
Evolutionary Community Detection in Social 
Networks 

 Tiantian He and Keith C. C. Chan  
Department of Computing 

The Hong Kong Polytechnic University 
Hong Kong, China 

{csthe, cskcchan}@comp.polyu.edu.hk 
 
 

Abstract—As people that share common characteristics and 
interests tend to communicate with each other more frequently, 
they form communities within social networks. Several 
methods have been developed to discover such communities 
based on topological metrics. These methods have been used to 
successfully discover communities that are relatively large, but 
for communities characterized by members interacting more 
frequently with each other rather than interacting with many 
others, we propose here an effective method which is based on 
the use of an evolutionary algorithm (EA) called ECDA. Given 
a social network represented as a graph, unlike existing 
approaches, ECDA considers both topological metrics of the 
graph and the attributes of the vertices and edges when 
detecting for communities in the network. It performs its task 
by formulating the community detection problem as an 
optimization problem. By computing a measure of statistical 
significance for each attribute of the vertices, ECDA looks for 
communities in a network that have maximal connection 
significance within a community and minimal significance 
between any two communities. With such a strategy, ECDA 
partitions a network into different communities consisting of 
members with similar attributes within and different attributes 
without. Unlike other EAs, ECDA adopts a reproduction 
process consisting of special crossover and mutation operators, 
called Self-Evolution, to speed up the evolutionary process. 
ECDA has been tested with several real datasets and its 
performance is found to be very promising. 

Keywords—evolutionary algorithm; genetic algorithm; 
community detection;  social network 

I. INTRODUCTION 
Community detection refers to the identification of a 

goal-oriented partition of a large social network into smaller 
ones. To do so, such a network is usually first represented as 
a graph with vertices labeled by an ID and edges that do not 
take any value except for weights computed according to 
topological significance.  

Existing community detection algorithms consider only 
topological information in a network and communities are 
therefore detected based only on the structure of 
communities. However, in a typical social network, it can be 
hobbies and political preferences that decide whether or not 
a user belongs to a particular community. Hence, other than 
topological properties, a network can be partitioned into 
very communities if such information is used as well. 

One of the most popular properties of a graph that is 
considered by many algorithms to detect for communities in 
social networks is modularity, Q [12]. A community with 
high modularity means that its members are connected with 
each other much more so than that of the others in the other 
communities. The use of modularity in community detection 
was first proposed in [12] with a fast algorithm developed to 
make use of modularity to identify communities 
hierarchically. The complexity of this fast algorithm was 
further reduced later by using a sparse-matrix data structure 
as proposed in [2]. Though a reasonable approach, it is well 
known that the use of modularity as a criteria for defining a 
community has some weaknesses – it usually finds one or 
few very big communities and many other very small ones 
[17]. To improve such an approach, parameters such as 
cluster size, edge density penalty are added at each step in 
the community detection process to reduce community size 
while compromising modularity score. As a result, the 
performance of these modified modularity-based approaches 
is therefore not as good as the original fast algorithms.   

Other than modularity, another graph property that is 
very often used when detecting communities in large 
networks is known as edge centrality [5]. Edge centrality 
can be considered as a measure computed by assigning 
higher weights to those edges which connect different 
communities. Through eliminating connections of the 
highest weights, community structures can then be unfolded. 
However, approaches that are based on edge centrality are 
usually slow. In fact, its computational complexity is 
approximately O(mn2), m and n being the numbers of edges 
and vertices [4]. 

Recently, there has been some effort to detect 
community structures using Genetic Algorithms (GAs) as 
such algorithms can potentially find more feasible partitions 
in large, complex networks and the resulting partitions can, 
theoretically, be optimized. In fact, several GA based 
approaches to community detection have been proven to be 
effective. The first successful GA application for 
community detection was proposed in [16]. The approach is 
to make use of modularity, Q, as the fitness function so that 
Q can be optimized. 

Another GA developed to detect community structures 
was proposed in [9]. It makes use of a Silhouette Width [14] 
and a normalized cut [15] measure in its fitness function. 
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This GA also introduces a crossover operator to allow 
community structures to be exchanged. Even though it 
makes the speed of convergence of the evolutionary process 
slow, the crossover operator allows more varieties of 
community structures are considered.  

