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Abstract—Feature-based analysis has provided new insights
into what characteristics make a problem hard or easy for a given
algorithms. Studies, so far, considered unconstrained continuous
optimisation problem and classical combinatorial optimisation
problems such as the Travelling Salesperson problem. In this
paper, we present a first feature-based analysis for constrained
continuous optimisation. To start the feature-based analysis of
constrained continuous optimization, we examine how linear
constraints can influence the optimisation behaviour of the well-
known ε-constrained differential evolution algorithm. Evolving
the coefficients of a linear constraint, we show that even the type
of one linear constraint can make a difference of 10-30% in terms
of function evaluations for well-known continuous benchmark
functions.

Keywords: Constraints, Continuous Optimisation, Difficulty
Prediction, Linear Constraints, Features

I. INTRODUCTION

Constrained optimisation problems (COP)s are important
and widespread in the real world [1]. This has motivated
the development of algorithmic approaches to tackle the
constrained optimisation problems. A major component of
these algorithms is a mechanism to handle the problem con-
straints. Various evolutionary algorithms such as differential
evolution (DE) [2], particle swarm optimisation (PSO) [3]
and evolutionary strategies (ES) [4] have been used to solve
COPs. To deal with constraints, these algorithms use constraint
handling techniques such as penalty functions, decoder based
methods or special operators that separate the treatment of
the constraints and objective function. For a comprehensive
presentation on the different constraint handling methods, we
refer the reader to [5].

There has been always the question which algorithm from
a suite of algorithms is most suitable for a given problem.
Mersmann et al. [6] proposed the following steps to answer this
question. First, we need to analyse the performance of different
algorithms in dependence of problem features. Second, one has
to find and extract the problem features that determine problem
difficulty.

The idea of testing algorithms on set of test problems
with different features was initially proposed in [7] which

introduced a benchmark set for constrained continuous opti-
misation. The aim was to test the ability of different algo-
rithms on a variety of constrained optimisation problems. The
features related to these benchmark problems consist of an
objective function type (linear, nonlinear), a type of constraints
(linear, nonlinear, inequality or equality) and the feasibility
ratio ρ = |F |/|S| of the problem. Later, other functions were
added to this benchmark set in order to address other features
such as the disjoint feasible area and the combination of
linear constraints [8]. Furthermore, there have been additional
benchmark problems proposed to evaluate the evolutionary
algorithm performances [9], [10].

Recently, there has been an increasing interest to un-
derstanding the features that make a problem difficult to
solve [11]. For continuous problems, test case generators
(TCGs) [12], [13] were proposed to study the influence of
the combination of problem features on problem difficulty.
The TCG’s approach is to generate different problems by
varying features such as dimensionality, multi modality, size of
feasible regions, number and type of constraints. Also, many
approaches have been introduced for discrete problems [14],
[15], [16], [17]. The example of such a study is the one for
the TSP problem [14]. Their idea is to generate hard and
easy problem instances by evolving them. This approach is
using an evolutionary algorithm to obtain diverse set of hard
and easy instances for a certain algorithm [14]. By analysing
these instances, it is possible identify features which determine
problem hardness

In this paper, we adopt the evolving approach to ensure
that the sets of instances are varied from hard to easier
ones for constrained continuous optimisation problems. We
start by investigating several benchmark functions under one
linear constrained. Among several features of the problems,
constraints play a vital role in problem hardness. Hence, our
method is to evolve easy and hard instances to investigate
which features of a linear constraint correlate with instance
difficulty. To achieve this information, we use a suitable evo-
lutionary algorithm that handles the constraints. We use the ε-
constrained differential evolution with an archive and gradient-
based mutation (εDEag) [18] that has better performance than
the other competitors based on the CEC 10 special session
results [9].

Our results show the effectiveness of linear constraint
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features on making a problem easy or hard. Analysing these
features by testing the evolved instances on (εDEag), provides
knowledge on influence of the constraints on the constraint
optimisation problems. This type of information is a successful
key to design an automated algorithm selection system and sets
the basis for studies on the impact of other types of constraints.

