stages in the learning process. In the first stage
the models are trained with standard GP. To maintain a
diverse population, a form of fitness sharing [13] is used to
encourage the formation of different species. At the second
stage, the competing models of the final generation are
linearly combined in a Bayes optimal way. There is no
interaction between the first and second stages, and the basic
assumption is that no particular model can fully encapsulate
the data generating model. In addition, an important aspect of
the BMA ensemble method presented in [9] is that the com-
ponent models need not share covariates and/or functional
forms, and this makes it particularly appealing to GP.

Second, in previous work, the number of models in an
ensemble are often predefined, and typically the evolutionary
run returns a single ensemble of programs. In the second
thread of our experiments, we use BMA to address the
uncertainty arising both in ensemble size and selection, by
returning a weighted average of different-sized ensembles.

Third, in contrast to previously developed ensemble
methods, the model combination that arises from BMA
possesses a range of theoretical optimality properties [14].

The rest of the paper will proceed as follows. Section II
briefly reviews previous work on ensemble learning with
GP. Section III describes BMA and shows how the param-
eters of this model can be estimated using the Expectation-
Maximisation algorithm. Section IV adapts the BMA model
to GP and details the experiment setup. Section V analyses
the empirical results, and finally Section VI draws conclu-
sions and suggests future research directions.

II. ENSEMBLE LEARNING WITH GP

Much work is based on the ensemble learning methods
of bagging [15] and boosting [16]. GP was combined for
the first time with bagging and boosting in [17]. GP bagging
was applied in [18] to evolve temperature forecasts. In [19]
boosting-like heuristics were employed to deal with training
sets that do not fit into memory. In [20] they sampled the
training set in a bagging-like fashion in the context of parallel
cellular GP.

The work in [3] shows how the decomposition of the
out-of-sample error into bias and variance terms can lead
to the use of ensemble learning for minimising the error
due to variance. Considering the contribution of bias and
variance to the total error, Bagging is employed to reduce
the error due to variance, while the bias is kept low provided
that program-size is relatively unconstrained. Results on
two symbolic regression problems were very encouraging,
highlighting at the importance of using model averaging to
minimise variance.

An ensemble learning approach that combines features
from the systems of adaptive mixtures of local experts [21]
and stacked generalisation [22] is presented in the studies
of [23], [24]. The main characteristics of the new approach
is (a) the use of different classification models (i.e., neural
networks, decision trees), (b) the employment of different
subsets to train different models, (c) the use of receiver
operator characteristics curve to calculate fitness, and (d) the
use of GP to learn expressions that combine the pre-trained
models. Empirical results on a high-dimensional drug discov-
ery dataset showed that the GP-ensemble performed better
out-of-sample that the individual base classifiers. GP was
also used to combine heterogeneous, pre-trained classifiers
in [25].

The work of [26] investigated the effectiveness of vari-
ous methods for combining the outputs of multiple predic-
tors trained using linear GP. These are namely, averaging,
weighting-by-error, coevolution-of-weights, majority-voting,
weighted-voting, winner-takes-all, and weight-optimisation.
These ensemble methods are applied to several prediction
problems, and are found to significantly improve both the
in-sample and out-of-sample performances. Cooperative co-
evolution for constructing ensembles was also studied in [8].

The purpose of the study presented in [7] is the formation
of diverse ensembles of classifiers. A new GP method based
on N-version programming is used to quantify semantic
diversity, and defines an optimal ensemble as the ensemble
that has independent misclassification occurrences among
its base classifiers. Results showed improved out-of-sample
performance.

The study of [27] uses majority voting to combine
classifiers trained with GP. The ensembles are tested on large-
scale datasets. Results showed that GP is very effective at
learning base classifiers represented as non-linear discrimi-
nant functions that are thresholded at the value of zero. The
out-of-sample performance of GP-ensembles was found to
outperform that of ensembles built upon base classifiers that
were trained with a decision tree learning algorithm, and
logistic regression.

In the work of [28], ensembles of GP models are con-
structed by means of bagging with a particular emphasis on
base-model-diversity preservation for increasing the classifi-
cation accuracy. Diversity is quantified based on the syntactic
structure of an expression-tree. A series of experiments per-
formed on common gene expression datasets demonstrates
the superior generalisation performance of the proposed
method as opposed to other conventional approaches.

In [29] the authors present a method for building an
ensemble of classifiers for cancer microarray data. The
proposed method learns diverse base classifiers through the
use of k-means clustering, and employs a feature selection
scheme to obtain discriminant features from each cluster.