In addition to the above two GAs, several other GAs 
have also been proposed for community detection and they 
used different topological metrics when performing their 
tasks. These GAs have been used successfully for different 
applications. 

The majority of the community detection algorithms, 
whether or not they are GA based, make use of various 
topological properties of graphs. The performances of these 
algorithms are evaluated according to how good they are at 
finding partitions that are optimal or near-optimal against 
different graph topological measures.   

Since a community can also be formed by means of 
individual attributes about its members rather than 
topological properties, there is a need for algorithms that 
can take attributes of individual members that may be 
shared by other members of a particular community, into 
considerations. For this purpose, we propose to use an 
Evolutionary Algorithm (EA) called ECDA (Evolutionary 
Community Detection Algorithm). ECDA has these 
characteristics: (i) it represents a community for the 
evolutionary process using a weighted graph constructed 
based on the significance of the connections in a network; 
(ii) it guides the evolutionary process using a fitness 
function defined in terms of the number of significant 
connections within and between communities; (iii) it uses a 
novel crossover operator to allow the structure of two 
communities to be swapped; (iv) it uses a novel mutation 
operator to allow Self-Evolution (SE) to take place so as to 
shorten the time required for convergence. ECDA has been 
tested with several large datasets and its performance has 
been found to be very promising. 

In the following section, we first describe how 
meaningful the information for each vertex can be identified 
and how the significance of connections can be measured 
with the identified information. In Section III, two different 
fitness functions are proposed to guide the evolutionary 
process. In Section IV, the reproduction operators of ECDA 

are described in details. The performances of ECDA are 
evaluated with different real datasets and the results are 
presented in Section V. Finally, in the last section, we give a 
conclusion.  

II. DISCOVERING MEANINGFUL INFORMATION IN 
NETWORKS 

Most of existing approaches to community detection 
treat the problem as discovering community with special 
topological properties. However, in the real world, a 
community may be formed when users share some common 
interests or characteristics and this may not necessarily be 
reflected by whether or not they communicate with each 
other frequently enough. 

A. Social Network and its Literal Information 
In this section, we introduce the notation used to 

represent a social network. Given a social network, we 
represent each member in it as a vertex in a graph and we 
represent whether or not two members communicate with 
each other as an edge in it. Given a vertex set V, and an edge 
set E, the graph can be represented as G(V,E). The vertices 
set, V={ vi|i=1,2,..., |V|} refers to all the vertices in the 
network, and E={e(vi, vj)=1|i≠j, vi, vj∈V} represents the 
edge set in G. |V| and |E| are the total numbers of vertices 
and connections in the graph. An example of such a graph 
can be represented as Fig. 1 (a) and Fig. 1 (b). 

Besides topological properties, ECDA assumes that there 
are attribute values associated with each member of the 
network. These attribute values represent “topics” or “labels”. 
For a vertex vi in G, these attribute values include a unique 
identifier, ID=i and a collection of all the topics that are 
associated with i. This collection of topics can be represented 
as a set Ti=( ti1, ti2, ti3...), Ti <T, where T is the set of all 
topics that can possibly be assigned to the vertex (Fig. 1 (c)). 
It is because of this characteristic that the graph of the 
network is also called topic-labeled graph (TG) after each 
vertex is assigned its corresponding features. 

B. The Significance of Connection 
The vertices and edges in TG indicate not only 

relationship among members but also how they may relate 

 
                                  (a)                                                          (b)                                                          (c) 

 
Fig. 1. A social network with topics (TG) 
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to each other based on how the labeled topics relate to each 
other. As it is usual for people with the same or similar 
background, ideology or interests to interact more with each 
other, we can expect a community to be formed among 
people sharing similar attribute values such as similar 
discussion topics of common interest or book titles, etc. 

To identify such topics of interest to a special 
community, a statistical measure defined in [3] is adopted 
here for the determination of significance between each pair 
of topics. In this paper, this measure is referred to as the 
measure of Significance of Connection and it is defined as 
follows. 

