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Abstract—Dynamic multi-objective optimization problems in-
volve the simultaneous optimization of several competing ob-
jectives where the objective functions and/or constraints may
change over time. Evolutionary algorithms have been considered
as popular approaches to solve such problems. Despite the consid-
erable number of studies reported in evolutionary optimization in
dynamic environments, most of them are restricted to the single
objective case. Moreover, the majority of dynamic multi-objective
optimization algorithms are based on the use of some techniques
to detect or predict changes which is sometimes difficult or
even impossible. In this work, we address the problem of
dynamic multi-objective optimization with undetectable changes.
To achieve this task, we propose a new algorithm called Multiple
Reference Point-based Multi-Objective Evolutionary Algorithm
(MRP-MOEA) which does not need to detect changes. Our
algorithm uses a new reference point-based dominance relation
ensuring the guidance of the search towards the Pareto optimal
front. The performance of our proposed method is assessed using
various benchmark problems. Furthermore, the comparative ex-
periments show that MRP-MOEA outperforms serveral dynamic
multi-objective optimization algorithms not only in tracking the
Pareto front but also in maintainig diversity over time albeit the
changes are undetectable.

I. INTRODUCTION

When dealing with Dynamic Multi-objective Optimization
Problems (DMOPs), the optimization algorithm must be able
not only to evolve a near-optimal and diverse Pareto Front
(PF), but also to continually track time-changing environment.
Such finality implies a conflicting requirement of convergence
and diversity. Applying Evolutionary Algorithms (EAs) to
solve Dynamic Optimization Problems (DOPs) has obtained
great attention among many researchers. To the best of our
knowledge, the earliest application of EAs to dynamic en-
vironments dates back to 1966 [14]. However, it was not
until the late 1980s that the subject becomes a research
topic. Although many other optimization techniques have been
adapted to dynamic environments such as particle swarm
optimization [10], [18], artificial immune systems [28], [13],
the EA area is still the largest one. EAs were first applied
to Dynamic Single-objective Optimization Problems (DSOPs).
In fact, convergence during the run may cause a lack of
diversity and reduce the adaptability of the algorithm. Thereby,
several mechanisms have been proposed to keep diversity in
the population. Diversity can be maintained throughout the
run [9], [24], or increased after a change detection by taking

explicit actions such as reinitialization [11] or hypermuta-
tion [22]. Also, many other approaches have been proposed
such as memory-based techniques [5], [25], multipopulation
approaches [3], [6], predictive methods [20], etc. The main
difficulty in the multi-objective case is that the PF of a DMOP
may change when the environment changes which makes
the task of optimization more difficult. The multi-objective
EA should be capable of attaining a fast convergence which
also implies a rapid loss of diversity during the optimization
process [1]. In contrast to the single-objective case, there
are few works dealing with DMOPs which include change
prediction techniques [8], [27], memory-based approaches [2],
and parallel approaches [15]. The majority of these works are
based on some techniques to either detect or predict changes.
Nevertheless, sometimes it is difficult or even impossible for
the algorithms to detect changes. An example of this is the
case where there are only some random sub-areas in the
whole search space that change. In such a situation, we are
not always able to detect the changes or predict them since
we do not know when and where they occur in the search
space. Another example can be revealed in dynamic scheduling
problems where a constraint change extends the feasible areas
in the search space. Such change can not be easily detected
since population members remains feasible. Therefore, it is
important to develop algorithms that do not need to detect
changes or are able to be ready for changes in any time during
the search process.

Multiple targeted search-based approaches are based on
the use of a set of predefined search directions covering the
entire optimal PF. Then, multiple searches can be done in
each direction instead of searching the whole search space
[21]. Multiple Reference Points (RPs) defined a priori can
be also used to implement such approach and to provide an
approximation of the entire PF [12]. Using RPs in such a way
as a means to improve comparability between solutions is a
recent search direction, where there are few works dealing
only with multi-objective and many-objective optimization
problems. To the best of our knowledge, using this approach
to solve DMOPs is not yet explored.