The remainder of this paper is as follows: In Section 2 we
introduce the concept of constrained continuous optimisation
and the algorithms that we use to evolve and solve the problem
instances. Our approach to investigate the linear constraints and
their effects on problem hardness is presented in Section 3. In
Section 4 we carry out the analysis of the experimental results.
Finally, we conclude with some remarks and topics for future
work.

II. PRELIMINARIES

A. Constrained continuous optimisation problems

Constrained continuous optimisation problems are optimi-
sation problems where a function on real-valued variables
should be optimized with respect to a given set of constraints.
Constraints are usually given by a set of inequalities and/or
equalities.

Formally, we consider single-objective functions f : S→R,
with S⊆Rn. The constraints impose a feasible subset F ⊆ S of
the search space S and the goal is to find an element x ∈ S∩F
that minimizes f . We consider problems of the following form:

Minimize f (x), x = (x1, . . . ,xn) ∈Rn (1)

such that x ∈ S∩F . The feasible region F ⊆ S of the search
space S is defined by

li ≤ xi ≤ ui, 1≤ i≤ n (2)

where values of li and ui are lower and upper bounds on the
ith variable, respectively. Additional constraints are given by
the functions

gi(x)≤ 0 ∀i ∈ {1, . . . ,q},and
h j(x) = 0 ∀ j ∈ {q+1, . . . , p} (3)

where both gi(x) and h j(x) could be linear or nonlinear.
In this research, we consider the constraint as linear inequality.

B. εDEag algorithm

One of the most prominent evolutionary algorithms for
COPs is ε-constrained differential evolution with an archive
and gradient-based Mutation (εDEag). The algorithm uses
the ε-constrained method [19] to transform algorithms for
unconstrained problems to constrained ones. The ε-constrained
method converts a constrained optimisation problem to an
unconstrained one by using ε-level comparison instead of
ordinary one. The ε-level comparison is done in lexicographic
order in which φ (constraint violation) proceeds f (function
value) since feasibility has higher priority. For any ε ≥ 0, the
ε-level comparison of two candidates ( f1,φ1) and ( f2,φ2) is
described as the following:

Algorithm 1: The ε-constrained differential evolution
with an archive and gradient-based mutation (εDEag)

1) Initialize archive of A with M randomly selected
individuals from search space S.

2) Initialize ε-level using control level function.
3) Initialize population by selecting top N individuals

from archive A. Individuals are ranked based on the
εlevel comparison.

4) Setting the termination condition: When it exceeds
Maximum function evaluation number.

5) DE Operation: Compare child and parent
based on ε level comparison

6) If child is infeasible, it is changed by the gradient
based mutation with probability of P. Go to step 4

7) Control the ε-level
8) Go to step 3

( f1,φ1)<ε ( f2,φ2) ⇐⇒


f1 < f2, if φ1,φ2 ≤ ε

f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise

and

( f1,φ1)≤ε ( f2,φ2) ⇐⇒


f1 ≤ f2, if φ1,φ2 ≤ ε

f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise

By adopting an archive (see Algorithm 1) to the simple
(εDEg) [20], the stability, usability and efficiency of the
algorithm has been increased [21], [22]. Using an archive
improves the diversity of individuals (see Algorithm 1). The
offspring generation is adopted in such a way that if the child
is not better than its parent, the parent generates another one.
This leads to more stability to the algorithm.

III. EVOLVING CONSTRAINTS

In this study, we focus on finding the influence of constraint
features on problems. We want to obtain knowledge of what
types of constraints or what features of them make a problem
difficult to evolutionary algorithm.