Given two vertices vi and vj in TG, their associated 
topics are therefore represented as Ti and Tj, and Ti∩Tj may 
or may not be empty. For any one topic from Ti, tim and 
another one from Tj , tjn, we define o(tim, tjn) as the frequency 
of occurrence of edges connecting a vertex labeled with tim 
and the other done with tjn. We also define e(tim, tjn) to 
represent the expected frequency of occurrence under the 
assumed condition that tim and tjn are independent of each 
other. From a statistical perspective, if tim and tjn are 
mutually dependent, o(tim, tjn) and e(tim, tjn) should be 
significantly different. So the statistical measure to evaluate 
the significance of differences between o(tim, tjn) and e(tim, tjn) 
can be defined by (1), where o(tim+) is the frequency of the 
occurrence of the edges connecting vertices labeled with tim.  
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Based on it, we can determine the significance between 
vertex i and j by (2). 
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In other words, the significance between any two vertices in 
TG is the maximum of r(tim, tjn). In [6], r(tim, tjn) has been 
shown to follow an approximate Gaussian distribution so 
that if r(tim, tjn) has the value of 1.96, the two topics can be 
considered as having an association relationship with each 
other at a 95% confidence level. If Sij is smaller than 1.96, 
we can say that the connection between the two vertices is 
insignificant. 

After the significant connections are identified and the 
significance measure is determined, the measure is 
normalized using an information measurement [10]. Let tim 
and tjn be the most significant topic pair between vertex i 
and vertex j, then an information redundancy between two 
vertices can be defined as: 
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where p(tim, tjn) is the joint probability of tim and tjn which 
can be obtained by dividing o(tim, tjn) by |E|, p(tim) is the 
probability that edges connect vertices with tim and it can be 
obtained by dividing o(tim+) by |E|. Hence, R(vi, vj) is a 
mutual information measure representing the average 
reduction of uncertainty about the connection of the topic 

pair tim and tjn. A large magnitude means that the 
relationship between topic pairs is meaningful. However, 
since the radix of each pair of topics is different, it is better 
for the joint entropy, H(vi, vj) to normalize R(vi, vj) and H(vi, 
vj) is defined as: 

( ) ),(log),(, jnimjnimji ttpttpvvH −=                (4) 
Given R(vi, vj) and H(vi, vj), we can define the Normalized 
Significance of the connection (NSij) connecting vertex i and 
vertex j as: 

( )
( )ji

ji
ij vvH

vvR
CNS

,
,

∗=                           (5) 

where C is a constant that is used to magnify or contract the 
range of NSij. Apparently NSij ranges from zero to C. If NSij 
is equal to C, it means the connection between vertex i and 
vertex j is completely significant. If it equals to zero, that 
means the connection is totally insignificant. The value of 
NSij is always between 0 and C, which means that the 
connection between two vertices is partially significant. To 
be added by the binary value of the solid connection, TG is 
represented as a weighted graph (WTG) and its connections 
stand for not only topological information, but also practical 
significance resulted from the labeled topics. And WTG is 
the graph which will be detected. 

III. BENCHMARKING FOR COMMUNITY DETECTION 
In this section, we discuss the benchmarks used in 

evaluating effectiveness of community detection algorithms. 
Previous community detection algorithms mainly make use 
of topological properties. For more effective performance 
evaluation, we define a community as follows. 

For any vertex in a community, it tends to connect with 
those vertices which share significant topic pairs. Based on 
this definition, the following two metrics are used for 
identifying communities. Let WTGp (0≤p<P) be a sub-
graph of WTG, where P is the total number of the sub-
graphs and all the figures of the significance of connections 
have been obtained. For all vertices in WTGp, the number of 
significant connections within WTGp can be summarized as 
NSWTGp. Therefore, the proportion of significant connection, 
PWTGp is the quotient of all the significant connections 
divided by the expected number of edges in WTGp and it can 
be described as equations (6) and (7): 
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where |Ep| refers to the value under the assumption that 
every vertex has connections to all the other ones in WTGp 
and NSWTGp is also computed under this prerequisite. 
Making this assumption here aims at putting the definition 
above into practice: although currently, there is no 
connection between a pair of nodes, they have the potential 
to interact with each other if they have a significant topic 
pair, which is the reason why they are located into the same 
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community. After the proportion of significant connection is 
acquired, the average proportion of significant connection 
can be defined as the following: 

∑=
P

WTG
p

WTG p
P

V
V

AP                    (8) 

where |Vp| is the number of nodes in WTGp and |V| is the 
total number of vertices in WTG. APWTG reflects the average 
number of the significant connection between a vertex and 
another after dividing WTG into P parts and it ranges from 0 
to 1. That APWTG is maximized means the partition possesses 
the highest proportion of the significant connection in all 
communities and any two vertices in the same community 
have the largest likelihood to interact with each other, 
although there may not be a solid relationship between them 
currently. It should be explained that the hypothesis about 
|Ep| is effective only for the computation of  NSWTGp and for 
other computations of connections and communities, they 
consider solid significant links only. 

