

Abstract— Studies on the bootstrap problem in evolutionary
robotics help lifting the barrier from the way to evolve robots
for complex tasks. It remains an open question, though, how to
reduce the need for designer knowledge when devising a
bootstrapping approach for any particular complex task.
Transfer learning may help reducing this need and support the
evolution of solutions to complex tasks, through task
relatedness. Relying on the commonalities of similar tasks, we
introduce a new concept of Family Bootstrapping (FB). FB
refers to the creation of biased ancestors that are expected to
onset the evolution of "a family" of solutions not just for one
task, but for a set of related robot tasks. A general FB paradigm
is outlined and the unique potential of the proposed concept is
discussed. To highlight the validity of the FB concept, a simple
demonstration case, concerning the evolution of
neuro-controllers for a set of robot navigation tasks, is provided.
The paper is concluded with some suggestions for future
research.

I. INTRODUCTION

NE of the major goals of Evolutionary Robotics (ER)
is to obtain powerful and imaginative systems for the

control of autonomous agents (robots) while minimizing the
need for human intervention in the design process. Research
studies on ER have demonstrated the ability to evolve robots
from random solutions, and in particular robot control
systems, that are successful in dealing with relatively
complex tasks. Yet, most of such studies have been confined
to academic demonstrations. To make ER an attractive design
approach, several key problems have to be addressed.
According to Doncieux et al., [1], one of the remaining
challenges of ER is how to scale up to complex behaviors. It
is suggested there that this issue is tightly linked to fitness
landscapes and to the exploration abilities. One aspect of
these issues is the bootstrap problem, which is the focus of
this study. Designers using ER are commonly faced with the
need to define the fitness function(s) for the considered
robotic task. This is often a challenge that becomes
increasingly difficult with higher complexity of the task. The
aspiration is to reduce the need for designers' knowledge by
defining the fitness function as close as possible to a
statement on the ultimate task [2]. For example, when trying
ER methods to develop controllers for robot soccer players it
would be desired to define the fitness function based just on

1The authors are with the Iby and Aladar Faculty of Engineering, Tel Aviv
University, Tel Aviv, Israel (Tel. 972-3-6407098; e-mail:
moshaiov@eng.tau.ac.il).

counting the goals.
Using such a high-level fitness definition commonly

results with the bootstrap problem [2] (e.g., [3]). In such a
case there is a lack of sufficient selective pressure to initiate
the evolution process. The bootstrap problem is considered a
major stumbling block in the route to achieving more
complex and useful robot agents by way of evolution [2].

When reviewing the current methods to overcome the
bootstrap problem in ER, it becomes apparent that none is
fully automated. As described in section II-A, existing
bootstrapping approaches require the engineers to separately
analyze each complex mission based on their knowledge of
the mission under consideration and of the existing
evolutionary tools. Such approaches generally require, for
each robotic mission, specific expertise and allocated
resources. The aim of the proposed FB method is to deviate
from such a paradigm by setting the stage for a
non-task-specific methodology.

Inspired by ideas from the machine learning approach of
Transfer Learning (TL), which is described in section II-B, a
non-task specific bootstrapping method is hereby proposed. It
concerns pre-evolving robotic solutions to a common
(solvable) source-task. These solutions are expected to be
valid for the creation of initial populations to onset the
evolution of solutions for related target-tasks. Hence they
could be considered as common ancestors. We term the
proposed approach Family Bootstrapping (FB). In the
following, the term Family-of-Tasks (FoT) refers to the set of
related target-tasks that can be solved by separated evolution
processes, where each starts from the common ancestors. In
addition, the term Family-of-Solutions (FoS) refers to the
associated solutions, and the common ancestors are termed
family ancestors.

The considered target-tasks of the FoT are taken as tasks
that are not solvable by evolution from a random population.
Namely, each such target-task suffers from the bootstrap
problem. The underlining assumption is that family ancestors
exist when the target-tasks of the FoT have sufficient
commonalities. It is hypothesized that if an evolutionary
process will be started from some sub-set of the family
ancestors it will be successful with respect to any task of the
FoT. Moreover, it is conceivable that each such evolution
process can be successful even if a high-level fitness function
is used. Namely, once the current target-task is known to
belong to a particular family, the designers will hopefully be
left with the simple problem of devising a high-level fitness
function, which in principle should not require any special
knowledge on the task.

