
  

Abstract— Studies on the bootstrap problem in evolutionary 
robotics help lifting the barrier from the way to evolve robots 
for complex tasks. It remains an open question, though, how to 
reduce the need for designer knowledge when devising a 
bootstrapping approach for any particular complex task. 
Transfer learning may help reducing this need and support the 
evolution of solutions to complex tasks, through task 
relatedness. Relying on the commonalities of similar tasks, we 
introduce a new concept of Family Bootstrapping (FB). FB 
refers to the creation of biased ancestors that are expected to 
onset the evolution of "a family" of solutions not just for one 
task, but for a set of related robot tasks. A general FB paradigm 
is outlined and the unique potential of the proposed concept is 
discussed. To highlight the validity of the FB concept, a simple 
demonstration case, concerning the evolution of 
neuro-controllers for a set of robot navigation tasks, is provided. 
The paper is concluded with some suggestions for future 
research. 

I. INTRODUCTION 

NE of the major goals of Evolutionary Robotics (ER) 
is to obtain powerful and imaginative systems for the 

control of autonomous agents (robots) while minimizing the 
need for human intervention in the design process. Research 
studies on ER have demonstrated the ability to evolve robots 
from random solutions, and in particular robot control 
systems, that are successful in dealing with relatively 
complex tasks. Yet, most of such studies have been confined 
to academic demonstrations. To make ER an attractive design 
approach, several key problems have to be addressed. 
According to Doncieux et al., [1], one of the remaining 
challenges of ER is how to scale up to complex behaviors. It 
is suggested there that this issue is tightly linked to fitness 
landscapes and to the exploration abilities. One aspect of 
these issues is the bootstrap problem, which is the focus of 
this study. Designers using ER are commonly faced with the 
need to define the fitness function(s) for the considered 
robotic task. This is often a challenge that becomes 
increasingly difficult with higher complexity of the task. The 
aspiration is to reduce the need for designers' knowledge by 
defining the fitness function as close as possible to a 
statement on the ultimate task [2]. For example, when trying 
ER methods to develop controllers for robot soccer players it 
would be desired to define the fitness function based just on 
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counting the goals. 
Using such a high-level fitness definition commonly 

results with the bootstrap problem [2] (e.g., [3]). In such a 
case there is a lack of sufficient selective pressure to initiate 
the evolution process. The bootstrap problem is considered a 
major stumbling block in the route to achieving more 
complex and useful robot agents by way of evolution [2].  

When reviewing the current methods to overcome the 
bootstrap problem in ER, it becomes apparent that none is 
fully automated. As described in section II-A, existing 
bootstrapping approaches require the engineers to separately 
analyze each complex mission based on their knowledge of 
the mission under consideration and of the existing 
evolutionary tools. Such approaches generally require, for 
each robotic mission, specific expertise and allocated 
resources. The aim of the proposed FB method is to deviate 
from such a paradigm by setting the stage for a 
non-task-specific methodology. 

Inspired by ideas from the machine learning approach of 
Transfer Learning (TL), which is described in section II-B, a 
non-task specific bootstrapping method is hereby proposed. It 
concerns pre-evolving robotic solutions to a common 
(solvable) source-task. These solutions are expected to be 
valid for the creation of initial populations to onset the 
evolution of solutions for related target-tasks. Hence they 
could be considered as common ancestors. We term the 
proposed approach Family Bootstrapping (FB). In the 
following, the term Family-of-Tasks (FoT) refers to the set of 
related target-tasks that can be solved by separated evolution 
processes, where each starts from the common ancestors. In 
addition, the term Family-of-Solutions (FoS) refers to the 
associated solutions, and the common ancestors are termed 
family ancestors. 