Besides of considering interactions within a community, 
we should also pay attention to the ones connecting different 
communities. Based on the proposed definition, significant 
connections between communities should be minimized 
since too many of them cause a vague boundary between 
communities. Here we define a measure to weight the 
vagueness of the community boundary. Given a community 
WTGp which contains |Vp| vertices, the vagueness of the 
community boundary is defined as: 
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where NSij is the aggregated value of all significant 
connections that start with vertex i, vj∈Vp represents two 
vertices are both in WTGp, and the other one means a vertex 
is out of WTGp. Like what has been done in equation (8), the 
mean vagueness of the community boundary is defined as 
equation (10): 
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VBWTG evaluates to what extent the differentiation is if a 
community is compared to another and it also ranges from 0 
to 1. Apparently, the higher VBWTG is, the more 
differentiated from other ones a community is. Therefore, 
VBWTG helps to diminish the similarity and significant 
interactions between any two communities. 

Based on the maximization or the arbitral settlement of 
APWTG and VBWTG, in theory a network can be divided into a 
number of communities which are differentiated from each 
other, and their vertices have considerable probability to 
interact with each other as well as possess a number of 
practical significant connections. 

IV. OPTIMIZATION THROUGH EVOLUTIONARY APPROACH 
As a part of evolutionary computing which was first 

proposed by I. Rechenberg in the 1960s, the idea of 
evolutionary algorithm (such as GA) is invented in [7]. With 
the growing complexity of recent problems, the 
evolutionary algorithm (EA) earns considerable attention 
since its high efficiency on some problems with which 
traditional approaches are hard to deal, such as NP-
Complete problems. In the first ten years of this century, the 
applications of EA to community detection have been 
looked into by many researchers who are interested in the 
field of analyzing complex networks, such as social network 
analysis and there have been some remarkable publications 
which are plunged much effort by the academia. Thus EA 
still plays an important role in modern research and brings 
us consistent surprise. In this section, the detail of our 
algorithm (ECDA) will be illustrated. 

A. Gene Representation 
When the evolutionary algorithm is applied to the task of 

community detection, two dominant methods for 
representing the information on the community structure are 
preferred. One is locus-based adjacency representation [13], 
the other is straight-forward representation [8]. In ECDA, 
the straight-forward representation is used for encoding. The 
straight-forward representation encodes gene and constructs 
the chromosome in a more directive way: Given a 
chromosome of a population which contains M genes, where 
M stands for the number of the communities, each gene is 
assigned a value from 1 to M. As a result of that, the ith 
gene’s value j means the ith vertex in the network belongs to 
the jth community. Fig. 2 illustrates a brief instance of 
straight-forward representation. 

B. The Revised Initialization 
Since the straight-forward representation is used in 

ECDA, the parameter M must be determined before the 
initialization. Here M is a randomized parameter decided by 
ECDA before each chromosome is initialized. And in our 
approach, the maximum value of M is set to |V|/2. It is usual 
that the ordinary way of initializing a chromosome is to 
assign a randomized community ID to each gene. However, 
the randomness of this method might not ensure the quality 
of the initialized chromosome and might lead to a time-
consuming phase before obtaining the best solution. 
Therefore, the process of initialization in ECDA is revised 
to generate more qualified chromosomes: First, M nodes is 
selected randomly as the initial communities; Second, 
vertices possessing at least one significant connection are 

 
Fig. 2. Straight-forward representation 
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randomly assigned to a community with which they share 
the significant connection; Third, all the vertices without 
any significant connection are assigned to a community 
randomly. The above three-step method are iterated P times, 
where P is the size of the population. After that, ideally, 
there will be P different solutions dividing the network into 
different numbers of communities. 