This paper proposes a Multiple Reference Point-based
Multi-Objective Evolutionary Algorithm (MRP-MOEA), that
uses the framework of NSGA-II procedure [11], to deal
with dynamic problems in undetectable environments. In fact,
dynamic problems require a fast convergence to track the PF
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before the next change appears. Thus, by using multiple RPs
we can potentially gain comparability between incomparable
solutions which may lead to the acceleration of convergence.
Besides, our approach is based on a new dominance relation,
called Multiple Reference Point-based dominance relation
(MRP-dominance), allowing to maintain the compromise be-
tween convergence and diversity since a strong diversity is also
important to preserve the adaptive exploring abilities of the
algorithm. Moreover, an archive population is maintained to
conserve best solutions discovered during the search process.
To ensure a good distribution of solutions along the PF, a
new archive update strategy is proposed. The performance of
MRP-MOEA is examined among different benchmark prob-
lems characterized by various difficulties. Several comparative
experiments are conducted to validate the effectiveness of
MRP-MOEA against several recently proposed dynamic multi-
objective optimization algorithms. The remainder of this paper
is organized as follows. Section 2 describes the proposed
algorithm and details its components. Section 3 presents the
experimental study. Finally, section 4 concludes the paper and
gives some avenues for future research.

II. PROPOSED APPROACH

A. Basic framework

The main diffculty in DMOPs, is that the problem changes
over time. The optimization algorithm must be able to track
and to converge to the PF as soon as possible before the
next change appears. Inspired by [12] and [23], the main idea
behind our algorithm is to define multiple targeted search (also
known as goals) and to seek simultaneously the location of the
optimal solutions along these different directions, rathar than
searching in the whole search space. Since several optimal
points can be found relatively to different RPs generated in
a structured manner (discussed later) and covering the entire
search space, the algorithm may be able to converge rapidly
to the desired PFs. The framework of the proposed algorithm
is based on the original NSGA-II algorithm with significant
changes in the non-domination sort mechanism and some
other extensions such as the use of a local search technique
at the beginning of each generation. This is to ameliorate
existing solutions and to detect the new search directions
whenever a change appears. MRP-MOEA is described in detail
in algorithm 1.

B. RP set generation

As already mentionned, our algorithm is based on the use
of a set of RPs generated in a structured way. It is worth
noting that RPs are used in this paper not to present user
preferences and to guide the search towards his preference
region but to predefine several search directions covering the
entire search space in order to accelerate the convergence
speed. Thereby, any predefined method that provides widely
distributed solutions in the normalized hyperplane can be used.
In this work, we adopt Das and Dennis’s approach [7]. It
generates K points on a normalized hyperplane with a uniform
spacing δ in each axis, for any number of objectives M . Let p
be the number of divisions considered along each objective

Algorithm 1 MRP-MOEA
1. INPUT: N (population size), Gmax (maximum number
2. of generations)
3. OUTPUT: A (archive population)
4. BEGIN
5. Randomly initialize a population POP ;
6. Evaluate the fitness values of individuals in POP ;
7. A← NonDominated_Set (POP ) ;
8. gen← 0;
9. RPs← Generate_RPs ();

10. t← 0;
11. While (gen < Gmax)
12. t← Update_Time (gen);
13. POP ← Re-evaluate_Objective_Values (POP, t);
14. ToLS ← Select_solutions_toLS (POP ); /* select
15. solutions to participate in the local search*/
16. LS ← LocalSearch (ToLS);
17. POP ← Merge (POP \ {ToLS}, LS);
18. C ← Crossover (POP );
19. M ← Mutation (C);
20. M ← Evaluate_Objective_Values (M, t) ;
21. POP ← Merge (POP, M ); /*combine parent and
22. child populations*/
23. POP ← Normalization (POP );
24. POP ← Assignement_To_RPs (POP, RPs);
25. POP ← Selection (POP ); /*using MRP-dominance
26. relation*/
27. A← Update_Archive (POP );
28. gen← gen+ 1;
29. End While
30. Return A;
31. END

(i.e., p = 1/δ), the number of generated solutions K is
calculated as follows:

K = (M+p−1
p ) (1)

Figure 1 shows the set of the generated RPs in a normalized
hyperplane for a three-objective problem (M = 3) with δ =
0.2 (i.e., p = 5). The number of created RPs is equal to 21.
The population size of the algorithm is set to the number of
RPs. Each solution is affected to its closest RP based on the
Euclidean distance calculated using the normalized objective
function values. The normalization of population members will
be detailed in the following section.