The considered target-tasks of the FoT are taken as tasks 
that are not solvable by evolution from a random population. 
Namely, each such target-task suffers from the bootstrap 
problem. The underlining assumption is that family ancestors 
exist when the target-tasks of the FoT have sufficient 
commonalities. It is hypothesized that if an evolutionary 
process will be started from some sub-set of the family 
ancestors it will be successful with respect to any task of the 
FoT. Moreover, it is conceivable that each such evolution 
process can be successful even if a high-level fitness function 
is used. Namely, once the current target-task is known to 
belong to a particular family, the designers will hopefully be 
left with the simple problem of devising a high-level fitness 
function, which in principle should not require any special 
knowledge on the task.  
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The proposed FB approach is based on the two-step 
approach to bootstrapping [3]. According to the two step 
approach, the evolution for the target task is separated from 
the evolution to auxiliary (source) tasks. While the approach 
of [3] sets the foundations to the current study, it deals only 
with one target task, whereas the current work deals with 
FoT.  The current paper presents FB as a general 
bootstrapping paradigm, and provides a proof-of–concept to 
the suggested FB approach.   

The perceived long-term main advantage of the proposed 
FB approach is that it opens the way to building database of 
common ancestors to various families of target-tasks by using 
common source-tasks. It is imaginable that when given a 
target-task it would be possible to automatically classify it to 
a related source-task. This will allow extracting the associated 
ancestors from the database. Such a methodology could 
support the use of ER by non-expert designers. Conceivably, 
the FB approach will help tackling complex tasks, and will 
reduce the computational efforts needed to achieve solutions 
to such tasks.    

In section II, two main topics are briefly reviewed as 
deemed relevant to the understanding of the proposed 
method. These include: a) bootstrapping in ER and b) transfer 
learning (as related to reinforcement learning). Next, in 
section III, the proposed new concept of FB is introduced. It is 
followed by section IV where a proof-of-concept by 
demonstration is provided for a family of navigation tasks. 
The conclusions of this study are provided in section V.    

II. BACKGROUND 

A. Bootstrapping in Evolutionary Robotics 
The bootstrap problem in ER concerns the lack of 

sufficient selective pressure at the onset of evolution. It is 
encountered when attempting to evolve robot controllers for a 
relatively complex task from a low-level initial population 
(usually from random individuals) using high-level fitness 
functions. Such a high-level function lacks sufficient details 
with respect to the task; namely, it does not support the onset 
of evolution from the low-level population. The use of a 
high-level fitness function that is decided upon with a 
minimal designers' knowledge is considered to be preferred 
[2]. In a picturesque way this preferred scheme resembles a 
wish to go to a far-away target, without the cost of a map and 
a compass or a guide that can direct us to landmarks that we 
should meet on our way. While wishing for minimum 
intervention by the designers, overcoming the bootstrap 
problem usually involve the a-priori use of designers' 
knowledge.  

The basic idea behind all bootstrapping methods, which 
have been devised to overcome the aforementioned problem, 
is that in the absence of a sufficient “fitness gradient” it has to 
be created by some means. Independently, Nelson et al. [2] 
and Mouret and Doncieux [4] suggested categories of the 
available schemes. Mouret & Doncieux describe the attempts 
to overcome the bootstrap problem as different schemes of 

incremental evolution [4]. They divided the existing 
bootstrapping methods into four categories including: staged 
evolution, environmental complexification, fitness shaping 
and behavioural decomposition.  

Traditional approaches for bootstrapping, with one or more 
stages, use at each stage either single-objective or an 
aggregated objective function to measure fitness. Hence, all 
the traditional methods require a single-objective 
evolutionary algorithm. With the availability of Multi 
Objective Evolutionary Algorithms (MOEAs), e.g., [5], 
which aim to find an approximation to Pareto-optimal 
solutions, new ideas became tractable for overcoming the 
aforementioned problem. Mouret and Doncieux proposed a 
one-step multi-objective evolution method to solve the 
bootstrap problem [6], [4]. A similar multi-objective 
approach, which involves two-steps rather than one, has been 
recently suggested by Israel and Moshaiov [3]. At a first 
glance the method of [3] may appear to constitute only a 
slight change from that of [4]. The following aims to highlight 
the significance of the difference between the aforementioned 
two methods.  

In the one-step approach of Mouret and Doncieux, 
auxiliary-objectives (bootstrapping-objectives) as well as the 
ultimate task-objective are used to define a multi-objective 
optimization problem, in which no preference is given to any 
of these objectives. In their study they evolved robots that 
seek a set of light sources in a complex order, which involves 
a bootstrap problem. To overcome the problem, MOEA was 
used to simultaneously optimize both the "ultimate goal" 
(time to seek the final light switch) and a few simpler 
bootstrapping-objectives corresponding to sub-tasks. It is 
argued in [4] that the elimination of the need to arrange the 
objectives in some pre-defined order allows for a more 
general approach as compared with the incremental one. 