Family Bootstrapping: a Genetic Transfer Learning Approach for
Onsetting the Evolution for a Set of Related Robotic Tasks

Amiram Moshaiov1 and Amir Tal1

 O

2801

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

The proposed FB approach is based on the two-step
approach to bootstrapping [3]. According to the two step
approach, the evolution for the target task is separated from
the evolution to auxiliary (source) tasks. While the approach
of [3] sets the foundations to the current study, it deals only
with one target task, whereas the current work deals with
FoT. The current paper presents FB as a general
bootstrapping paradigm, and provides a proof-of–concept to
the suggested FB approach.

The perceived long-term main advantage of the proposed
FB approach is that it opens the way to building database of
common ancestors to various families of target-tasks by using
common source-tasks. It is imaginable that when given a
target-task it would be possible to automatically classify it to
a related source-task. This will allow extracting the associated
ancestors from the database. Such a methodology could
support the use of ER by non-expert designers. Conceivably,
the FB approach will help tackling complex tasks, and will
reduce the computational efforts needed to achieve solutions
to such tasks.

In section II, two main topics are briefly reviewed as
deemed relevant to the understanding of the proposed
method. These include: a) bootstrapping in ER and b) transfer
learning (as related to reinforcement learning). Next, in
section III, the proposed new concept of FB is introduced. It is
followed by section IV where a proof-of-concept by
demonstration is provided for a family of navigation tasks.
The conclusions of this study are provided in section V.

II. BACKGROUND

A. Bootstrapping in Evolutionary Robotics
The bootstrap problem in ER concerns the lack of

sufficient selective pressure at the onset of evolution. It is
encountered when attempting to evolve robot controllers for a
relatively complex task from a low-level initial population
(usually from random individuals) using high-level fitness
functions. Such a high-level function lacks sufficient details
with respect to the task; namely, it does not support the onset
of evolution from the low-level population. The use of a
high-level fitness function that is decided upon with a
minimal designers' knowledge is considered to be preferred
[2]. In a picturesque way this preferred scheme resembles a
wish to go to a far-away target, without the cost of a map and
a compass or a guide that can direct us to landmarks that we
should meet on our way. While wishing for minimum
intervention by the designers, overcoming the bootstrap
problem usually involve the a-priori use of designers'
knowledge.

The basic idea behind all bootstrapping methods, which
have been devised to overcome the aforementioned problem,
is that in the absence of a sufficient “fitness gradient” it has to
be created by some means. Independently, Nelson et al. [2]
and Mouret and Doncieux [4] suggested categories of the
available schemes. Mouret & Doncieux describe the attempts
to overcome the bootstrap problem as different schemes of

incremental evolution [4]. They divided the existing
bootstrapping methods into four categories including: staged
evolution, environmental complexification, fitness shaping
and behavioural decomposition.

Traditional approaches for bootstrapping, with one or more
stages, use at each stage either single-objective or an
aggregated objective function to measure fitness. Hence, all
the traditional methods require a single-objective
evolutionary algorithm. With the availability of Multi
Objective Evolutionary Algorithms (MOEAs), e.g., [5],
which aim to find an approximation to Pareto-optimal
solutions, new ideas became tractable for overcoming the
aforementioned problem. Mouret and Doncieux proposed a
one-step multi-objective evolution method to solve the
bootstrap problem [6], [4]. A similar multi-objective
approach, which involves two-steps rather than one, has been
recently suggested by Israel and Moshaiov [3]. At a first
glance the method of [3] may appear to constitute only a
slight change from that of [4]. The following aims to highlight
the significance of the difference between the aforementioned
two methods.