C. Normalization and Assignement of population members to
RPs

Let z = (fmin1 , fmin2 , ..., fminM ) and ze = (fmax1 , fmax2

, ..., fmaxM ) denote respectively, the ideal point and the ex-
treme point in the population. As noted in [12], the objective
function values of the population are normalized as follows:

f ′j(x) =
fj(x)− fminj

aj − fminj

, ∀ j = 1, 2, ..., M (2)
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Figure 1. Representation of a set of RPs in a normalized hyperplane with
M = 3 and p = 5

Figure 2. Illustration of a bi-objective space before and after normalization.

aj = 1/αj (3)

α = (Z)−1u (4)

where u is a M -dimensional vector of ones. The j-th row
of the matrix Z is the solution having fmaxj . Thereby, a
hyperplane is created using the solutions that have led to the
coordinates of the extreme point ze. If any of the aj’s are
negative, aj’s are set to fmaxj . Figure 2 shows the search
space of a bi-objective minimization problem before and after
performing normalization with the illustration of generated
RPs (p = 4) using the strategy described in section II.B.

Each population member is associated with its closest RP.
This can be judged using the minimal Euclidean distance
calculated between the solution in the normalized space and
each RP. The pseudocode of solutions associations with RPs
is presented in Algorithm 2.

D. Multiple Reference Point-based dominance relation

As noted in [26], Pareto-domination can handle both pop-
ulation convergence and population diversity. On the one
hand, comparability between solutions accelerates population
convergence. On the other hand, indifference between them
helps maintaining population diversity. In this work, we
propose a new dominance relation that permits to balance
between convergence and diversity called Multiple Reference
Point-based dominance relation denoted as (MRP-dominance).
Let x and y be two solutions in the objective space, x
MRP − dominates y, denoted as x ≺MRP−dominance y
if and only if:

1) x Pareto domiantes y; or

Algorithm 2 Association procedure
1. INPUT: POP (population), RPs
2. OUTPUT: POP (assigned population)
3. BEGIN
4. For each solution x ∈ POP ;
5. For each RP r ∈ RPs;
6. calculate d (x, r);
7. End For;
8. ref ← argminr∈RPsd (x, r);
9. Assign (x, ref);

10. End For;
12. Return POP ;
13. END

2) x and y are Pareto equivalent and only x is situated in
the neighborhood of at least one RP; or

3) x and y are Pareto equivalent and x and y are not sit-
uated in any neighborhood and the number of solutions
already chosen for the RP, to which is affected x, is
lower than the one for the RP to which is affected y.

Let X be a set of solutions, a solution x ∈ X is said to be
in the neighborhood (means assigned to RP) of a RP r if and
only if

d(x, r)− dmin
dmax − dmin

≤ γ (5)

dmin = min(d(y, r)), ∀y ∈ X (6)

dmax = max(d(y, r)), ∀y ∈ X (7)

where d(x, r) is the Euclidean distance between the solution
x and the RP r and γ is a specified threshold.

On the one hand, using MRP-dominance, we note that we
raise the comparability level between solutions. On the other
hand, the third case may ensure the exploration of the whole
search space and to avoid focusing on a particular region. It
gives chance to RPs not yet present in the selected population
to be represented and to provide, if they are prominent,
some solutions that can survive in the following generations.
Moreover, MRP-dominance is Pareto compliant, it preserves
the order induced by the Pareto dominance relation.