The work of [30] investigated whether it is possible to
discard some of the GP models of an ensemble in order
to increase generalisation. Ensemble pruning identified the
most similar classifiers and removed them. For this purpose,
three diversity measures are compared to each other. The first
two measures are the pairwise syntactic distance between
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expression-trees. The third measure is the k statistic that
quantifies the behavioural similarity (in terms of program
outputs) between two programs. The experimental results
showed that ensembles can be substantially pruned without
increasing misclassification errors. Up to 30% of pruning,
out-of-sample classification accuracy was found to increase.
Ensemble pruning was also investigated in [31], [32].

The work of [33] presents a framework for evolving
teams of programs without the need to pre-specify the
number of cooperating individuals. To do so, each individ-
ual evolves a mapping to a distribution of outcomes that,
following clustering, establishes the parameterisation of a
Gaussian local membership function. This gives individuals
the opportunity to represent subsets of tasks, where the
overall task is that of classification under the supervised
learning domain.

Finally, the work of [6] presented a Pareto-based multi-
objective GP approach to evolve accurate and diverse ensem-
bles of classifiers with good performance in class-imbalance
problems.

III. BAYESIAN MODEL AVERAGING

Using a single model for predictions ignores uncertainty
about model correctness of a model trained on a finite
amount of data. Bayesian Model Averaging [9], [10] (BMA)
overcomes this problem by conditioning not on a single
“best” model but on the entire set of competing models
considered during model selection.

In the general function estimation problem, described in
the introductory section, we have a quantity of interest y ∈ R
to forecast on the basis of training data D = {(xi, yi)}N1
using K trained models M1, . . . ,MK . The law of total prob-
ability dictates that the forecast probability density function
(PDF), p(y), is given by:

p(y) =
K∑
k=1

p(y|Mk)p(Mk|D) (2)

where p(y|Mk) is the forecast PDF based on model Mk

alone, and p(Mk|x) is the posterior probability of model Mk

being correct given the training data, and can be calculated
using the Bayesian theorem:

p(Mk|D) =
p(D|Mk)p(Mk)∑K
k=1 p(D|Mk)p(Mk)

(3)

where p(D|Mk) denotes the likelihood (reflects how well
model Mk fits the training data), and p(Mk) is the prior
probability distribution for model Mk. The posterior model
probabilities add up to one, so that

∑K
k=1 p(Mk|D) = 1,

and they can be viewed as weights. Thus, the BMA PDF
is a weighted average of the PDFs given the K individual
models, weighted by their posterior model probabilities.

Now, given a GP population of K models evolved on a
set of training examples, the basic idea is that for any given
prediction based on input x there is a “best” model but we
do not know what it is, and this uncertainty is quantified by

BMA. Each deterministic prediction fk generated by model
k is associated with a conditional PDF gk(y|fk), which can
be interpreted as the conditional PDF of y conditional of fk,
given that fk is the best prediction generated amongst the
population members. The BMA predictive model then takes
the following form:

p(y|f1, . . . , fk) =
K∑
k=1

wkgk(y|fk) (4)

where wk is the posterior probability of prediction k being
the best one, and is based on model k’s accuracy in the
training data. The wk’s add up to 1. We will assume that each
conditional PDF gk(y|fk) is approximated by a Gaussian
distribution centered at fk, so that it is a Gaussian PDF
with mean fk and program-specific standard deviation σk.
We denote this situation by:

y|fk ∼ N(y, fk, σ
2
k) =

1

σk
√

2π
e
− (y−fk)2

2σ2
k (5)

In that case the BMA predictive mean is the conditional
expectation of y given the forecasts:

E[y|f1, . . . , fk] =
K∑
k=1

E[y|fk]p(fk|D)

=
K∑
k=1

wkfk (6)

A. Parameter Estimation by Maximum Likelihood and the
EM Algorithm

We now consider how to estimate the ensemble
BMA model (Equation 4) parameters wk and σk for
k = {1, . . . ,K}, on the basis of training data D =
{(xi, yi)}N1 .We denote the set of BMA model parameters
to be estimated by θ. We denote a training example by
subscript i, so fki denotes the kth prediction in the ensemble
for training example i, and yi denotes the corresponding
observation.