While what makes a constrained problem difficult is not a
standalone feature, it is worth noting that the most important
part of these problems (constraints), need to be studied in
detail. Hence, our approach in this study is analysing various
effects of constraints on problem hardness. In this research,
we consider the linear inequality constraint. A linear inequality
constraint is as the form of

g(x) = b+a1x1 + . . .+anxn

lci ≤ ai ≤ uci, 1≤ i≤ n (4)

where values of lci and uci are lower and upper bounds on
the coefficients ai and x1,x2 . . . ,xn are values from equation
1, respectively. Also, we consider b ≤ 0 so that the objective
function optimum is always feasible. In this paper, we investi-
gate the relations of linear constraint coefficients (ai) and their
capacity to control problem difficulty.
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Fig. 1: Evolving constraints process

A. Methodology

This experimental study is based on generating easy and
hard instances using the performance of another optimisation
algorithm (problem solver). Using this technique makes it
possible to generate easy and hard instances.

In order to investigate the effects of constraints, first we
need to define variety of them with fixed objective function
(see Figure 1). Then, the evolutionary algorithm is started
by uniform randomly choosing constraint linear coefficients
ai. Next, we define a constraint optimisation problem using
a fixed objective function and newly generated constraint.
This forms the first step of the evolving process. We then
solve the generated COP with the investigated evolutionary
algorithm (solver). The function evaluation number (defined in
next section) that is required for solving the COP is considered
as the fitness value for evolving process. This generational
process is repeated to find the hard and easy linear constraint
for the fixed objective function.

B. Algorithms

For the evolution process, we use differential evolution
[2], which is a reliable and versatile function optimiser. DE
evolves individuals towards global optimum using mutation,
crossover and selection process. The core of DE is based
on enhancing the individual differences. The algorithm of
differential evolution is described in Algorithm 2,3. The Cost
function in Algorithm 2 is equivalent to the function evalua-
tion number (FEN) of solver required to solve the COP. As
mentioned in Algorithm 2, best solution is easy instances. In
order to find hard instances, line 7 needs to be modified as
Cost(Si)>Cost(Pi).

Our chosen algorithm for the solver is εDEag. As we
discussed in the previous section, εDEag is a stable optimisa-
tion algorithm as evidenced by its results in the CEC 2010
competition [9]. We also, modified the εDEag termination
condition in which the solver should be terminated when it
reaches FENmax or

f (xoptimum)− f (xbest)≤ e−12 (5)

Algorithm 2: Differential evolution (DE) algorithm. The
Cost function indicates the number of required FEN, that
is used to solve the generated instance.

1) inputs: Problem and population size, Crossoverrate,
weighting f actor
outputs: Sbest

2) Population ← InitializePopulation
EvaluatePopulation(population)
Sbest ← GetBestSolution(Population)

3) Repeat
4) NewPopulation ← φ

5) For i starts from 1 to < Populationsize-1
6) Si ← Newsample
7) If Cost(Si)≤Cost(Pi)
8) NewPopulation ← Si
9) else

10) NewPopulation ← Pi
11) Endif
12) Endfor
13) Population ← NewPopulation
14) EvaluatePopulation(population)
15) Sbest ← GetBestSolution(Population)
16) Until (stop condition)

which means the solution xbest is close enough to the optimum
solution. Hence, the current function evaluation number (FEN)
is considered as the evolving process fitness value. Clearly, the
instances that require more FEN are harder to solve comparing
to easier ones. This model is repeated until certain number of
generations for the DE evolutionary algorithm.

C. Linear constraint features

We study statistic based features that lead to generating
easy and hard problem instances. In the following the
complete features of the linear constraints are discussed.