E. Local search

The local search technique accelerates the convergence
speed since it improves the individuals of a population to
the nearest local optima. We propose to adopt a well directed
local search using a binary indicator-based selection method.
This may permit to avoid some of the drawbacks of classical
methods such as Pareto dominance and aggregation methods.
The epsilon indicator Iε(x1, x2) represents the minimal trans-
lation in the objective space with which x1 dominates x2. The
Iε(x1, x2) is calculated as follows:

Iε(x1, x2) = maxj∈{1, ...,M}(fj(x1)− fj(x2)) (8)
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Algorithm 3 ε−Local Search algorithm
1. INPUT: x (current solution), Q(x) (Quality of x),
2. P (initial population), Ntrial(number of trials),
3. OUTPUT: x′ (output solution)
4. BEGIN
5. cpt← 0;
6. stop← false;
7. x′ ← x;
8. While ((¬stop) and (cpt <= Ntrial)) do
9. x∗ ←Mutation(x);

10. Q(x∗)← Iε(P\{x}, x∗);
11. If ((Q(x∗) > Q(x))
12. P ← Insert(P\{x}, x∗);
13. P ← Re-evaluate_Quality(P );
14. stop← true;
15. x′ ← x∗;
16. Else
17. cpt← cpt+ 1;
18. End If
19. End While
20. Return x′;
21. END

The quality of solutions according to a whole population P and
a binary indicator I can be evaluated using several different
approaches [16]. Since the quality of a solution is defined
essentially by the presence of similar or better solutions in the
population, we choose to use the following equation in the
evaluation of solutions as the acceptance strategy:

I(P\{x}, x) = minz∈P\{x}(I(z, x)) (9)

In each generation, ζ% of the solutions are considered as the
input population P for the local search algorithm. On each
solution in P , a local search step (ε−local search) is applied.
The ε−local search algorithm is described in algorithm 3
where a neighbor is generated using a polynomial mutation
with a low spread (c.f. line 9). It is worth noting that we
use the first improvement strategy. Thereby, the local search
step is stopped if the neighbor’s indicator value is better than
the current solution’s indicator value (c.f. line 11). However,
if the current solution is better than his Ntrial neighbors
generated successively, the solution is considered as a local
optimal solution and it is maintained. The entire local search
is terminated when all solutions are either maintained or
ameliorated.

F. Archive update

In order to provide well-distributed solutions along the PF,
we propose an archive update strategy that permits to maintain
representatives of all prominent RPs. As a first step, we select
non-dominated solutions among combined population of old
archive and the actual population. If the size of the selected
population is greater than the archive maxsize, we empty the
archive and we follow the steps below:

1) Step 1 : assemble solutions by RPs, the formed subsets
are denoted by Sk, where k = 1, ..., K and K is the

number of RPs represented in the selected popuation.
2) Step 2 : calculate nbsol = max(min (| Sk |), 0)

if ((nbsol ∗ nbSets) > (maxsize− | archive |)) then
nbsol = ceil((maxsize− | archive |)/nbsets) where
nbSets is the number of not empty Sk.

3) Step 3 : select nbsol solutions from all Sk and add
selected solutions to the archive.

4) Step 4 : remove selected solutions from all Sk.
5) Step 5 : if | archive |< maxsize , return to step 2.

Figure 3 illustrates an example of archive update with five RPs
ri; i = 1, 2, ..., 5 where the number of solutions associated
to the RP r5, is equal to zero.

III. EXPERIMENTAL STUDY

A. Performance metrics

1) Convergence indicators:
• The variable space generational distance metric (V D)

The V D metric measures the closeness of the approxi-
mated PF to the optimal PF [2].

• The Inverted Generational Distance metric (IGD)
In addition to the gap between the optimal PF and the
optimized one, the IGD metric [19] can measure the
diversity of the obtained PF .

• The HyperVolume (HV )
The hypervolume of a set A with respect to a RP ref
denoted by HV (A, ref) is the hyperarea of the set
R(A, ref). HV (A, ref) measures how much of the
objective space is dominated by A [4].

Let A be the obtained PF and P ∗ a set of uniformly
distributed points along the optimal PF in the objective space,
the GD, the IGD and the hypervolume ratio (HV Ratio)
metrics can be defined as follows

GD(A, P ∗) =

√
| A |

∑
v∈A d(v, P

∗)2

| A |
(10)

IGD(A, P ∗) =

∑
w∈P∗

d(w, A)

|P ∗|
(11)

HV Ratio(A, ref) =
HV (A, ref)

HV (P ∗, ref)
(12)

where d(v, P ∗) and d(w, A) are respectively the minimum
Euclidean distance between v and the points in P ∗, and
between w and the points in A.