We estimate θ by maximum likelihood from the training
data. The likelihood function is defined as the probability of
the training data given θ, viewed as a function of θ. Here
we are maximising the log-likelihood function, which for
model 4 is:

l(θ) =
N∑
i=1

log

(
K∑
k=1

wkgk(yi|fki)

)
(7)

The log-likelihood function cannot be maximised analyti-
cally, but [9] suggest using the Expectation-Maximisation
(EM) algorithm [34] (page 272). The BMA model of Equa-
tion 4 is a finite mixture model. We introduce unobserved
latent variables zki, which represent the posterior probability
for model k for observation yi. zki = 1 if ensemble member
k is the best predictor for yi, and zki = 0 otherwise. In
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reality, the estimates of zki are not necessarily integers, even
though the true values are 0 and 1.

The EM algorithm is iterative, and alternates between two
steps, The E (Expectation) and M (Maximisation). It starts
with an initial guess, θ(0), for the parameter vector θ. In the
E step, we perform a soft assignment of each observation to
each model: the current estimates of the parameters are used
to assign responsibilities according to the relative density of
the training examples under each model k. For the normal
BMA model given by 4 and 5, the E step is:

ẑ
(j)
ki =

g(yi|fki, σ(j−1)
k )∑K

m=1 g(yi|fmi, σ(j−1)
m )

(8)

where the superscript j refers to the jth iteration of the EM
algorithm, and g(yi|fki, σ(j−1)

k ) is the normal density with
mean fki and standard deviation σ(j−1)

k evaluated at yi. The
M step performs a weighted maximum-likelihood estimation
of wk and σk for k = {1, . . . ,K}, using as weights the
current estimates zki, i.e. ẑ(j)ki . This is as follows:

w
(j)
k =

1

N

N∑
i=1

ẑ
(j)
ki

σ
2(j)
k =

∑N
i=1 ẑ

(j)
ki (yi − fki)2∑N
i=1 ẑ

(j)
ki

where N is the number of training examples. The E and
M steps are then iterated until the improvement in the log-
likelihood is no larger than some pre-defined tolerance which
in our experiments is set to 0.01. Although the log-likelihood
is guaranteed to increase at each iteration of the algorithm,
convergence is only guaranteed to a local maximum of the
log-likelihood function. Convergence to the global maximum
is not assured, and the end result may be sensitive to
initial conditions. In future research we will explore these
convergence issues more extensively. In the experiments that
follow, we initialise wk = 1/K ∀ k ∈ {1, . . . ,K}. Each σ2

k
is set equal to the overall variance of the output of model k
on the training examples, that is

∑N
i=1(yi−ȳk)2/N , and ȳk is

the mean of outputs of model k that is equal to
∑N
i=1 fki/N .

IV. METHODS

A. Proposed methods

Ensemble BMA is studied at two distinct levels. First,
at the level of individual programs that reside in the final
population, referred to as EBMAbase. Second, at the level
of ensembles that can be formed from programs that reside
in the final population, referred to as EBMAensemble. In
both cases, the process starts by evolving a population of M
programs for G generations using GP. To maintain a diverse
population, a variation of the fitness sharing mechanism
presented in [13] is used to encourage the formation of
different species. Fitness sharing accomplishes speciation by
degrading the raw fitness of an individual according to the
presence of similar individuals in a population.

Here, fitness sharing is realised via a sharing function Kλ

that is based on the Euclidean distance between the semantics
vectors of two individual programs s1 and s2, and takes the
form of a logistic kernel as follows:

Kλ(sf1 , sf2) = D

(
||sf1 − sf2 ||

λ

)
D(t) =

1

et + 2 + e−t

where si is the semantics vector for program i, || · || denotes
the Euclidean norm, and λ is the radius of the kernel,
which is set to 0.1 in the experiments. Given an individual
f and a set of N training examples D = {(xi, yi)}N1
with input vectors x ∈ Rd, we define the semantics vector
sf = [f(x1), . . . , f(xN )], where f(xi) is the output of
program f on training example i.

Given a loss function that takes the form of Root Mean
Square Error (RMSE) and a population of M programs, the
shared error of an individual m (to be minimised) is defined
as:

SEfm =

√√√√ 1

N

N∑
i=1

(yi − fm(xi))2 ·

1 +
M∑

j=1,j 6=m
Kλ(sfm , sfj )

 (9)

Once the evolutionary run reaches the final generation,
the population is sorted in ascending training RMSE values,
and it is pruned to an archive of size B < M of the fittest
programs, where a program i is accepted to the archive
if RMSEi ≤ 2.0 · RMSEfittest (RMSEfittest is the
minimum error of an individual in the final generation). The
method of EBMAbase uses all individual programs that
reside in the archive. Thus in BMA model 4 we set K = B.