In the one-step approach of Mouret and Doncieux,
auxiliary-objectives (bootstrapping-objectives) as well as the
ultimate task-objective are used to define a multi-objective
optimization problem, in which no preference is given to any
of these objectives. In their study they evolved robots that
seek a set of light sources in a complex order, which involves
a bootstrap problem. To overcome the problem, MOEA was
used to simultaneously optimize both the "ultimate goal"
(time to seek the final light switch) and a few simpler
bootstrapping-objectives corresponding to sub-tasks. It is
argued in [4] that the elimination of the need to arrange the
objectives in some pre-defined order allows for a more
general approach as compared with the incremental one.

In contrast, Israel and Moshaiov, [3], separated the process
into two-steps. In the first step a multi-objective evolution
process is carried out using only auxiliary-objectives,
whereas in the second step the evolution is carried out as a
single-objective optimization with the "ultimate goal" of the
actual task. The second-step starts with an initial population
consisting of a selected set of non-dominated solutions, which
are obtained from the first stage. This set is considered as
ancestors for the desired solutions. In [3] the two-step
approach was demonstrated and compared with the
bootstrapping approach of [7], for the co-evolution of
soccer-like players, which is known to suffer from the
bootstrap problem.

One may claim that the one-step approach includes the
non-dominated solutions of the two-step method. This is due
to the no objective preference approach, which means that in
the obtained front of the one-step method there are also
solutions that counts only for the auxiliary-objectives. Hence,
it can be argued that in principle the two-step approach cannot
be considered advantageous. However, it should be noted that

2802

the focus is different. The advantage of the two-step approach
of [3], over the one-step approach of [4], is rooted in the
different focus of the two methods. While the later is task
oriented, the two-step approach employs the aforementioned
separation to set the stage for the proposed FB method, which
is a non-task-specific approach to bootstrapping.

In spite of the existence of various bootstrapping methods,
the bootstrap problem should still be considered a major
stumbling block in the route to achieving more complex and
useful robots by way of evolution. Existing bootstrapping
approaches still require, in most cases, some a-priori
knowledge to design the proper means to overcome the
problem. With existing methods, each complex mission under
consideration should usually be separately analyzed based on
the designers' knowledge about the mission. This includes the
careful selection of the fitness function(s). It is conceivable
that novice designers may fail to accomplish the task without
becoming well acquainted with the available bootstrapping
methods and the existing evolutionary search algorithms.
Above all, they should have an insight with respect to the
complexity of the task under consideration. The aim of the
proposed FB method is to deviate from such a paradigm by
setting the stage for a non-task-specific approach. As argued
in the introduction the suggested methodology could
eventually lead to supporting the use of ER, for complex
tasks, by non-expert designers.

B. Transfer Learning
Transfer Learning (TL) is the name given in machine

learning to a group of methodologies involving the
improvement in the learning of one task by previously
learning a related task [8], [9]. TL is inspired by the way
humans learn and accomplish complex tasks. One of the key
aspects of human learning is the fact that they face a stream of
learning problems over their entire lifetime. For example,
when a person learns a skill as complex as baking a cake
using a cook-book, multiple learning experiences come into
play. These include acquiring the basic motor skills, learning
to recognize objects, and acquiring language comprehension
while being an infant, learning how to read while during
childhood, and so on.

TL methods are constantly being studied with respect to
various machine learning methods, such as supervised and
unsupervised learning [8]. TL has only lately been studied
with reinforcement learning approaches [9], mostly in
problems involving discrete states and actions. ER techniques
are often considered to be a close variant of reinforcement
learning techniques, as both select for improved solutions
based on some sort of reward [10]. Applying reinforcement
learning to robotics is challenging, since that such methods
commonly deal with discrete worlds of actions and states,
while robotics deals mostly with continuous states and
actions. A profound difference between ER and RL is the
central use, in the former case, of evolutionary computations

to achieve the improved solutions. Such differences have to
be accounted for if TL methods that were developed in the
context of RL are to be adapted for ER applications. While
saying that, it should be pointed out that similarly to the
traditional use of random populations to start the evolution in
ER, in the case of classical RL the exploration starts from
scratch. In both cases this may cause a problem and in the
former, such problems have been addressed by TL methods
(e.g., [12]).