2) Diversity indicator:
• The maximum spread metric (MS)

The adaptation of the maximum spread metric to dynamic
multi-objective optimization (MS′) was introduced in [2]
and is defined as follows

MS′(A, P ∗) =

√√√√ 1

M

M∑
j=1

(
min(Aj, u, P ∗ j, u)−max(Aj, l, P ∗j, l)

P ∗j, u − P ∗j, l
)2

(13)

where Aj, u and Aj, l are respectively the maximum and the
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Figure 3. Example of archive update with five reference points.

Table I
PARAMETER SETTING FOR DIFFERENT ALGORITHMS.

Parameters Settings

Populations Population size = 100
Archive size = 100

Selection Binary Tournament selection +
crowed-comparison-operator

Crossover Operator Simulated BinaryCrossover
with a distribution index of 20

Mutation Operator (Dy-NSGA-II) Polynomial mutation with a
distribution index of 20

Mutation Operator (LS-Strategy) Polynomial mutation with a
distribution index of 100

Ratio ζ 10%
Threshold γ 0.25
Termination criterion 20,000 evaluations for comparative experiments

1000 generations for the others

minimum value of the j-th objective in the obtained PF . P ∗j, u
and P ∗j, l are respectively the maximum and the minimum value
of the j-th objective in the optimal PF . MS′ is applied to
measure how well the optimal PF is covered by the obtained
PF . A higher value of MS′ reflects that a larger area of P ∗

is covered by A.
In this work, for all performance indicators we use the mean

indicator over time. Let θ be an indicator, the mean θ, denoted
by θ, is calculated as follows

θ =
1

nbChanges

nbChanges∑
i=1

θi (14)

where nbChanges is the number of occured changes and θi
is the θ value calculated before the occurence of the (i+1)th
change.

B. Experimental results

In this section, simulation results are presented using several
DMOPs to assess the performance of the algorithm facing
different difficulties. Parameter settings are presented in Table
I. For each experiment, thirty one independent simulation runs
with randomly generated initial populations are conducted.
The experiments are performed at different severity levels
of {1, 10} and different frequencies of {5, 10, 25, 50} to
study the performance of our algorithm in different challenging
environments.

1) Effect of increasing change severity and change fre-
quency:

a) FDA1: This set of experiments is performed in order
to demonstrate the effect of increasing the change severity
and the change frequency on the proposed algorithm for type
I DMOPs. The benchmark problem used is FDA1 test problem
where the number of decision variables is set to 10 [17]. In
FDA1 test problem, which is a type I DMOP, the optimal
Pareto set changes over time while the optimal PF remains
invariant. This problem has a convex optimal PF.

b) dMOP1 and dMOP2: This set of experiments is per-
formed in order to evaluate the performance of the algorithm
facing a type II DMOP and a type III DMOP in various
change severity and change frequency levels. The benchmark
problems used are dMOP1 and dMOP2 test problems [2]. The
test function of dMOP1 is a Type III DMOP where only the PF
is dynamic which changes from convex to concave. The test
function of dMOP2 is a Type II problem where both the Pareto
set and the PF change over time. Table II presents the obtained
results for the IGD, the HV Ratio and the MS′ metrics for
respectively FDA1, dMOP1 and dMOP2 test problems for
1000 generations.

On the one hand, we can notice in Table II that with
a low change severity (nt = 10), MRP-MOEA presents
better results. This may be explained by the fact that with
slight changes, past optimal solutions remain prominent after
change appearance. Also, the local search procedure guides
the population towards the new search directions and it
ameliorates population when an environmental change takes
place. Moreover, we notice that change severity does not affect
the performance of MRP-MOEA for dMOP2 test problem,
instead, they are improved in both aspects of convergence
and diversity. This observation may validate the adaptability
capacity of MRP-MOEA. When changes are large (nt = 1),
it is observed that the quality of results does not decrease
dramatically. This observation may be explained by the good
level of diversity maintained all over the search progress. This
is due to (1) the balance between convergence and diversity
ensured by the MRP-dominance relation and (2) the archive
update strategy. On the other hand, with the decrease of the
change frequency, the time dedicated to adaptation is more
important and gives the algorithm the ability to converge to
the optimal PF. In fact, as presented in [11], a hypervolume
ratio smaller than 94% is considered to be a threshold for
indicating a poor performance. Thus, examining the variation
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Table II
IGD, HV Ratio AND MS′ METRICS FOR FDA1, DMOP1 AND DMOP2 TEST PROBLEMS OVER 1000 GENERATIONS.