In contrast, Israel and Moshaiov, [3], separated the process 
into two-steps. In the first step a multi-objective evolution 
process is carried out using only auxiliary-objectives, 
whereas in the second step the evolution is carried out as a 
single-objective optimization with the "ultimate goal" of the 
actual task. The second-step starts with an initial population 
consisting of a selected set of non-dominated solutions, which 
are obtained from the first stage. This set is considered as 
ancestors for the desired solutions. In [3] the two-step 
approach was demonstrated and compared with the 
bootstrapping approach of [7], for the co-evolution of 
soccer-like players, which is known to suffer from the 
bootstrap problem.  

One may claim that the one-step approach includes the 
non-dominated solutions of the two-step method. This is due 
to the no objective preference approach, which means that in 
the obtained front of the one-step method there are also 
solutions that counts only for the auxiliary-objectives. Hence, 
it can be argued that in principle the two-step approach cannot 
be considered advantageous. However, it should be noted that 
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the focus is different. The advantage of the two-step approach 
of [3], over the one-step approach of [4], is rooted in the 
different focus of the two methods. While the later is task 
oriented, the two-step approach employs the aforementioned 
separation to set the stage for the proposed FB method, which 
is a non-task-specific approach to bootstrapping. 

In spite of the existence of various bootstrapping methods, 
the bootstrap problem should still be considered a major 
stumbling block in the route to achieving more complex and 
useful robots by way of evolution. Existing bootstrapping 
approaches still require, in most cases, some a-priori 
knowledge to design the proper means to overcome the 
problem. With existing methods, each complex mission under 
consideration should usually be separately analyzed based on 
the designers' knowledge about the mission. This includes the 
careful selection of the fitness function(s). It is conceivable 
that novice designers may fail to accomplish the task without 
becoming well acquainted with the available bootstrapping 
methods and the existing evolutionary search algorithms. 
Above all, they should have an insight with respect to the 
complexity of the task under consideration. The aim of the 
proposed FB method is to deviate from such a paradigm by 
setting the stage for a non-task-specific approach. As argued 
in the introduction the suggested methodology could 
eventually lead to supporting the use of ER,  for complex 
tasks, by non-expert designers. 

B. Transfer Learning 
Transfer Learning (TL) is the name given in machine 

learning to a group of methodologies involving the 
improvement in the learning of one task by previously 
learning a related task [8], [9]. TL is inspired by the way 
humans learn and accomplish complex tasks. One of the key 
aspects of human learning is the fact that they face a stream of 
learning problems over their entire lifetime. For example, 
when a person learns a skill as complex as baking a cake 
using a cook-book, multiple learning experiences come into 
play. These include acquiring the basic motor skills, learning 
to recognize objects, and acquiring language comprehension 
while being an infant, learning how to read while during 
childhood, and so on.  

TL methods are constantly being studied with respect to 
various machine learning methods, such as supervised and 
unsupervised learning [8]. TL has only lately been studied 
with reinforcement learning approaches [9], mostly in 
problems involving discrete states and actions. ER techniques 
are often considered to be a close variant of reinforcement 
learning techniques, as both select for improved solutions 
based on some sort of reward [10]. Applying reinforcement 
learning to robotics is challenging, since that such methods 
commonly deal with discrete worlds of actions and states, 
while robotics deals mostly with continuous states and 
actions. A profound difference between ER and RL is the 
central use, in the former case, of evolutionary computations 

to achieve the improved solutions. Such differences have to 
be accounted for if TL methods that were developed in the 
context of RL are to be adapted for ER applications. While 
saying that, it should be pointed out that similarly to the 
traditional use of random populations to start the evolution in 
ER, in the case of classical RL the exploration starts from 
scratch. In both cases this may cause a problem and in the 
former, such problems have been addressed by TL methods 
(e.g., [12]).    