The idea of using TL approaches for robotics is not new
(e.g., [13], [14]). Yet, one may suggest that research on using
TL in the context of ER has only begun. Doncieux has
recently reported, in [11], on a TL experiment in ER in which
a robot first learns to mobilize objects towards a goal from
scratch and then transfers its knowledge to a door opening
task. The above claim on the infancy of using TL in ER could
be questioned. In fact, while not referring to the notion of
transfer of knowledge, most techniques to overcome the
bootstrap problem might be considered as using some sort of
knowledge transfer. The proposed FB is no exception. The
common ancestors for the FoS are obtained by using a
source-task, and the FoT are in fact multiple target-tasks. As
such, FB could be viewed as a special type of a TL method.

A major element of TL is tasks relatedness [8], [9]. Studies
on TL have shown that the positive effect of TL is linked to
the closeness, or relatedness of a given source-target pair.
Tasks which were considered related to one another made the
knowledge transferring more successful [8]. This relatedness,
however, is neither very easily defined nor easily measured.
This is due to the many features by which a typical learning
task may be defined. The goal of the current study is to
provide FB with a proof-of-concept by demonstration. Hence,
in this study the focus is neither on formalizing the relations
among the multiple target-tasks of the FoT, nor on
formalizing the relation of the FoT to the common
source-task.

III. FAMILY BOOTSTRAPPING
As mentioned in the background, a two-stage

bootstrapping approach was suggested and demonstrated in
[3]. Restricting the first-stage to evolving solutions based just
on the auxiliary-objectives, sets the foundations for the
proposed FB methodology. The idea behind the
aforementioned restriction is that the population obtained by
the first- stage is not biased towards any particular target-task.
Hence, if several target-tasks share similar sub-tasks or have
other types of commonalities, which are considered when
defining the objectives for the first-stage, then it is
conceivable that the population obtained in that stage would
be useful for bootstrapping the evolution of solutions for all
the target-tasks. Although pointing at such an option, this
hypothesis was neither discussed nor tested by Israel and
Moshaiov in [3].

2803

In the proposed FB approach there are two evolutionary
stages. In the first-stage the evolution is performed to solve a
Common Source-Task. The obtained solutions are termed
Family Ancestors. These are used to initiate a population for
evolving solutions to any member of a set of associated
target-tasks. That set is termed Family-of-Tasks (FoT), and
the union of the solutions to the tasks of the FoT is termed
Family-of-Solutions (FoS). A schematic presentation of the
FB procedure is depicted in figure 1.

Figure 1. The FB Paradigm

It is noted that FB does not have to follow the evolutionary

approach of [3]. In fact the multi-objective first-stage of [3]
can be replaced by incremental evolution, and in some cases
even with a single-objective evolution that might solve the
common source-task. In addition, in contrast to [3], the
current presentation of the FB procedure does not restrict the
second-stage to a single-objective evolution. In the current
demonstration we try for the first-stage two alternatives, one
with a multi-objective evolution and the other with a
single-objective approach. For the second-stage we use an
ultimate single-objective.

IV. DEMONSTRATION

A. Family of Target-tasks
A simulated robot is operating in an arena with rooms and

corridors (a maze). In the maze there are lights at different
locations. It is noted that the robot does not have a model of
the arena and doesn't know the location of the lights or the
walls in advance; however, it can sense the walls and also the
lights when they are on. The robot switches off a light when
reaching it. The details of the robot, the neuro-controllers, and
the sensors, are given in the appendix.

Adapting the bootstrapping example of [4], a family of six
navigational target-tasks is presented in figure 2. The six
target-tasks are denoted as follows. The case at the top-left
side is denoted as T1, the one below T1 is T3, and the last in

the left side is T5. The others, at the right column, are: at the
top is T2, next is T4, and the one at the right bottom corner is
T6.

Figure 2. Lights' Settings for Six Target-tasks

In this simulation study, the aim is to separately evolve

simulated robot neuro-controllers for each of the target-tasks.
All of the proposed T1-T6 target-tasks share the same
simulated robotic arena in terms of the layout of the rooms
and corridors. For each target-task there is a particular setting
of light buttons within the arena. Namely, they differ in their
locations from one target-task to the other as depicted by the
marks in figure 2. The starting point for the robot, which is
common to all the six cases, is at the right bottom corner and
the robot faces towards the left. It should be noted that, in
contrast to what may be wrongly perceived from the figure, in
the target-tasks the lights are not on at once as further
explained below.