C. The Process of Reproduction 
This stage contains two sub-steps, which are crossover 

and mutation. Rather than the standard crossover and 
mutation, the operator of the uniform crossover is modified 
and then we use an extraordinary phase which is named as 
Self-Evolution (SE) to improve the fitness of the new-
birthed chromosome and obtain satisfactory chromosomes 
in less time. 

1) Crossover 
In this phase, ECDA reproduces one descendant after 

each selection. Aiming at letting more adaptive 
chromosomes have more opportunities for crossover, ECDA 
allows only a particular proportion of more adaptive 
chromosomes to involve into reproduction and the 
proportion is an arbitral value of 0.30. Having selected the 
parents randomly in the population of candidates, ECDA 
will crossover them in the following way: First, one parent 
is selected as a template; Second, for each community in the 
other parent, their members replace the allele genes in the 
template if the rate of crossover is satisfying and each 
member of a selected community is possible to mutate 
according to the mutation rate. Having completed the above 
steps, ECDA will reproduce a descendant. 

2) Self-Evolution 
Although the fitness of the population is improved as 

generations grow, it would be an extremely time-consuming 
stage to obtain the satisfactory fitness if no factitious 
assistance is involved, especially when the data size is very 
large. Therefore, a new phase helping the descendant to be 
more adaptive will be executed after each crossover. And it 
is named as Self-Evolution (SE). The core of SE is to search 
a more appropriate community for each vertex and move the 
vertex into it, based on the current vertices distribution. To 
achieve the expected goal, we use a two-dimension matrix 
to complete the stage of SE: Given all nodes in a network 
and all communities, the matrix VC[|V|][M] is defined to 
represent how significant the relationship between a vertex 
and a community is. For an element VC[i][j], it equals to zero 
if there is no connection between node i and community j. 
Otherwise, it means several solid connections or significant 
connections bridge node i and community j. By using 
VC[|V|][M], Self-Evolution is completed like the follows: For 
each vertex in some community j, if VC[i][max]≠VC[i][j], it is 
moved from community j to community max; If node k 
connects node i, VC[k][j] is decreased by NSik, while VC[k][max] 
is added by NSik. After the completion of SE, those 
communities which possess fewer significant connections 
might be eliminated and the community structure produced 
by crossover can be improved. ECDA has to spend much 
time on SE at the beginning, but after a number of 
generations, the time consumed by SE will be shortened as 
the proportion of more adaptive communities from the 

parents is higher. As a result of that, the efficiency of ECDA 
is enhanced. 

D. The Fitness Function 
As what has been illustrated in last section, we use 

equations (8) and (10) as fitness functions together and they 
take different but revisable weights, respectively. Equation 
(8) optimizes the proportion of significant connection both 
tangible and intangible within the community. And equation 
(10) diminishes the solid significant connections bridging 
two communities. The fitness of each chromosome is 
computed after initialization and reproduction. 

E. Parameters of ECDA 
In ECDA, the following parameters need to be 

determined before it is executed, including population size P, 
crossover rate cr, mutation rate mr and maximal number of 
generations mg. In order to reduce the time of initialization, 
we prefer to use a smaller population size. Although there 
are fewer potential solutions, it has limited negative-effect 
to the experimental results under the assistance of SE. For 
the configurations of crossover rate and mutation rate, 
ECDA uses common settings. The detail information on 
these parameters is shown in Table 1. 

F. Summary of the algorithm 
Based on the description above, the main body of ECDA 

is summarized as the pseudo codes in Fig. 3. 

V. EXPERIMENTAL RESULTS 
The performance of ECDA for community detection has 

been evaluated by using three sets of real data: the Political 
Blogs dataset [1], the High energy theory collaboration 
network dataset [11] and the Astrophysics collaborations 
dataset [11]. These datasets are abbreviated as PB, HC and 
AC, respectively. These datasets have the following 
characteristics: (i) PB is a network dataset collected around 
the 2004 US presidential election. The network contains 
1,222 vertices and 16,174 edges. (ii) HC is a network of 
collaborating scientists posting preprints on the High-
Energy Theory Archive at www.arxiv.org. The dataset 
contains 13,815 edges and 5,835 vertices representing 
authors and their research fields. (iii) AC is a network 
dataset of scientists posting preprints on the Astrophysics 
Archive at www.arxiv.org from 1995 to 1999. It contains 
119,652 edges and 14,845 vertices representing scientists 
with their research interests. A summary of the above three 
datasets and some examples of the data used in our 
approach are shown in Tables 2 and 3. The performance of 
ECDA has been compared to several different algorithms 
which include improved fast algorithm CNM [2], and fast 
algorithms with parameters HE, HN and HEN [17]. 