The idea of using TL approaches for robotics is not new 
(e.g., [13], [14]). Yet, one may suggest that research on using 
TL in the context of ER has only begun. Doncieux has 
recently reported, in [11], on a TL experiment in ER in which 
a robot first learns to mobilize objects towards a goal from 
scratch and then transfers its knowledge to a door opening 
task. The above claim on the infancy of using TL in ER could 
be questioned. In fact, while not referring to the notion of 
transfer of knowledge, most techniques to overcome the 
bootstrap problem might be considered as using some sort of 
knowledge transfer. The proposed FB is no exception. The 
common ancestors for the FoS are obtained by using a 
source-task, and the FoT are in fact multiple target-tasks. As 
such, FB could be viewed as a special type of a TL method.  

A major element of TL is tasks relatedness [8], [9]. Studies 
on TL have shown that the positive effect of TL is linked to 
the closeness, or relatedness of a given source-target pair. 
Tasks which were considered related to one another made the 
knowledge transferring more successful [8]. This relatedness, 
however, is neither very easily defined nor easily measured. 
This is due to the many features by which a typical learning 
task may be defined. The goal of the current study is to 
provide FB with a proof-of-concept by demonstration. Hence, 
in this study the focus is neither on formalizing the relations 
among the multiple target-tasks of the FoT, nor on 
formalizing the relation of the FoT to the common 
source-task. 

III. FAMILY BOOTSTRAPPING  
As mentioned in the background, a two-stage 

bootstrapping approach was suggested and demonstrated in 
[3].  Restricting the first-stage to evolving solutions based just 
on the auxiliary-objectives, sets the foundations for the 
proposed FB methodology. The idea behind the 
aforementioned restriction is that the population obtained by 
the first- stage is not biased towards any particular target-task. 
Hence, if several target-tasks share similar sub-tasks or have 
other types of commonalities, which are considered when 
defining the objectives for the first-stage, then it is 
conceivable that the population obtained in that stage would 
be useful for bootstrapping the evolution of solutions for all 
the target-tasks. Although pointing at such an option, this 
hypothesis was neither discussed nor tested by Israel and 
Moshaiov in [3].  
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In the proposed FB approach there are two evolutionary 
stages. In the first-stage the evolution is performed to solve a 
Common Source-Task. The obtained solutions are termed 
Family Ancestors. These are used to initiate a population for 
evolving solutions to any member of a set of associated 
target-tasks. That set is termed Family-of-Tasks (FoT), and 
the union of the solutions to the tasks of the FoT is termed 
Family-of-Solutions (FoS). A schematic presentation of the 
FB procedure is depicted in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1.  The FB Paradigm 
 
It is noted that FB does not have to follow the evolutionary 

approach of [3]. In fact the multi-objective first-stage of [3] 
can be replaced by incremental evolution, and in some cases 
even with a single-objective evolution that might solve the 
common source-task. In addition, in contrast to [3], the 
current presentation of the FB procedure does not restrict the 
second-stage to a single-objective evolution. In the current 
demonstration we try for the first-stage two alternatives, one 
with a multi-objective evolution and the other with a 
single-objective approach. For the second-stage we use an 
ultimate single-objective. 

IV. DEMONSTRATION  

A. Family of Target-tasks 
A simulated robot is operating in an arena with rooms and 

corridors (a maze). In the maze there are lights at different 
locations. It is noted that the robot does not have a model of 
the arena and doesn't know the location of the lights or the 
walls in advance; however, it can sense the walls and also the 
lights when they are on. The robot switches off a light when 
reaching it. The details of the robot, the neuro-controllers, and 
the sensors, are given in the appendix. 

Adapting the bootstrapping example of [4], a family of six 
navigational target-tasks is presented in figure 2. The six 
target-tasks are denoted as follows. The case at the top-left 
side is denoted as T1, the one below T1 is T3, and the last in 

the left side is T5. The others, at the right column, are: at the 
top is T2, next is T4, and the one at the right bottom corner is 
T6. 