FDA1 dMOP1 dMOP2

(τT , nT ) IGD HV Ratio MS′ IGD HV Ratio MS′ IGD HV Ratio MS′

(5, 10)
Med 0.0504 0.8800 0.9438 0.0113 0.9835 0.9951 0.0347 0.9951 0.9552
IQR 0.0017 0.0039 0.0030 0.0002 0.0028 2.21E-05 0.0058 0.0007 0.0022

(10, 10)
Med 0.0277 0.9336 0.9735 0.0021 0.9944 0.9998 0.0149 0.9988 0.9840
IQR 0.0078 0.0182 0.0094 4.57E-19 0.0001 1.74E-05 0.0061 0.0010 0.0102

(25, 10)
Med 0.0117 0.9711 0.9906 0.0020 0.9952 0.9997 0.0070 0.9998 0.9937
IQR 0.0032 0.0073 0.0032 4.98E-19 0.0001 9.10E-06 0.0020 0.0005 0.0023

(50, 10)
Med 0.0080 0.9807 0.9944 0.0018 0.9953 0.9999 0.0066 0.9999 0.9947
IQR 0.0005 0.0012 0.0006 5.22E-19 0.0001 8.98E-06 0.0017 3.7E-06 0.0031

(25, 1)
Med 0.0178 0.9568 0.9835 0.0024 0.9936 0.9997 0.0052 0.9999 0.9991
IQR 0.0005 0.0011 0.0010 4.98E-19 0.0001 4.53E-05 0.0009 0.0001 0.0003

Figure 4. The obtained PFs for (a) FDA1 and (b) dMOP1 over 1000
generations.

of the obtained HV Ratio, we can state that MRP-MOEA is
able to handle the increase of the change frequency even for
τt = 5 except FDA1 problem which does not present a good
HV Ratio with τt ≤ 10. Concerning the MS′, variations are
slightly significant. Moreover, when observing the variation
of the IGD, it is clearly observed that the obtained results
slightly deteriorate mainly for τt = 5 which is explained by the
decrease of the time devoted to optimization and adaptation.

Figure 4 shows the obtained PFs for FDA1 and dMOP1
test problems for 1000 generations with τt = 25 and nt = 10.
It can be noticed that the algorithm is able to track and to
converge to the PF as it changes over time without the need
to detect changes.

2) Study of the adaptability of MRP-MOEA with environ-
ment changes: Figure 5 illustrates the changes of IGD, V D
and HV Ratio during the optimization process for FDA1 test
problem over 1000 generations and with τt = 25 and nt = 10.
As we can notice, the three curves are in total harmony.
In fact, any increase of the HV Ratio is accompanied by a
decrease of IGD and V D while any reduction of HV Ratio
is accompanied by an increase of the latter ones. Moreover,
Figure 6 shows the evolution of V D, IGD and MS′ metrics
over 200 generations for FDA1, dMOP1 and dMOP2 problems
with τt = 25 and nt = 10. It is clearly observed that the
occurrence of a change ((gen mod 25) = 0) automatically
leads to a deterioration in performance. Our algorithm has
shown a capacity of adaptability since after a small number

Figure 5. IGD, V D and HV Ratio curves for FDA1 over 1000 generations.

of generations and without explicitly detecting changes, it
recovers a good level of performance. This ability may be
explained by the good level of diversity maintained by the
algorithm all over the search progress.