The method of EBMAensemble uses a diverse set of
ensembles that are generated from the archive. There is
a single modification required to turn BMA model 4 into
EBMAensemble. This is as follows:

p(y|e1, . . . , ek) =
K∑
k=1

wkgk(y|ek) (10)

where ek is the prediction of an element of the set E of
ensembles of different size and different base-models. The
output of an ensemble ek is formed by a simple averaging of
outputs of individual programs in the ensemble. In the case
where the output of a program is undefined or infinite, the
program output is excluded from the average.

Although the space of potential model ensembles that can
be constructed from the archive is very large, here we are
resorting to a variation of the method introduced in [35].
The programs of the archive are clustered using the k-means
algorithm [34] (page 509). The resulting clusters correspond
to different species. Clustering is based on the Euclidean
distances between the semantics vectors of programs. The
fittest individual (according to the training error) of each
cluster is selected, and those individuals are then used to
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TABLE I. GP SYSTEM SETUP

EA elitist (p=1), generational, expression-tree representation
Function set +, -, *, exp(x), power(x,y), log(x), sqrt(x), sin(x)
Terminal set explanatory vars, 10 random consts ∈ {−1.0, . . . , 1.0}
No. of generations 101
Population size 500
Tournament size 7
Tree creation ramped half-and-half (depths of 2 to 5)
Max. tree depth 10
Subtree crossover 20% (90% inner-nodes, 10% leaf-nodes)
Subtree mutation 50% (max. depth of subtree: uniform randomly in [1, 4])
Point mutation 30% (prob. of a node to be mutated: 10% or 30% or 40%)
Fitness function Equation 9

form an ensemble of programs. In order to generate a diverse
collection of ensembles, we run the k-means algorithm with
k = {2, 3, . . . , 36}, and for each different value of k we
generate a different ensemble of k programs. This allows
the creation of K = 35 different-sized ensembles that will
be averaged using BMA model 10.

B. Baseline methods

We compare the generalisation performance (as mea-
sured on an independent test set) of the ensemble methods
proposed above with a number of models resulting from
validation-based model selection, as well as other linear
combination schemes for constructing ensembles. These are
presented bellow:

1) Elitist. This returns the best-of-run individual (ac-
cording to training RMSE).

2) Validation-base. A list of best-of-generation pro-
grams is initialised in the beginning of the evolu-
tionary run. The best individual (according to train-
ing RMSE) of each generation is added to list. At
the end of the evolutionary run, each member of the
list is tested against an independent validation set.
The individual with the smallest validation RMSE
is designated as the output of the run. We adopt the
common practice in ML, and divide the learning
data into two disjoint sets for training (66%), and
validation (33%).

3) OLS-base. Ordinary Least Squares (OLS) regres-
sion is used to fit a linear model that combines the
outputs of the B individual programs populating the
archive generated from the final generation.

4) OLS-ensemble. OLS regression is used to fit a
linear model that combines the outputs of the 35
ensembles that result from the clustering method
described in the previous section.

C. Experiment setup

Table I presents the experiment setup of the GP system.
To demonstrate the effect of the two methods of ensemble
BMA on model generalisation we selected a suit of synthetic
symbolic regression problems taken from [36], and generated
reliable noise-free data for training, validation and testing.
For the testing data, we draw a further distinction between
interpolation and extrapolation. The details of the sam-
pling procedures used to create the aforementioned disjoint
datasets are summarised in Table II.

V. RESULTS ANALYSIS

We conducted 50 independent GP runs for each problem.
Generalisation performance is measured on the test set.
Table III summarises the results. In each case of interpo-
lation and extrapolation we count the fraction of solutions
that showed “pathological” behaviour. Columns 2 and 8
is the percentage of solutions producing infinite or unde-
fined RMSE for interpolation and extrapolation respectively.
Columns 3 and 9 present the percentage of solutions for
which the RMSE is infinite, undefined or excessively large.
The threshold for pathologically high error is chosen to be
100 (it corresponds to an MSE of 104). Solutions producing
these undefined, infinite or large errors on test data are
dangerously erroneous, and a high percentage of them is
indicative of overfitting.