 
 

Figure 2. Lights' Settings for Six Target-tasks 

 
In this simulation study, the aim is to separately evolve 

simulated robot neuro-controllers for each of the target-tasks. 
All of the proposed T1-T6 target-tasks share the same 
simulated robotic arena in terms of the layout of the rooms 
and corridors. For each target-task there is a particular setting 
of light buttons within the arena. Namely, they differ in their 
locations from one target-task to the other as depicted by the 
marks in figure 2. The starting point for the robot, which is 
common to all the six cases, is at the right bottom corner and 
the robot faces towards the left. It should be noted that, in 
contrast to what may be wrongly perceived from the figure, in 
the target-tasks the lights are not on at once as further 
explained below. 

For each target-task the maze contains a "hidden" trail of a 
sequence of four lights and their associated buttons. Only one 
light is on at any given time. A robot in the maze can initially 
sense only the first light of the sequence. By stepping on such 
an active light it is switched-off and the next light in the 
sequence is turned-on, and so forth. This means that finding 
the last light in the sequence, which is the goal of the 
target-task, can be achieved only when all the preceding 
lights are reached and stepped upon in the given order.  

The objective as defined here is to find and turn on the last 
(fourth) light within the shortest time possible. This means 
that the robot must find in the right order all the lights and 
optimize its route from one light to the other. During the 
evolutionary process, robots that do not reach the final light 
by the end of an allotted time are stopped and given a fitness 
score of 1 (which is the worst possible). Although commonly 
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phrased for all the target-tasks, the above objective differs 
from one target task to the other. This is due to the location of 
the fourth light and the "trail" to reach, which vary from one 
task to the other. Namely, for the T1 case the last light is in the 
top-left narrow room, whereas in T2 the last light is in the 
large room below, and so on.  

The described objective of "minimizing the time to light 
the fourth light" is extremely hard to achieve when starting 
the evolution from random controllers. In fact, as tested by us 
(not shown here), each of the proposed target tasks suffers 
from the bootstrap problem.  

B.  Source-task 
For the source-task, the arena, the robot and its starting 

point are the same as for the target-tasks. However both the 
set-up of lights and the objectives are different from those of 
the target-tasks. Moreover, in contrast to the target-tasks, 
there is no sequence of switching the lights; all lights are on at 
the start of the source-task. Figure 3 depicts the arena and 
lights for this case. 
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Figure 3. Arrangement of lights for the source-task  

 
The source task follows the task which is presented in [15]. 

Once a light is "stepped upon" it is turned-off, and becomes 
undetectable to the robot's sensors. The robot is given 200 
seconds for the mission; this is more than enough time for a 
robot following a path connecting all lights to step on them 
all.  

In our demonstration-study two different types of 
optimization processes are used in the first evolutionary stage 
of the FB procedure (for the common source-task). The first 
type is an Evolutionary Single-objective Optimization (ESO) 
and the second is an Evolutionary Multi-objective 
Optimization (EMO). For finding optimal solutions for the 
common source-task using the EMO process, two objective 
functions marked by 1F  and 2F are employed as used in [15]. 
In the ESO case only 2F  is used.  

 1F  is based on [16] and is defined as follows: 

( ) ( ) ( )
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1
1 1; 1 1 1

0 1
0 1
0 1
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i ii
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== = − Δ −
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≤ Δ ≤
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Where: 

• V  is the absolute sum value of the 2 rotational 
wheel speeds. V is high when the robot is moving 
straight and fast. 

• vΔ  is the absolute difference value between the 
two rotational wheel speeds. 1 v− Δ  is high 
when the robot is not making any turns. 

• I  is the normalized activation value of the sensor 
with the highest value. 1 I−  is high when the 
robot does not sense any obstacle. 

 
1F  is calculated as an average of the accumulated 

temporary step performances marked as 1f  . The sum is 
taken from the initial step to the final step of the robot. We 
note that during the evolution some neuro-controllers do not 
manage to complete the maximum allowable number of steps 
(marked max step). The purpose of 1F  is to achieve fast and 
straight motions while avoiding obstacles. In this case there is 
no specific destination. 

 
2F is defined as follows: 
 

( ) ( )
2

1
2 2; 2

1/ 1

final step
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else

f H
F f

dmax step
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= = ⎨ +⎩

∑
  

 
Where: 

• H  is a score that the robot gets for reaching a light. 
Here it is set to 50. 