• Angle: This feature is related to the angle of the
linear constraint hyperplane and other hyperplane such
as objective function and other dimension axes. To
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Algorithm 3: Newsample function in Algorithm 2
(DE/rand/1/bin)

1) inputs: P0, population, NP, F, CR
outputs: S

2) Repeat
3) P1 ← RandomMember(population)
4) Untill P1 6= P1
5) Repeat
6) P2 ← RandomMember(population)
7) Untill P2 6= P0 ∨ P2 6= P1
8) Repeat
9) P3 ← RandomMember(population)

10) Untill P3 6= P0 ∨ P3 6= P1 ∨ P3 6= P2
11) cutpoint ← RandomMember(population)
12) Sample ← 0
13) For j starts from 1 to NP
14) If j ≡ cutpoint ∧ Rand() ≤ CR
15) S j ← P3 j + F*(P1 j -P2 j )
16) Else
17) S j ← P0 j
18) Endif
19) Endfor
20) Return S

calculate the angle between two hyperplane, we need
to find their normal vectors and angle between them
using the following

θ = arccos
n1.n1

|n1||n2|
(6)

where n1,n2 are normal vectors for two hyperplanes.

• Ratio: In this research, ratio is the relationship of
two coefficients of a constraint (for 2 dimensional
problems).

Ratio =
a1

a2
(7)

where a1 and a1 are constraint coefficients (dimen-
sion=2). Since we have 2 ratios (based on two coeffi-
cients), we only consider the values which are closer
to 0.

• Shortest distance: This feature reflects the shortest
distance between the constraint hyperplane and the
optimum solution. To find the shortest distance of
optimum point (x01,x02, . . . ,x0n) to the hyperplane
a1x1 +a2x1 + . . .anxn +b = 0 we use

d⊥ =
a1x01 +a2x02 + . . .anx0n +b√

a12 +a22 + · · ·+an2
(8)

• Constraint coefficients relationship: Statistics
regarding the mean, standard deviation, population
standard deviation and variance of linear constraint
coefficients. It is likely that this information has the
ability to influence the problem difficulty.

IV. EXPERIMENTAL INVESTIGATIONS

We now analyse the linear constraint features for different
variety of easy and hard instances. These easy or hard instances

(a) (b)

(c) (d)

Fig. 2: Objective functions: a)Sphere: bowl shaped b)Ackley:
Many Local Minima c)Rosenbrock: Valley-Shaped d)Schaffer

N2: Many Local Minima

are obtained by DE algorithm based on the performance
of solver algorithm (εDEag). We start by comparing hard
and easy instances for well known objective functions (see
Figure 2) to provide an understanding between linear constraint
features and problem difficulty. We also, test our approach with
a given COP to check out research results.

A. Experimental setup

In our experiment we generate two sets of hard and easy
COP with linear constraints. In the following we discuss
parameter settings for both algorithm we used:

The parameters for DE algorithm (Algorithm 2,3) are set
as follows:

We use DE/rand/1/bin by performing 5000 generations for
the evolving algorithm to obtain the proper linear constraint.
Other parameters of the DE algorithm are as follows:
population size:40, scaling factor (F): 0.9, crossover rate:
0.5. For each problem dimension we run the evolutionary
algorithm for 30 independent runs (with different initial
population) to evolve hard and easy instances.

The details of εDEag algorithm parameter setting is de-
scribed bellow: We set the εDEag algorithm to solve generated
problem for 1000 generation. Actual parameter values εDEag
are: population size: 40, Scaling factor(F): 0.9, crossover
rate: 0.5. The parameters for ε-constraint method are: control
generation (Tc): 1000, initial ε-level (θ ): 0.9, archive size: 100n
(n is dimensional number), gradient-based mutation rate (Pg):
0.2 and number of repeating the mutation (Rg): 3.

B. Test problems and experimental results

In this part, we start by examining 2 dimension problems
to easily discuss them on figures. Then we continue to extend
the analysis on higher dimension problems to investigate
the effects of constraint features on them. We first do the
experiments on constrained sphere function (see Figure 2) as
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Fig. 3: Linear constraint coefficients ratio for 20 hard and
easy instances - Sphere 2D

the form of:

min f (x) :=
n

∑
i=1

x2
i −5≤ xi ≤ 5 (9)

subject to g(x) = b+a1x1 + . . .+anxn (10)

where g(x) ≤ 0 and coefficients (ai) and b (Equation 4) are
considered within the range of -1 ≤ ai ≤1 and dimension (n)
is 2.