For each target-task the maze contains a "hidden" trail of a
sequence of four lights and their associated buttons. Only one
light is on at any given time. A robot in the maze can initially
sense only the first light of the sequence. By stepping on such
an active light it is switched-off and the next light in the
sequence is turned-on, and so forth. This means that finding
the last light in the sequence, which is the goal of the
target-task, can be achieved only when all the preceding
lights are reached and stepped upon in the given order.

The objective as defined here is to find and turn on the last
(fourth) light within the shortest time possible. This means
that the robot must find in the right order all the lights and
optimize its route from one light to the other. During the
evolutionary process, robots that do not reach the final light
by the end of an allotted time are stopped and given a fitness
score of 1 (which is the worst possible). Although commonly

1st Evolutionary Stage
Employ Evolution on a
Common Source Task

Create a Database of
Family Ancestors

2nd Evolutionary Stage
Employ Evolution on the

Selected Task starting from a
subset of the Family Ancestors

Select a Task
from the FoT

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

 0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

 0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

 0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

2804

phrased for all the target-tasks, the above objective differs
from one target task to the other. This is due to the location of
the fourth light and the "trail" to reach, which vary from one
task to the other. Namely, for the T1 case the last light is in the
top-left narrow room, whereas in T2 the last light is in the
large room below, and so on.

The described objective of "minimizing the time to light
the fourth light" is extremely hard to achieve when starting
the evolution from random controllers. In fact, as tested by us
(not shown here), each of the proposed target tasks suffers
from the bootstrap problem.

B. Source-task
For the source-task, the arena, the robot and its starting

point are the same as for the target-tasks. However both the
set-up of lights and the objectives are different from those of
the target-tasks. Moreover, in contrast to the target-tasks,
there is no sequence of switching the lights; all lights are on at
the start of the source-task. Figure 3 depicts the arena and
lights for this case.

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=1 repeat=none

Figure 3. Arrangement of lights for the source-task

The source task follows the task which is presented in [15].

Once a light is "stepped upon" it is turned-off, and becomes
undetectable to the robot's sensors. The robot is given 200
seconds for the mission; this is more than enough time for a
robot following a path connecting all lights to step on them
all.

In our demonstration-study two different types of
optimization processes are used in the first evolutionary stage
of the FB procedure (for the common source-task). The first
type is an Evolutionary Single-objective Optimization (ESO)
and the second is an Evolutionary Multi-objective
Optimization (EMO). For finding optimal solutions for the
common source-task using the EMO process, two objective
functions marked by 1F and 2F are employed as used in [15].
In the ESO case only 2F is used.

 1F is based on [16] and is defined as follows:

() () ()
1

1
1 1; 1 1 1

0 1
0 1
0 1

final step

i
i ii

f
F f V v I

max step
V

v
I

== = − Δ −

≤ ≤
≤ Δ ≤
≤ ≤

∑

Where:

• V is the absolute sum value of the 2 rotational
wheel speeds. V is high when the robot is moving
straight and fast.

• vΔ is the absolute difference value between the
two rotational wheel speeds. 1 v− Δ is high
when the robot is not making any turns.

• I is the normalized activation value of the sensor
with the highest value. 1 I− is high when the
robot does not sense any obstacle.

1F is calculated as an average of the accumulated

temporary step performances marked as 1f . The sum is
taken from the initial step to the final step of the robot. We
note that during the evolution some neuro-controllers do not
manage to complete the maximum allowable number of steps
(marked max step). The purpose of 1F is to achieve fast and
straight motions while avoiding obstacles. In this case there is
no specific destination.

2F is defined as follows:

() ()
2

1
2 2; 2

1/ 1

final step

i
robot reaches target

else

f H
F f

dmax step
= ⎧

= = ⎨ +⎩

∑

Where:

• H is a score that the robot gets for reaching a light.
Here it is set to 50.