• d  is the distance from the robot to the closest light 
 

Similar to 1F , 2F  is calculated as an average over the 
accumulated temporary step performances marked as 2f . 
The purpose of 2F  is to achieve a controller that reaches as 
many lights as possible with no concern for obstacle 
avoidance. 

Based on [15] it is expected that these objectives are 
contradicting as related to the current arena and light setup. 

C. ESO and EMO Results for the Source-task  

Table 1 summarizes the details for the evolutionary runs. 
The details are with respect to the use of NSGA-II. For the 
ESO case a NSGA-II was used with one objective fixed.  
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TABLE 1 

SUMMARY OF RUN PARAMETERS 
 

Parameter Description Par. value 
1. Robot & Environment 
Wheel diameter 1 cm 
Body diameter 5.5 cm 
Tar. Sens. Range 100 cm 
Obs. Sens. Range 7.5 cm 
Tar. Sens. F.O.V 30 deg 
Obs. Sens. F.O.V 6 deg 
Max. speed 0.5 cm/ sec 
No. of targets (Total) 13 
2. Neural Network 
Input layer 16 
Hidden layer 3 
Output layer 2 
Bias term 0 
Activation functions Sigmoid 
Activation slope term 1 Encoded 
3. Evolutionary Process Details 
Sim. Time step 5 sec 
Tot. time 1000 sec 
Population size 56 
Terminal generation 300 
Type of EA NSGA-II 
Encoding  Direct 
Chromosome  55 real-val. 
Crossover type SBX 
Crossover rate 1 
Mutation type Polynomial 
Mutation rate 1/55 
4. Evolutionary Runs 
No. of repeats 10 

 
Figure 4 shows a typical result for the best controller, which is 
obtained with ESO.  
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Fig. 4 Typical Best Path in the ESO runs 
 
Figures 5 and 6 show such paths, respectively, for the best F1 
and F2 controllers, of the EMO case. 
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Figure 5 Typical Best F1 Path in the EMO runs 
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Figure 6 Typical Best F2 Path in the EMO runs 
 
For the EMO process, ten repeats are run. Then the 

controllers belonging to the approximated Pareto-fronts of the 
last generation from all the repeated runs are merged to form 
one union-set. The union is then sorted to obtain the 
non-dominated set from all the runs. In the current study the 
later set contained 86 individuals. These serve as the family 
ancestry for the experiments in the second evolutionary stage, 
which are based on the EMO first stage. 

Similarly, for the ESO process ten runs are also conducted. 
The union of the individuals, of the last generations from all 
the runs, is sorted for the best 86 ones. These are used as the 
family ancestry for the experiments in the second 
evolutionary stage, which are based on the ESO first stage. 

 

D.  Results for the Target-tasks 
Robots were evolved for each of the six target-tasks using 

at each run the ancestry obtained from either the ESO 
source-task or the EMO source-task. Each evolutionary run 
was stopped at 500 generation (rather than 300). The size of 
the population is 86 (as opposed to 56).  Ten runs were carried 
out for each target-task. Other parameters used are the same 
as those in the source-task case (as detailed in table 1). The 
obtained paths are shown in figure 7. The cases shown in 
figure 7 are for the target tasks T3, T4, and T6 as described in 
figure 2. The two top cases in figure 7 are for T3. The 
following two middle cases are for T4, and the last two at the 
bottom are for T6.  
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Fig. 7.  Typical Paths of Successful Robots  
Left: using EMO ancestry  
Right: using ESO ancestry 

 
Table 2 provides a summary of the results from both the 

ESO and EMO cases. 
 

Table 2: Summary of results 
(captions are described in the text below) 

 T1 T2 T3 T4 T5 T6 
Using ESO ancestry 

P 15 7 16 14 0 22 
M 1 1 1 1 ---- 1 
B 0.48 0.30 0.20 0.60 ---- 0.26 

Using EMO ancestry  
P 23 40 79 58 14.5 60 
M 1 1 0.36 0.40 1 0.39 
B 0.15 0.14 0.20 0.38 0.29 0.25 

 
The six columns of the table refer to the six target-tasks as 

marked by T1 to T6. These symbols stand for the target-tasks 
as presented in the description of figure 2. The rows are 
marked as follows. P marks the percentage of robots out of 
the population solving the target-task.  M and B mark, 
respectively, the median and best times required for the 
solution (normalized with respect to the total time allotted).  