As shown in Figure 4, two different linear constraints create
two COP instances. It can be observed that the feasibility
ratio of easy instance is greater than hard one. Also, we
compared the ratio of coefficients of linear constraints. Since
the objective function is symmetric, we calculate the ratio in
such a way that numerator is always less than denominator to
obtain the results within [-1,1]. We run the test for 30 hard
and easy instances. As observed in Figure 3, interestingly, all
ratio values for easy problems are close to 1 and roughly 0 for
hard one.

In contrast to coefficients ratio, there is no symmetric rela-
tionship between angle and problem hardness (FEN). Figure 5
shows the constraint hyperplane has different angles based on
the chosen xy,yz,xz plane. In other words, calculating the angle
between the constraint plane and various axis planes gives
similar or different values according to the chosen plane (see
Table I). Choosing the base hyperplane (to measure the angle
with) could be more problematic when dealing with higher
dimension problems.

Also, the shortest distance between optimum and the
linear constraint hyperplane does not have a strong symmetric
relationship to FEN of the COP instance. The results on
distance feature alone, does not provide any insight into
problem difficulty.

In the following, we continue the experiments on higher
dimension problems to see if it holds the same pattern as above.
We run our evolutionary algorithm (DE) to evolve hard and
easy instances for higher dimension problems (30D,50D) with
linear constraints. To study about higher dimension constraints,
we calculate the standard deviation of coefficients (ai) and

Fig. 4: Hard and easy constrained sphere problem (2D). The
left (easy) and right (hard) columns have similar objective

function with different linear constraint (red)

Fig. 5: Different views of easy and hard constraints angle

mean value for both groups of hard and easy problem instances
(see Figure 6). The box plot indicates that almost in all prob-
lems (30D,50D), the standard deviation (including minimum,
maximum and mean value) of coefficient ais in easy instances
are greater than hardest ones. For example, standard deviation
of ai in Sphere function (30D) varies from 0.33 to 0.50 with
0.45 median for hard instances, where as the minimum value
for easy instance is 0.51 with 0.58 median.

Also it is interesting that all mean values for the constraint
coefficients varies roughly from -0.3 to 0.3 (see Table
II,III). These feature helps us predicting the given constraint
capacity on problem hardness. Some other features such as
angle and distance between optimum and constraint plane
do not exhibit a symmetric relationship with problem difficulty.

To test our results, we generated 30 random instances and
evaluated them in terms of FEN and constraint coefficients.
To do this, we used values chosen uniformly at random
from [−1,1] for the ai. As expected the random instances lie
between the results for the hard and easy instances in terms
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Box plots of the standard deviation for constraint coefficients. From top to bottom: a)Sphere-30D b)Sphere-50D
c)Rosenbrock-30D d)Rosenbrock-50D e)Ackley-30D f)Ackley-50D.

TABLE I: The angle of easy (lowest FEN) and hard (highest
FEN) 2 dimensional sphere function to XY, XZ and YZ

plane. The angles are measured in degrees.

COP instance FEN XY
plane

XZ
plane

YZ
plane

easy 35605 41 57 67
easy 35609 39 64 68
easy 35524 36 66 64
easy 35520 20 81 72
hard 39925 14 76 89
hard 39504 39 60 66
hard 39695 40 83 51
hard 39871 39 64 62

of fitness evaluations. The results for the coefficient of the
random constraints are shown in Figure 6. It can be observed
that they lie between the ones for easy and hard instance as
shown in the box plots.