• d is the distance from the robot to the closest light

Similar to 1F , 2F is calculated as an average over the
accumulated temporary step performances marked as 2f .
The purpose of 2F is to achieve a controller that reaches as
many lights as possible with no concern for obstacle
avoidance.

Based on [15] it is expected that these objectives are
contradicting as related to the current arena and light setup.

C. ESO and EMO Results for the Source-task

Table 1 summarizes the details for the evolutionary runs.
The details are with respect to the use of NSGA-II. For the
ESO case a NSGA-II was used with one objective fixed.

2805

TABLE 1

SUMMARY OF RUN PARAMETERS

Parameter Description Par. value
1. Robot & Environment
Wheel diameter 1 cm
Body diameter 5.5 cm
Tar. Sens. Range 100 cm
Obs. Sens. Range 7.5 cm
Tar. Sens. F.O.V 30 deg
Obs. Sens. F.O.V 6 deg
Max. speed 0.5 cm/ sec
No. of targets (Total) 13
2. Neural Network
Input layer 16
Hidden layer 3
Output layer 2
Bias term 0
Activation functions Sigmoid
Activation slope term 1 Encoded
3. Evolutionary Process Details
Sim. Time step 5 sec
Tot. time 1000 sec
Population size 56
Terminal generation 300
Type of EA NSGA-II
Encoding Direct
Chromosome 55 real-val.
Crossover type SBX
Crossover rate 1
Mutation type Polynomial
Mutation rate 1/55
4. Evolutionary Runs
No. of repeats 10

Figure 4 shows a typical result for the best controller, which is
obtained with ESO.

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=1generation=15 repeat=none

Fig. 4 Typical Best Path in the ESO runs

Figures 5 and 6 show such paths, respectively, for the best F1
and F2 controllers, of the EMO case.

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=86generation=300 repeat=none

Figure 5 Typical Best F1 Path in the EMO runs

0 20 40 60 80 100

0

10

20

30

40

50

60

robot no.=2generation=300 repeat=none

Figure 6 Typical Best F2 Path in the EMO runs

For the EMO process, ten repeats are run. Then the

controllers belonging to the approximated Pareto-fronts of the
last generation from all the repeated runs are merged to form
one union-set. The union is then sorted to obtain the
non-dominated set from all the runs. In the current study the
later set contained 86 individuals. These serve as the family
ancestry for the experiments in the second evolutionary stage,
which are based on the EMO first stage.

Similarly, for the ESO process ten runs are also conducted.
The union of the individuals, of the last generations from all
the runs, is sorted for the best 86 ones. These are used as the
family ancestry for the experiments in the second
evolutionary stage, which are based on the ESO first stage.

D. Results for the Target-tasks
Robots were evolved for each of the six target-tasks using

at each run the ancestry obtained from either the ESO
source-task or the EMO source-task. Each evolutionary run
was stopped at 500 generation (rather than 300). The size of
the population is 86 (as opposed to 56). Ten runs were carried
out for each target-task. Other parameters used are the same
as those in the source-task case (as detailed in table 1). The
obtained paths are shown in figure 7. The cases shown in
figure 7 are for the target tasks T3, T4, and T6 as described in
figure 2. The two top cases in figure 7 are for T3. The
following two middle cases are for T4, and the last two at the
bottom are for T6.

2806

Fig. 7. Typical Paths of Successful Robots
Left: using EMO ancestry
Right: using ESO ancestry

Table 2 provides a summary of the results from both the

ESO and EMO cases.

Table 2: Summary of results
(captions are described in the text below)

 T1 T2 T3 T4 T5 T6
Using ESO ancestry

P 15 7 16 14 0 22
M 1 1 1 1 ---- 1
B 0.48 0.30 0.20 0.60 ---- 0.26

Using EMO ancestry
P 23 40 79 58 14.5 60
M 1 1 0.36 0.40 1 0.39
B 0.15 0.14 0.20 0.38 0.29 0.25

The six columns of the table refer to the six target-tasks as

marked by T1 to T6. These symbols stand for the target-tasks
as presented in the description of figure 2. The rows are
marked as follows. P marks the percentage of robots out of
the population solving the target-task. M and B mark,
respectively, the median and best times required for the
solution (normalized with respect to the total time allotted).