3) Study of the influence of the number of RPs in the
performance of MRP-MOEA: Our algorithm is based on the
predefinition of a set of RPs to be used as targeted search
directions. Thereby, the more the number of RPs is, the more
the search space is covered. However, a very large number
may slow down convergence. In this section, we aim to study
the influence of the size of the RP set in the performance of
MRP-MOEA. Thereby, we conduct a set of experiments on
dMOP1 and dMOP2 test problems with several settings of
the number of RPs. Table III presents the obtained values of
IGD and MS′ metrics with τt = 10 and nt = 10 over 1000
generations where N is the size of the population.

We observe that when the number of RPs is smaller than the
size of the population, the performance of MRP-MOEA de-
creases in both aspects of convergence and diversity. Moreover,
when the number of RPs exceeds N , this does not provide a
significant improvement while it may slow down convergence
since it increases the incomparability between solutions.

4) Comparative experiments: This subsection is mainly de-
voted to confront MRP-MOEA to one of the most recent works

3173



Figure 6. Evolution of (a) V D, (b) IGD and (c) MS′ metrics over 200 generations for FDA1, dMOP1 and dMOP2 problems.

Table III
THE INFLUENCE OF THE NUMBER OF RPS IN THE PERFORMANCE OF

MRP-MOEA ON DMOP1 AND DMOP2 TEST PROBLEMS.

NB RPs
dMOP1 dMOP2

IGD MS′ IGD MS′

N/2 0.0050 0.9849 0.0168 0.9840

N 0.0021 0.9998 0.0149 0.9940

2N 0.0011 0.9999 0.0142 0.9944

3N 0.0007 0.9999 0.0137 0.9947

in this research area, called dynamic competitive-cooperation
coevolutionary algorithm (dCOEA) [2]. dCOEA is a coevo-
lutionary multi-objective algorithm based on competitive and
cooperative mechanisms. In fact, the problem is decomposed
into several subcomponents along the decision variables. These
subcomponents are optimized by different species subpopula-
tions through an iterative process of competition and coop-
eration. The optimization of each subcomponent is no longer
restricted to one species but at each cycle, different competing
species solve a single component as a collective unit which
permits the discovery of interdependencies among the species.
In order to deal with dynamic multi-objective optimization
environments, authors have proposed to: (1) introduce diversity
via stochastic competitors, (2) start the competitive mecha-
nism, whenever a change is detected, independently of its fixed
schedule and (3) handle outdated archived solutions using an
additional external population in addition to the archive. The
main advantages of the proposed algorithm are: (1) it over-
comes limitations in conventional coevolutionary models by
incorporating both competitive and cooperative mechanisms
allowing the problem decomposition to emerge simultaneously
with the optimization process and (2) it expoilts the high
speed of convergence in coevolution allowing the algorithm to
adapt quickly to changing environments. However, the main
drawback of this algorithm is the need to explicitly detect
changes.

To examine its performance, dCOEA was compared against
two different dynamic MOEAs denoted as MOEA and dCCEA
[2], respectively. In this study, we compare MRP-MOEA
to dCOEA and its competitors (MOEA and dCCEA). For
each test problem and each pair of algorithms, we perform
a (two-sided) Wilcoxon test to decide whether or not the
difference between the indicated median values (for each

performance indicator) for the two algorithms is statistically
significant on the considered problem instance. The results
of the significance tests for the pairwise comparisons at level
α = 0.05 are presented in the form of (-: no significance) and
(+: significance) in the order on which the algorithms appear.
Table IV illustrates the obtained results for V D and MS′

metrics for dMOP1 and dMOP2 test problems after 20, 000
evaluations.

Table IV shows that MRP-MOEA outperforms MOEA and
dCCEA in both aspects of convergence and diversity for all
test problems and upon different frequency and severity levels.
Also, we notice that dCCEA is unable to find a diverse PF
when the shape of PF is dynamic. When compared to dCOEA,
we also observe that MRP-MOEA produces better results for
dMOP2 test problem for different settings except the settings
of nt = 10 and τt = 5 where dCOEA provides a better
diversity level. It is important to note that these results are ob-
tained despite of the fact that dCOEA uses a diversity scheme
consisting on starting the competitive mechanism, whenever
a change is detected which is not the case for MRP-MOEA
which does not take any explicit action when a change takes
place. When observing results relative to dMOP1, we note that
while dCOEA provides smaller V D values for nt = 10 and
τt = 5 and τt = 25, we can see that MRP-MOEA maintains
the best diversity among the different combinations of severity
and frequency values. It is able to find the most diversified PF
despite not having the best convergence. Moreover, it provides
the most important V D values for all other settings.