A. Computational efficiency 
To determine the efficiency of different algorithms, we 

TABLE 1. PARAMETERS IN ECDA 
P cr mr mg 

50, 100, 200 0.5, 0.6 0.01 100, 200 
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recorded the average execution time when the algorithms 
were used with the three datasets. The results are shown in 
Table 4.  For the dataset PB, ECDA completes its tasks at an 
average time of 1.56 seconds (ranked 4th place). When data 
size becomes larger, the results are quite different. For HC, 
ECDA uses approximately 6.7 seconds to identify all 
communities in the network, but other algorithms uses about 
10 seconds more to complete the task. For the largest 
dataset, the average execution time of ECDA is 59.3 
seconds, but that of other algorithms are between 147 
seconds and 211 seconds.  

For the fast algorithms, it should be noted that their 
complexity is of the order of O(nlog2n), where n is the total 
number of vertices in the network. As a result, the running 
time increases quickly as the size of the dataset becomes 
large. Compared to these fast algorithms, the complexity of 
ECDA can be considered separately for initialization and 
reproduction. When ECDA initializes population whose size 
is P for a network containing n vertices and m edges 
(significant and insignificant ones), for each chromosome 
which can be randomly initialized into c communities, it 
performs its tasks requiring O(2(m+c)+cn'2), where n'2 is 
the average size of each community, to construct the 
chromosomes and compute their fitness values. Hence, the 
total time for initialization is of the order of O(P(2(m+c)+ 
cn'2)). For reproduction, if d descendants are produced for 

each generation, and if the rate of crossover is r, ECDA 
works under the complexity of O(nr) and it takes 
O(c(n'2+1)+n(c+e)+2m), where e is the average degree of 
each vertex, for mutation and the computation of fitness. For 
the whole reproduction process, therefore, the complexity is 
O(d(c(n'2+1)+n(c+e+r)+2m)). 

In summary, if it takes G generations to converge to 
optimal community structures, the complexity of ECDA is of 
O(P(2(m+c)+cn'2)+dG(c(n'2+1)+n(c+e+r)+2m)). Since P 
and dG are much smaller than m and n, we can assume that 
the two are equal to a constant con and m~n and the 
complexity becomes O(con(n(c+e+r+4)+c(3+2n'2))). But as 
the reproduction goes on, the complexity should be much 
lower than this estimate since the operations for SE (i.e., 
O(n(c+e))) decrease tremendously. Based on the complexity 
of different algorithms and the average execution time shown 
in the table, we can conclude that the complexity of our 
approach is less than O(nlog2n). But like other EAs, ECDA 
needs time to initialize and to compute fitness values. Due to 
connatural flaws of the evolutionary algorithm, it is hard to 
tremendously reduce the complexity of ECDA. However, 
ECDA is still faster than those approaches (e.g. algorithms 
that are based on the use of edge centrality) whose 
complexity is equal to or larger than O(nlog2n). 

B. The Effectiveness of the approach 
In order for us to compare the effectiveness of ECDA 

with the other algorithms, we need to evaluate the quality of 
the community detected. To do so, we used the Modularity 
(Q) measure as it is one of the most prevalent benchmarks 
for evaluating the effectiveness of community detection 
algorithms. As described in the first section, Q is defined as: 

( )∑ −=
i

iii aeQ `2                               (11) 

where eii represents the fraction of solid links within 
community i and a2 stands for the links in this community 
under the expected situation. The experimental results of Q 
obtained by different algorithms are shown in Table 5. 