E. Discussion
The FB approach is successfully demonstrated here for

both types of evolutionary processes at the first evolutionary
stage of FB, namely for both ESO and EMO. The
demonstration involves robot navigation tasks.

As seen from table 2, using ancestry from the EMO
source-task clearly outperforms using ESO ancestry. The

EMO ancestors were able to handle all the targeted tasks of
the FoT used here. In contrast, the ESO ancestry failed to
accomplish T5 (reaching the light inside the right-top narrow
room). Moreover, the EMO ancestors beat the ESO ones, in
almost all cases of the FoT, in terms of the measured
performances as depicted in the table. A possible explanation
to the superiority of EMO is the effect of the diversity which
is encouraged in the EMO method.

The results shown here were obtained using NSGA-II (see
[5]). Using this kind of MOEA for the evolution of
neuro-controllers is not optimal, as discussed in [17]. Hence
the results here might be improved when using a more
appropriate algorithm. However, for the purpose of
highlighting the FB concept validity, NSGA-II seems to have
been sufficient.

The successful demonstration of the FB paradigm, which is
provided here, is limited in scope. Moreover, the issue of
relatedness, among the target-tasks of the FoT and between
the FoT and the common source-task, is kept at the
intuitive-abstractive level. These limitations should certainly
be acknowledged. Nevertheless, the results are encouraging
and they provide a proof-of-concept by demonstration to the
proposed FB paradigm.

V. CONCLUSIONS
A new approach to the ER problem of bootstrapping is

presented. It concerns a transfer learning approach to
bootstrapping the evolution of solutions to a set of related
target-tasks.

To demonstrate the suggested FB approach, a family of six
robot navigation tasks is presented and studied. Each of the
targeted ER tasks suffers from the bootstrap problem. The
family is shown to be bootstrapped using a common source
task, which is much simpler than the target-tasks. In addition
to demonstrating the proposed concept, this paper compares
two approaches. It is found that while either an ESO or an
EMO approach can be employed, for the common
source-task, the later considerably outperforms the former.

To improve the understanding on the mechanisms of FB it
is suggested to investigate the relations among members of
the FoT and the relation between the FoT and the common
source-task. Future studies should explore how such
relationships influence the existence of bootstrapping.
Moreover, future investigation should also examine the
correlation between closeness of the tasks and the
performances of the evolution process such as the
convergence performance in the second evolutionary stage of
the FB paradigm.

APPENDIX: ADDITIONAL DETAILS OF THE SIMULATION
Robot and Sensors The simulated robot used is a simplified

model of Khepera [16]. It is a round, two-dimensional rover

0 20 4 60 80 100

0

10

20

30

40

50

60

robot no.=2generation=25 repeat=none

0 20 4 6 8 10
0

1

2

3

4

5

6
robot no.=2generation=25 repeat=none

0 2 4 6 8 10
0

1

2

3

4

5

6
robot no.=1generation=25 repeat=none

0 2 4 6 8 10
0

1

2

3

4

5

6
robot no.=1generation=500

0 20 4 6 8 10
0

1

2

3

4

5

6
robot no.=2generation=25 repeat=none

0 2 4 60 8 10
0

1

2

3

4

5

6
robot no.=1generation=25 repeat=none

2807

running on two wheels, one on each side. Robot diameter is
5.5 cm and the wheel diameter is 1 cm. Each wheel is actuated
directly from one of two output signals of the neural network
controller (details below). The robot can sense the nearest
light to it and the nearest wall point to it with two sets of
peripheral sensors: light sensors (for the light buttons) and IR
sensors (for the walls). The sensing ranges and fields of view
for both types of sensors are provided in table 1 of the paper.
No noise was used in the simulations. The simulator was
written in Matlab as a part of this study.