We observe that all methods but EBMAensemble and
EBMAbase exhibit pathologies on the test data for the
majority of problems. This becomes more pronounced for
the case of extrapolation. There is a difference in the type
of pathologies between the standalone models produced
by elitist and Validation-base methods and OLS methods,
with the former suffering primarily by infinite on undefined
RMSE, and the latter suffering only from large RMSEs. We
suggest that this is due to the non-regularised version of OLS.
This allows the mixing coefficients a to get excessively large
values, which then contribute to large predictions generated
by the ensemble especially in the case of extrapolation. A
potential solution to this problem is to fit the OLS model with
two extra constraints:

∑K
k=1 ak = 1 and ak ≥ 0, leading to

a formulation of a quadratic programming problem. One can
argue however that undefined or infinite RMSE is generally
more pathological than large RMSE, so in that sense the
OLS-based ensembles exhibited a more graceful degradation
by extrapolation than the standalone models. Finally, we note
that validation-based model selection allowed for a reduction
in the number of pathologies for the case of interpolation
as opposed to the best-of-run individual, however its effect
diminished for the case of extrapolation. Overall, results sug-
gest that the BMA-based ensembles consistently exhibited no
pathologies on test data.

The minimum, median 2 and interquartile range of the
RMSE over 50 runs are reported in columns 4, 5, 6 and 10,
11, 12 for interpolation and extrapolation cases respectively.
For example, for Elitist solutions in problem F1, we observe
that 62% of best-of-run solutions (31 out of 50) have an
infinite or undefined or excessively large error pathology
on the extrapolation test data. If these 31 solutions are
excluded from the sample then the median of the remaining
19 solutions will be 0.068 and the interquartile range will be
0.071. This is an argument for using ensembles of solutions,
where a model’s pathological output is excluded from the
ensemble average, and for being very cautious in using best-
of-run solutions with or without model selection. If only best-
of-run solutions are sought for, then all runs where the best
program produces a pathology are lost. This corresponds to
a significant waste of 62% of the computational effort in the
aforementioned example.

2We preferred to report the median over the mean because it is more
robust to outliers.
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TABLE II. SYMBOLIC REGRESSION PROBLEMS WITH THE RESPECTIVE DATA SAMPLING RANGES FOR TRAINING, VALIDATION AND TEST
DATASETS. NOTATION X=RAND(A,B) MEANS THAT THE X VARIABLE IS SAMPLED UNIFORM RANDOMLY FROM THE INTERVAL [A, B]. NOTATION

x1 = (a1 : c1 : b1), x2 = (a2 : c2 : b2) DETERMINES A UNIFORM MESH WITH STEP LENGTH (c1, c2) ON AN INTERVAL [a1, b1]× [a2, b2].

Problem Training data Validation data Test data
Interpolation Extrapolation

F1 f(x1, x2) = e−(x1−1)2

1.2+(x2−2.5)2
100 points 50 points 1,369 points 797 points

x,x2 x1, x2=rand(0.3, 4.0) x1, x2=(0.3 : 0.1 : 4.0) x1, x2=(-0.2 : 0.02 : 0.3)
=rand(0.3, 4.0) x1, x2=(4.0 : 0.02 : 4.2)

F2 f(x) = 200 points 100 points 996 points 525 points
e−xx3cos(x)sin(x)(cos(x)sin2x− 1) x=rand(0.05, 10.0) x=rand(0.05, 10.0) x=(0.05 : 0.01 : 10.0) x=(-0.5 : 0.002 : 0.05)

x=(10.0 : 0.002 : 10.5)
F3 f(x1, x2, x3, x4, x5) = 10

5+
∑5
i=1

(xi−3)2
512 points 256 points 5,000 points 5,000 points

x1, x2, x3, x4, x5 x1, x2, x3, x4, x5 x1, x2, x3, x4, x5 x1, x2, x3, x4, x5

=rand(0.05, 6.05) =rand(0.05, 6.05) =rand(0.05, 6.05) =rand(-0.25, 0.05)
x1, x2, x3, x4, x5

=rand(6.05, 6.35)
F4 f(x1, x2, x3) = 30

(x1−1)(x3−1)

x2
2(x1−10)

300 points 150 points 1,960 points 1,326 points

x1, x3 x1, x3=rand(0.05, 2.0) x1, x3=(0.05 : 0.15 : 2.0) x1, x3=(-0.05 : 0.01 : 0.05)
=rand(0.05, 2.0) x2=rand(1.0, 2.0) x2 = (1.0 : 0.1 : 2.0) x2 = (0.95 : 0.01 : 0.05)
x2=rand(1.0, 2.0) x1, x3=(2.0 : 0.01 : 2.1)

x2 = (2.0 : 0.01 : 2.05)
F6 f(x1, x2) =

(x1 − 3)(x2 − 3)+ 300 points 150 points 1,000 points 1,000 points
2sin((x1 − 4)(x2 − 4)) x1, x2 x1, x2=rand(0.05, 6.05) x1, x2=rand(0.05, 6.05) x1, x2=rand(-0.25, 0.05)