E. Discussion 
The FB approach is successfully demonstrated here for 

both types of evolutionary processes at the first evolutionary 
stage of FB, namely for both ESO and EMO. The 
demonstration involves robot navigation tasks.  

As seen from table 2, using ancestry from the EMO 
source-task clearly outperforms using ESO ancestry. The 

EMO ancestors were able to handle all the targeted tasks of 
the FoT used here. In contrast, the ESO ancestry failed to 
accomplish T5 (reaching the light inside the right-top narrow 
room). Moreover, the EMO ancestors beat the ESO ones, in 
almost all cases of the FoT, in terms of the measured 
performances as depicted in the table. A possible explanation 
to the superiority of EMO is the effect of the diversity which 
is encouraged in the EMO method. 

The results shown here were obtained using NSGA-II (see 
[5]). Using this kind of MOEA for the evolution of 
neuro-controllers is not optimal, as discussed in [17].  Hence 
the results here might be improved when using a more 
appropriate algorithm. However, for the purpose of 
highlighting the FB concept validity, NSGA-II seems to have 
been sufficient. 

The successful demonstration of the FB paradigm, which is 
provided here, is limited in scope. Moreover, the issue of 
relatedness, among the target-tasks of the FoT and between 
the FoT and the common source-task, is kept at the 
intuitive-abstractive level. These limitations should certainly 
be acknowledged. Nevertheless, the results are encouraging 
and they provide a proof-of-concept by demonstration to the 
proposed FB paradigm.         

V. CONCLUSIONS 
A new approach to the ER problem of bootstrapping is 

presented. It concerns a transfer learning approach to 
bootstrapping the evolution of solutions to a set of related 
target-tasks.   

To demonstrate the suggested FB approach, a family of six 
robot navigation tasks is presented and studied. Each of the 
targeted ER tasks suffers from the bootstrap problem. The 
family is shown to be bootstrapped using a common source 
task, which is much simpler than the target-tasks.  In addition 
to demonstrating the proposed concept, this paper compares 
two approaches. It is found that while either an ESO or an 
EMO approach can be employed, for the common 
source-task, the later considerably outperforms the former.  

To improve the understanding on the mechanisms of FB it 
is suggested to investigate the relations among members of 
the FoT and the relation between the FoT and the common 
source-task. Future studies should explore how such 
relationships influence the existence of bootstrapping. 
Moreover, future investigation should also examine the 
correlation between closeness of the tasks and the 
performances of the evolution process such as the 
convergence performance in the second evolutionary stage of 
the FB paradigm.   

APPENDIX: ADDITIONAL DETAILS OF THE SIMULATION 
Robot and Sensors The simulated robot used is a simplified 

model of Khepera [16]. It is a round, two-dimensional rover 
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running on two wheels, one on each side. Robot diameter is 
5.5 cm and the wheel diameter is 1 cm. Each wheel is actuated 
directly from one of two output signals of the neural network 
controller (details below). The robot can sense the nearest 
light to it and the nearest wall point to it with two sets of 
peripheral sensors: light sensors (for the light buttons) and IR 
sensors (for the walls). The sensing ranges and fields of view 
for both types of sensors are provided in table 1 of the paper. 
No noise was used in the simulations. The simulator was 
written in Matlab as a part of this study. 

Neural network The Neural network Controllers (NC) used 
are of type feed forward network (FFN). An input layer of 16 
nodes is connected to a hidden layer of 3 nodes, which is in 
turn connected to the output layer of two nodes. Nodes of the 
hidden layer perform a simple weighted sum of the network 
inputs, while the output nodes use a sigmoid activation 
function (no bias term weighted in) and output in the range 
(-0.5, 0.5). No recurring connections are used. NC weights 
are directly encoded to a real-valued chromosome along with 
the slope term for the output layer activation function (same 
for both output nodes). Simulated binary crossover is used as 
well as polynomial mutation. Additional information is 
available in table 1 of this paper. 
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