To summarize the experiment analysis, the variation of
constraint feature values over the problem hardness (function
evaluation number) is more prominent in some features than
the others. The results exhibit that standard deviation, mean
and ratio of linear coefficients have more symmetric relation-
ship with problem hardness than other features. Also, statistics
for other features such as minimum distance of optimum
and constraint hyperplane, as well as, the angle between the
axis and constraint hyperplane does not provide any useful
knowledge. Interestingly, increasing the number of dimension
achieves almost the same results for all features such as stan-
dard deviation, mean and ratio of linear coefficients (see Figure
6). In general, these experimented values provide suggestion
that which linear constraint feature has more contribution to
problem difficulty.
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TABLE II: FEN, Shortest distance value and the linear constraint coefficients (Mean, standard deviation) of different objective
functions (30D)

Function Easy/Hard FEN Coefficients
Std

Coefficients
Average

Shortest
Distance

Sphere 30D Easy 35563 0.58 0.03 -0.14
Sphere 30D Hard 39262 0.45 -0.02 -0.06
Rosenbrock 30D Easy 25870 0.47 0.36 -0.23
Rosenbrock 30D Hard 39164 0.44 -0.32 -0.24
Ackley 30D Easy 35450 0.55 -0.3 -0.03
Ackley 30D Hard 37855 0.47 0.02 -0.06
Schwefel 30D Easy 26343 0.73 0.44 -0.17
Schwefel 30D Hard 39946 0.48 -0.30 -0.08
Rastrigin 30D Easy 32786 0.69 0.11 -0.29
Rastrigin 30D Hard 38233 0.55 -0.04 -0.02
Sum Squares 30D Easy 35438 0.57 -0.008 -0.14
Sum Squares 30D Hard 38206 0.43 0.002 -0.01
Dixon-Price 30D Easy 28034 0.61 0.26 -0.19
Dixon-Price 30D Hard 39824 0.52 0.03 -0.16
Zakharov 30D Easy 27985 0.47 0.40 -0.41
Zakharov 30D Hard 30340 0.41 0.3 -0.23

TABLE III: FEN, Shortest distance value and the linear constraint coefficients (Mean, standard deviation) of different objective
functions (50D)

Function Easy/Hard FEN Coefficients
Std

Coefficients
Average

Shortest
Distance

Sphere 50D Easy 36072 0.56 0.01 -0.11
Sphere 50D Hard 39320 0.47 0.02 -0.02
Rosenbrock 50D Easy 28845 0.52 0.15 -0.04
Rosenbrock 50D Hard 39234 0.40 -0.26 -0.04
Ackley 50D Easy 35872 0.54 -0.21 -0.04
Ackley 50D Hard 39860 0.48 0.11 -0.6
Schwefel 50D Easy 29645 0.58 0.21 -0.21
Schwefel 50D Hard 39876 0.51 -0.11 -0.04
Rastrigin 50D Easy 35435 0.67 0.17 -0.03
Rastrigin 50D Hard 39854 0.53 -0.33 -0.16
Sum Square 50D Easy 35654 0.59 0.009 -0.17
Sum Square 50D Hard 29356 0.47 0.21 -0.14
Dixon-Price 50D Easy 34362 0.59 -0.03 -0.001
Dixon-Price 50D Hard 39294 0.46 0.13 -0.12
Zakharov 50D Easy 28375 0.47 0.23 -0.09
Zakharov 50D Hard 37287 0.43 0.31 -0.11

V. CONCLUSIONS

This paper has contributed the feature-based analysis on
constrained continuous optimisation problems to provide in-
sights that which features of the problem make it hard to
evolutionary algorithms. This approach has been used in the
field of combinatorial optimisation, however, to the best of
our knowledge, this is the first time that it has been applied
in the field of constrained continuous optimisation. Hence,
for the first step, we investigate that which linear constraint
features influence the problem difficulty. This study used an
evolutionary algorithm to generate hard and easy instances for
the εDEag algorithm. We then analysed variation of linear
constraint features with the problem difficulty to understand
relationship between constraint features and algorithm perfor-
mance. The results of this analysis, show that the coefficient
of even a linear constraint can make a difference of up to 30%

in terms of function evaluations and give a classification of the
hardness of these constraints.

Future work will be focused on analysing polynomial
constraint features and their capacity to problem difficulty.
Extending these features to include other type and combination
of constraints is also a future direction of this research which
is worth to be carried out.
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