=rand(0.05, 6.05) x1, x2=(6.05 : 0.05 : 6.35)

F7 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
50 points 25 points 3,721 points 1,861 points

x1, x2 x1, x2=rand(0.05, 6.05) x1, x2=(0.05 : 0.1 : 6.05) x1, x2=(-0.25 : 0.01 : 0.05)
=rand(0.05, 6.05) x1, x2=(6.05 : 0.01 : 6.35)

F8 f(x1, x2) =
x1x2 + sin((x1 − 1)(x2 − 1)) 20 points 10 points 90,000 points 20,402 points

x1, x2 x1, x2=rand(-3.0, 3.0) x1, x2=(-3.0 : 0.02 : 3.0) x1, x2=(-4.0 : 0.01 : -3.0)
=rand(-3.0, 3.0) x1, x2=(3.0 : 0.01 : 4.0)

F10 f(x1, x2) = 8
2+x1

2+x2
2 20 points 10 points 90,000 points 20,402 points

x1, x2 x1, x2=rand(-3.0, 3.0) x1, x2=(-3.0 : 0.02 : 3.0) x1, x2=(-4.0 : 0.01 : -3.0)
=rand(-3.0, 3.0) x1, x2=(3.0 : 0.01 : 4.0)

F12 f(x1, x2, x3, x4, x5, x6, x7, 50 points 25 points 30,000 points 30,000 points
x8, x9, x10) = x1, . . . , x10 x1, . . . , x10 x1, . . . , x10 x1, . . . , x10

x1 + x2 + x3 ∗ x4 + x5 ∗ x6 =rand(-1.0, 1.0) =rand(-1.0, 1.0) =rand(-1.0, 1.0) =rand(-1.5, -1.0)
+x1 ∗ x7 ∗ x9 + x3 ∗ x6 ∗ x10 x1, . . . , x10

=rand(1.0, 1.5)

We performed a pair-wise Wilcoxon-Mann-Whitney rank
sum test to assess the statistical significance in the difference
of the median RMSE obtained between EBMAensemble and
the rest of the methods. In order to obtain equal sample
sizes, we truncated all infinite, undefined, and large values of
RMSE (RMSE ≥ 100) at the value of 100. The significance
level is set to 95%, and thep-values of the tests are given in
columns 7 and 13 for interpolation and extrapolation respec-
tively. For the case of interpolation, statistically significance
differences were obtained in 5 our of 9 problems between
EBMAensemble and the rest of the non-BMA methods, with
the former outperforming the latter. For the case of extrap-
olation, statistically significant differences were obtained in
7 out 9 problems, with EBMAensemble performing better
than every other non-BMA method. Overall, no statistically
significant differences were found between the performance
of the two EBMA methods either for interpolation or extrap-
olation.

VI. CONCLUDING REMARKS AND FUTURE WORK

Standard GP practice typically selects the best model
from a population of competing models and then proceeds as
if the selected model had generated the data. This approach
ignores the uncertainty in model selection and may lead
to bad generalisation. The use of a validation-based model
selection, while beneficial in the majority of cases, is not

a panacea since this independent dataset may itself suffer
from sampling bias and not be representative of the true data
generating PDF.

One explanation for the success of ensemble methods
is that as opposed to a single model, ensembles address
the uncertainty about the correctness of a single model
via some kind of model combination. This paper presented
the application of Bayesian Model Averaging to perform
optimally weighted averages of standalone programs or en-
sembles of programs at the end of the evolutionary run.
Fitness sharing was used to encourage the evolution of
semantically-diverse individuals. Results are encouraging,
showing that the proposed method outperformed standard
methods of model selection and ensemble construction in
terms of out-of-sample performance. Very importantly, both
EBMA models showed no pathological behaviour when
extrapolated outside the training range. The fact that no
significance difference was found between the two versions
of EBMA surely warrants further investigation.

There exist various directions for extending this research:

1) Comparison of performance between EBMA and
other post-processing methods like boosting, bag-
ging, and stacked generalisation.

2) Investigation of the impact of different initial values
in the maximisation of the log-likelihood function
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TABLE III. MINIMUM, MEDIAN AND INTERQUARTILE RANGE (IQR) FOR RMSE CALCULATED ON 50 INDEPENDENT RUNS. P-VALUES FOR
PAIR-WISE WILCOXON-MANN-WHITNEY TESTS ABOUT THE SIGNIFICANCE IN DIFFERENCES OF MEDIAN RMSE BETWEEN EBMAensemble AND

THE REST OF THE METHODS. BOLD FACE INDICATES STATISTICAL SIGNIFICANCE IN ALL DIFFERENCES BETWEEN THE MEDIAN OF EBMAensemble

METHOD AND THE REST OF NON-BMA METHODS, WITH THE FORMER OUTPERFORMING THE REST.