IV. CONCLUSION

In this paper, we have proposed a new multiple search
direction-based dynamic multi-objective EA to seek simulta-
neously the location of the optimal solutions along different
directions, rathar than searching in the whole search space. Our
algorithm called MRP-MOEA is able to deal with undetectable
changes since it does not need to detect or predict them. MRP-
MOEA is based on the use of a new Multiple Reference
Point based-dominance relation called MRP-dominance that
balances between convergence and diversity. Also, we have
proposed a new archive update strategy that provides well
distributed solutions along the PF. Moreover, to improve the
adaptability of the algorithm, we have opted to the use of
a new local search technique that guides the search towards
new search directions whenever a change occurs. Experiments
have shown the ability of our algorithm to converge and
track PFs over time thanks to the good level of diversity
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Table IV
COMPARATIVE RESULTS FOR V D AND MS′ METRICS FOR DMOP1 AND DMOP2 TEST PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD.

dMOP1 dMOP2
MOEA dCCEA dCOEA MRP-MOEA MOEA dCCEA dCOEA MRP-MOEA

(τT , nT ) V D MS′ V D MS′ V D MS′ V D MS′ V D MS′ V D MS′ V D MS′ V D MS′

(5, 10)
Med 0.122 0.917 0.252 0.828 0.0082 0.979 0.0091 0.9945 0.657 0.983 0.230 0.881 0.363 0.989 0.1348 0.9522
IQR 0.020 0.045 0.032 0.031 0.0035 0.015 0.001 1.71E-05 0.034 0.011 0.017 0.025 0.028 0.007 0.021 0.0032

(+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+-+) (+++) (+++) (+++) (-++) (+++) (+++)

(10, 10)
Med 0.121 0.912 0.132 0.878 0.003 0.99 0.0029 0.9998 0.506 0.984 0.165 0.912 0.173 0.9921 0.0705 0.994
IQR 0.032 0.017 0.026 0.009 0.0015 0.005 0.0001 4.83E-05 0.004 0.109 0.026 0.034 0.017 0.0051 0.004 0.0082

(-++) (+++) (-++) (+++) (++-) (+++) (++-) (+++) (+++) (+++) (+-+) (+++) (+-+) (+++) (+++) (+++)

(25, 10)
Med 0.067 0.944 0.032 0.943 0.0015 0.9916 0.0021 0.9996 0.604 0.985 0.069 0.958 0.061 0.9947 0.0503 0.9948
IQR 0.023 0.045 0.009 0.029 0.0004 0.0073 0.0002 4.53E-05 0.095 0.0112 0.021 0.015 0.012 0.0048 0.0047 0.0031

(+++) (-++) (+++) (-++) (+++) (+++) (+++) (+++) (+++) (+++) (+-+) (+++) (+-+) (++-) (+++) (++-)

(10, 1)
Med 0.116 0.923 0.1310 0.890 0.0032 0.989 0.003 0.9939 1.154 0.982 0.192 0.895 0.143 0.9971 0.058 0.9991
IQR 0.025 0.047 0.0185 0.032 0.0023 0.0064 0.0002 1.5E-05 0.042 0.022 0.026 0.032 0.035 0.0076 0.0147 0.0003

(+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++)

maintained all over the search progress. When confronted
to serveral dynamic multi-objective optimization algorithms,
MRP-MOEA has shown competitive and better results in terms
of convergence and diversity. However, it should be noted that
in this paper, we are only interested to unconstrained problems.
Hence, a first future research direction is to adapt MRP-MOEA
to deal with problems with dynamic constraints. Moreover, we
plan to apply MRP-MOEA to real world problems such as dy-
namic multi-objective scheduling and transportation problems.
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