Neural network The Neural network Controllers (NC) used
are of type feed forward network (FFN). An input layer of 16
nodes is connected to a hidden layer of 3 nodes, which is in
turn connected to the output layer of two nodes. Nodes of the
hidden layer perform a simple weighted sum of the network
inputs, while the output nodes use a sigmoid activation
function (no bias term weighted in) and output in the range
(-0.5, 0.5). No recurring connections are used. NC weights
are directly encoded to a real-valued chromosome along with
the slope term for the output layer activation function (same
for both output nodes). Simulated binary crossover is used as
well as polynomial mutation. Additional information is
available in table 1 of this paper.

ACKNOWLEDGMENT
This work was supported by the Dean of the Iby and Aladar

Faculty of Engineering, Tel-Aviv University and by the
Vice-president for Research of Tel-Aviv University. The
anonymous reviewers are acknowledged for their useful
comments.

REFERENCES
[1] S. Doncieux, J. B. Mouret, N. Bredeche, and V. Padois, "Evolutionary

Robotics: Exploring New Horizons." In: New Horizons in Evolutionary
Robotics: Extended Contributions from the 2009 EvoDeRob Workshop,
Studies in Computational Intelligence vol. 341 (pp. 3-25), Springer,
2011.

[2] A. L. Nelson, G. J. Barlow, and L. Doitsidis, "Fitness Functions in
Evolutionary Robotics: A Survey and Analysis," Robotics and
Autonomous Systems, vol. 57, pp. 345-370, 2009.

[3] S. Israel and A. Moshaiov, "Bootstrapping aggregate fitness selection
with evolutionary multi-objective optimization," presented at Parallel
Problem Solving from Nature - PPSN XII, 2012.

[4] J. B. Mouret and S. Doncieux, "Overcoming the Bootstrap Problem in
Evolutionary Robotics Using Behavioral Diversity," presented at IEEE
Congress on Evolutionary Computation, 2009.

[5] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-II," IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182-197, 2002.

[6] J. B. Mouret. and S. Doncieux, "Incremental evolution of animats'
behaviors as a multi-objective optimization," presented at International
conference on the simulation of adaptive behavior (SAB '08), 2008.

[7] H. E. Óstergaard and H. H. Lund, "Co-evolving complex robot
behavior," Evolvable Systems: From Biology to Hardware, pp.
308-319, 2003.

[8] L. Torrey, and J. Shavlik, "Transfer learning." Handbook of Research
on Machine Learning Applications. IGI Global, 3, 17-35, 2009.

[9] M. E. Taylor, and P. Stone, " Transfer Learning for Reinforcement
Learning Domains: A Survey," Journal of Machine Learning
Research, vol. 10, 2009.

[10] , D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, "Evolutionary
Algorithms for Reinforcement Learning., J. Artificial Intelligence Res.,
vol. 11 pp. 241-276, 1999.

[11] S. Doncieux, "Transfer Learning for Direct Policy Search: A Reward
Shaping Approach," In: IEEE Int. Conf. Dev. and Learning – ICDL
'13, 2013.

[12] M. E. Taylor, P. Stone, and Y. Liu, "Value Functions for RL-Based
Behavior Transfer: A Comparative Study," Proc. Of the Twentieth
National Conf. on Artificial Intelligence, July 2005.

[13] S. Thrun and T. M. Mitchell, "Lifelong Robot Learning," Robotics and
Autonomous Systems, 15:25{46, 1995.

[14] Z. Kira. Inter-Robot Transfer Learning for Perceptual Classification.
Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent
Systems: Vol. 1, pages 13-20, 2010.

[15] A. Moshaiov, and M. Zadok, "Evolving counter-propagation
neuro-controllers for multi-objective robot navigation." In Applications
of Evolutionary Computation, Berlin: Springerpp. 589-598, 2013..

[16] F. Mondada and D. Floreano, Evolution and mobile autonomous
robotics, Towards Evolvable Hardware (Lecture Notes in Computer
Science) Vol. 1062, 1996, pp 221-249, 1996.

[17] A. Moshaiov. And O. Abramovich., Is MO-CMA-ES Superior to
NSGA-II for the Evolution of Multi-objective Neuro-controllers?,
Proc. of CEC 2014.

2808