Method Interpolation Extrapolation
Pathologies Min Median IQR p-value Pathologies Min Median IQR p-value

RMSE RMSE RMSE RMSE
=∞, NaN ≥ 100 =∞, NaN ≥ 100

Column no: (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

F1

Elitist 2.0% 2.0% 0.019 0.052 0.025 0.0 62.0% 62.0% 0.019 0.068 0.071 0.0
Validation-b 2.0% 2.0% 0.019 0.052 0.028 0.0 54.0% 54.0% 0.019 0.068 0.190 0.0
OLS-b 0.0% 0.0% 0.004 0.044 0.035 0.01 0.0% 6.0% 0.036 1.015 1.812 0.0
OLS-e 0.0% 0.0% 0.011 0.038 0.022 0.005 0.0% 0.0% 0.021 0.096 0.137 0.01
EBMA-b 0.0% 0.0% 0.016 0.021 0.023 0.27 0.0% 0.0% 0.016 0.049 0.072 0.53
EBMA-e 0.0% 0.0% 0.016 0.027 0.023 − 0.0% 0.0% 0.007 0.057 0.069 −

F2

Elitist 2.0% 2.0% 0.030 0.075 0.033 0.61 34.0% 34.0% 0.020 0.084 0.105 0.0
Validation-b 2.0% 2.0% 0.030 0.075 0.033 0.58 36.0% 36.0% 0.017 0.062 0.103 0.0
OLS-b 0.0% 20.0% 0.000 0.014 0.111 0.26 0.0% 36.0% 0.015 0.742 1.536 0.0
OLS-e 0.0% 4.0% 0.001 0.027 0.040 0.0 0.0% 14.0% 0.019 0.327 1.108 0.0
EBMA-b 0.0% 0.0% 0.034 0.073 0.040 0.35 0.0% 0.0% 0.013 0.051 0.103 0.80
EBMA-e 0.0% 0.0% 0.032 0.070 0.036 − 0.0% 0.0% 0.011 0.057 0.108 −

F3

Elitist 2.0% 2.0% 0.100 0.144 0.033 0.06 24.0% 24.0% 0.039 0.136 0.011 0.02
Validation-b 2.0% 2.0% 0.102 0.144 0.033 0.03 26.0% 26.0% 0.039 0.135 0.009 0.03
OLS-b 0.0% 0.0% 0.032 0.134 0.035 0.0 0.0% 14.0% 0.034 0.875 1.636 0.0
OLS-e 0.0% 0.0% 0.051 0.126 0.030 0.0 0.0% 0.0% 0.024 0.230 0.248 0.0
EBMA-b 0.0% 0.0% 0.097 0.062 0.040 0.12 0.0% 0.0% 0.074 0.134 0.026 0.54
EBMA-e 0.0% 0.0% 0.096 0.085 0.032 − 0.0% 0.0% 0.060 0.134 0.024 −

F4

Elitist 6.0% 6.0% 0.043 0.267 0.158 0.003 54.0% 64.0% 0.316 2.359 1.893 0.0
Validation-b 4.0% 4.0% 0.043 0.248 0.143 0.007 62.0% 72.0% 0.316 2.541 2.335 0.0
OLS-b 0.0% 26.0% 0.002 0.237 0.170 0.009 0.0% 92.0% 2.494 4.558 3.354 0.0
OLS-e 0.0% 4.0% 0.016 0.222 0.158 0.01 0.0% 50.0% 0.555 2.381 1.975 0.0
EBMA-b 0.0% 0.0% 0.060 0.099 0.165 0.47 0.0% 0.0% 0.583 1.977 0.848 0.84
EBMA-e 0.0% 0.0% 0.054 0.129 0.164 − 0.0% 0.0% 0.096 1.932 1.720 −

F6

Elitist 0.0% 0.0% 1.265 1.713 0.517 0.46 54.0% 60.0% 1.845 7.574 5.564 0.0
Validation-b 0.0% 0.0% 1.265 1.766 0.504 0.41 54.0% 60.0% 1.845 7.328 4.848 0.0
OLS-b 0.0% 42.0% 0.686 2.071 2.181 0.0 0.0% 96.0% 12.505 12.505 n/a 0.0
OLS-e 0.0% 4.0% 1.058 1.336 0.300 0.0 0.0% 44.0% 2.060 7.555 5.765 0.0
EBMA-b 0.0% 0.0% 1.354 1.833 0.535 0.66 0.0% 0.0% 2.381 7.861 2.177 0.87
EBMA-e 0.0% 0.0% 1.337 1.786 0.568 − 0.0% 0.0% 1.180 7.946 3.070 −