From the table, ECDA performs well in datasets PB and 
AC. For these two datasets, it performs better than other fast 
algorithms based on modularity optimization. For the 
dataset HC, the modularity obtained by ECDA is 0.03 less 
than the best. As ECDA does not make use of modularity as 
a criterion for optimization, it is understandable that it may 
not always perform better than approaches that adopt 
modularity as a criterion for performance optimization. 
Despite this being the case, it shows that weighing the 
significance of the connection for community detection can 
allow very satisfactory results to be obtained even when a 
performance measure based on topological properties is 
adopted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Pseudo codes of ECDA 

initialization; 
done = false; count = 0; 
if(fitness){ done = true; 
   found satisfying solution; break;} 
else{ while(done == false){ count += 1; 
         for( i = 0; i < maxdescendant; i++){ 
           crossover; 
           self-evolution; 
           insert descendant into population;} 
          elimination; 
         if(fitness){ 
            done = true; 
            found satisfying solution; break;} 
         if(count == mg){ 
            cannot find satisfying solution; break;} 
         if(count%10==0){ 
            initialization; 
            insert best chromosomes; 
            elimination; 
            if(fitness){ 
               done = true; 
               found satisfying solution; break;}}}} 

TABLE 2. DETAIL INFORMATION ON THE DATASETS 
Dataset PB HC AC 
Vertices 1222 5835 14845 
Edges 16174 13815 119652 
Topics 7 5293 11340 

TABLE 3. VERTICES IN PB 
ID Label (Source) 

1306 BlogPulse, 
LabeledManually, 

eTalkingHead 
1307 Blogarama 
1308 Blogarama, BlogCatalog 

TABLE 4. EXECUTION TIME OF DIFFERENT APPROACHES 
 ECDA CNM HE HN HEN 

PB 1.56s 1.3s 1.3s 2s 1.2s 
HC 6.67s 16s 17s 17s 18s 
AC 59.3 147s 178s 211s 179s 
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Besides comparing modularity of different algorithms, 
we also obtained the number of detected communities by 
different methods and the data of APWTG and VBWTG from 
other algorithms. The results of the comparisons are 
summarized in Tables 6 and 7. From Table 6, it is seen that 
ECDA tends to identify more communities in a given 
network especially in larger ones such as HC and AC. As 
shown in Table 7, most results of APWTG and VBWTG obtained 
by ECDA are better than those obtained by the other four 
approaches, except for the figures of VBWTG for dataset HC 
and AC.  According to Tables 5, 6 and 7, it is found that the 
proposed evolutionary algorithm can detect communities 
with higher proportion of significant connections.        
Moreover, since ECDA finds communities with optimally 
significant maximal intra-community connections and 
significant minimal inter-community connections, it ensures 
that it performs well with APWTG, VBWTG and modularity. 

Based on the experimental results, it can be seen that 
modularity optimization can improve the performance of 
VBWTG to some extent like that of the performance obtained 
by other algorithms. However, maximizing modularity may 
sometimes result in the pitfall that the detected communities 
might be meaningless. For example, for the case of HC, the 
other four algorithms obtained very high VBWTG which are 
approximately 0.1 higher than the VBWTG of ECDA. 
However, the difference in APWTG is evident as it ranges from 
0.35 to 0.38. As a result, the vertices in the detected 
communities obtained by those modularity optimization 
algorithms have meaningful relationship only with those 
sharing solid connections. For those nodes which are 
disconnected, they will probably never interact with each 
other because they share insufficient similarity causing 
interactions potentially. Besides considering topological 
information in a network, our EA also emphasizes on the 
practical meaning of communities just like the benchmarks 
proposed in this paper and it still can obtain decent 
experimental results evaluated by the metrics which are 
based on topological aspects, such as modularity. So, ECDA 
is a feasible approach to community detection and can 
identify meaningful communities in social networks. 

VI. CONCLUSION 
In this paper, a novel evolutionary algorithm for 

community detection, ECDA is proposed. Compared to 
many existing approaches, which mainly consider 

topological properties when detecting communities in 
networks, ECDA considers both topological properties and 
attribute information as criteria for defining a community 
during the evolutionary process. The results of performance 
evaluation show that ECDA can be efficient and effective 
for the detection of meaningful communities. The fact that 
ECDA can perform relatively well means that, considering 
attribute information for each vertex in defining a 
community can allow very satisfactory results to be 
obtained even if the evaluation metrics are based on 
topological properties. ECDA has demonstrated that it can 
detect meaningful communities when there is more 
information on practical meaning. For future work, the 
efficiency of ECDA and the balance between APWTG and 
VBWTG will be further improved. 
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