F7

Elitist 2.0% 10.0% 0.488 1.317 0.725 0.32 78.0% 84.0% 0.352 0.891 0.876 0.0
Validation-b 2.0% 4.0% 0.470 1.302 0.736 0.55 80.0% 86.0% 0.419 1.306 1.054 0.0
OLS-b 0.0% 24.0% 0.306 0.925 0.470 0.93 0.0% 44.0% 1.190 2.904 2.240 0.0
OLS-e 0.0% 36.0% 0.664 1.540 0.688 0.0 0.0% 68.0% 1.827 3.236 3.632 0.0
EBMA-b 0.0% 0.0% 0.475 1.293 0.643 0.86 0.0% 0.0% 0.405 2.342 2.113 0.07
EBMA-e 0.0% 0.0% 0.480 1.303 0.676 − 0.0% 0.0% 0.456 3.133 2.906 −

F8

Elitist 2.0% 2.0% 0.001 0.811 0.126 0.001 4.0% 4.0% 0.001 1.023 0.662 0.007
Validation-b 0.0% 0.0% 0.001 0.797 0.070 0.03 2.0% 2.0% 0.001 0.860 0.313 0.33
OLS-b 0.0% 8.0% 0.000 0.792 0.243 0.0 0.0% 6.0% 0.000 1.483 1.758 0.0
OLS-e 0.0% 8.0% 0.000 1.037 0.616 0.0 0.0% 8.0% 0.000 1.921 1.653 0.0
EBMA-b 0.0% 0.0% 0.001 0.725 0.104 0.84 0.0% 0.0% 0.001 0.895 0.249 0.71
EBMA-e 0.0% 0.0% 0.000 0.719 0.106 − 0.0% 0.0% 0.000 0.879 0.226 −

F10

Elitist 8.0% 14.0% 0.146 0.647 0.275 0.09 8.0% 8.0% 0.072 0.590 0.394 0.72
Validation-b 2.0% 2.0% 0.162 0.629 0.177 0.07 2.0% 2.0% 0.072 0.697 0.405 0.01
OLS-b 0.0% 20.0% 0.155 0.697 0.309 0.03 0.0% 10.0% 0.115 0.681 0.629 0.01
OLS-e 0.0% 24.0% 0.185 0.758 0.501 0.0 0.0% 12.0% 0.093 0.870 0.924 0.0
EBMA-b 0.0% 0.0% 0.144 0.610 0.290 0.85 0.0% 0.0% 0.066 0.601 0.395 0.75
EBMA-e 0.0% 0.0% 0.155 0.608 0.276 − 0.0% 0.0% 0.072 0.606 0.408 −

F12

Elitist 0.0% 4.0% 0.280 0.488 0.222 0.17 0.0% 10.0% 1.878 5.170 1.852 0.005
Validation-b 0.0% 4.0% 0.226 0.463 0.229 0.77 0.0% 4.0% 2.547 5.051 1.103 0.007
OLS-b 0.0% 10.0% 0.375 0.865 0.442 0.0 0.0% 40.0% 1.913 5.907 3.096 0.0
OLS-e 0.0% 6.0% 0.443 0.863 0.413 0.0 0.0% 48.0% 2.377 6.657 2.742 0.0
EBMA-b 0.0% 0.0% 0.274 0.455 0.246 0.71 0.0% 0.0% 1.767 4.250 1.605 0.82
EBMA-e 0.0% 0.0% 0.278 0.453 0.256 − 0.0% 0.0% 2.646 4.333 1.699 −

for estimating BMA parameters.
3) For the case of EBMAensemble, investigation of

different ways of forming ensembles from the final
population. A potential method would be to fit reg-
ularised least-squares linear model to the program
outputs of the programs populating each cluster
using different amount of regularisation. This tech-
nique can also be applied to the final population as
a whole.

4) Study of different combination methods for en-
semble output other than simple averaging in the
case of EBMAensemble. Some form of weight

optimisation (i.e. using a GA) is the obvious next
step.

5) Implementation of supplementary mechanisms to
enforce uncorrelated errors between the individuals
of a population, like negative correlation learning
and pairwise failure crediting in a Pareto-based
multi-objective optimisation context.
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