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Abstract—In many engineering applications, black-box opti-
mization relies on the use of a simulation to obtain a numeric
evaluation or a score for a proposed solution. The cost of
optimization is mostly a reflection of the cost of running this
simulation environment. On the one hand, the higher the fidelity
of the simulation environment, the longer it is likely to take to
evaluate a single solution. Consequently, less solutions are allowed
to be evaluated given a time constraint on the running time of
the optimization algorithm.

On the other hand, the lesser the fidelity of the simulation
environment, the more likely more solutions could be evaluated
within the same time constraint. However, understanding the
relationship between fidelity and the quality of the final solution
obtained by the optimization method is largely an unexplored
area of research.

In this paper, we present an approach for adjusting taskload of
Air traffic controllers (ATC) in real time by using three different
shadow simulators of increasing fidelity and Differential Evolu-
tion (DE) as the evolutionary optimization algorithm. According
to air traffic conditions, DE optimizes a goal programming model
to steer the taskload up or down towards a predefined taskload
target by generating two ATC requests every 10 minutes.

The results demonstrate how a high fidelity simulator can help
DE to achieve better solution quality in the absence of any time
constraint on running the experiments. However, when there is a
tight time constraint imposed, lower fidelity simulators allow DE
to explore more solutions in the search space by cutting down on
the extra time needed when higher fidelity simulators are used.

I. INTRODUCTION

Air traffic controllers (ATC) are an important part of the air

traffic management system as they are responsible for main-

taining a safe and efficient flow of air traffic in a controlled

airspace. At any point of time, an ATC could be responsible

for simultaneously managing multiple aircraft, and therefore

the safety of hundreds of people. The complex process of air

traffic control relies significantly on and is limited by human

performance [1]. Like many complex and dynamic systems,

the ATC can’t temporarily halt the air traffic system to take

a break when the taskload becomes too complex. For this

purpose, a strategy needs to be in place to shift this load

between the humans and machines in order to maintain an

ideal level of complexity according to the ATC’s capabilities

[2]. Presently, air traffic flow management strategies rely on

centralised systems to produce routes for aircraft [3]. This is

conducted over a large time frame, ranging from one hour

to one year in advance and often encompass large regions,

such as the entirety of the Australian airspace. This causes

the system to be slow in responding to developing localised

weather conditions, airport conditions and other uncertainties,

which could potentially lead to local delays [3]. These local

delays could grow to form larger regional congestion. The

increased congestion in turn may exceed the initially planned

level of traffic within certain sectors and the capacity of the

sector; and at the same time exceed the capabilities of the

ATCs allocated to these sectors. In order to handle these

uncertainties we require a method by which to adjust the

ATC’s taskload in real-time.

To facilitate the adjustment of the ATC’s taskload in real-

time, it may be necessary for involved parties (ie. ATCs, pilots,

etc.) to take actions to correct from their current or planned

states. To generate these actions and evaluate their effective-

ness, we require an optimisation system. Optimisation can be

a time-consuming activity, especially when a simulation is

required to evaluate possible solutions. A number of advanced

air traffic management simulators currently exist. Examples

include the Future ATM Concepts Evaluation Tool (FACET)

[4], Total Airport and Airspace Model (TAAM) [5] and the Air

Traffic Operations and Management Simulator (ATOMS) [6].

All of these simulators provide high level of fidelity for mod-

elling the airspace and the aircraft. For example, the ATOMS

system incorporates atmospheric, weather and wind modelling;

and complex aircraft modelling which includes various aircraft

performance parameters such as fuel flow computation, aircraft

acceleration/deceleration, aircraft banking angle calculation

and the calculation of the effect of wind on the aircraft.

This simulator, along with other advanced simulators within

the air traffic domain, are themselves time-consuming and

operating these large computationally expensive simulator is

not practical for real-time applications [7], especially when
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the optimisation must be completed within a specified time

frame. Although high fidelity simulators are necessary as

predictive tools for some applications, the solution, for real-

time optimisation applications, is to run the simulation with

only a limited number of parameters. In this paper, we

demonstrate the effectiveness of incorporating simple, low

fidelity, simulation systems for use in real time optimisations.

We compare the effectiveness of these simple simulators to

the results achieved when using a much more complex, high

fidelity, simulator, ATOMS, in real-time optimisation. The

system will use ATOMS as a visual simulator which will

periodically send updates to an optimisation component. This

optimisation component will use a shadow simulator, a low

fidelity simulator, to generate a set of actions in order to adjust

the taskload of the current air traffic state.

Evolutionary algorithms are a common method of solving

optimization problems as the algorithm simultaneously works

with a set of possible optimal solutions in a single run

instead of a series of separate runs as required by some other

methods [8]. Using evolutionary algorithms for optimization

also has the potential to produce multiple solutions in one

run. Differential evolution (DE) is one such evolutionary

algorithm. DE uses direction information to guide the search

and compares the fitness of an offspring directly to the fitness

of the corresponding parent which results in faster convergence

speeds than other EAs [9]. In addition, DE is also easy to use,

requires fewer control parameters and can find near optimal

solutions regardless of the initial parameter values [10]. DE

has been applied to a range of topics in science, engineering

and management, such as logistics [11] and crew rostering for

airlines [12].

In this paper, we present an approach for adjusting the

ATC taskload in real time by using shadow simulators and

DE. Here, the ATC taskload is measured by one of the

well-known Dynamic Density (DD) metrics [13]. A taskload

target is defined as the average taskload of the whole period

from a given air traffic scenario. According to the air traffic

conditions, DE applies goal programming to push the taskload

up or down towards the target by generating two requests every

10 minutes for the main simulator, such as climbing to a given

flight level and skipping some navigation points. Instead of the

main simulator, a shadow simulator is used as an evaluator in

DE. Three shadow simulators with different modeling fidelities

including ATOMS are investigated here in order to evaluate

the performance of them when working with DE.

II. PROBLEM DEFINITION

An initial scenario is required as an input consisting of flight

plans for a set of aircraft A = {ai}Ni=1 where

ai = (r, Ta, S,RFL)

The input flight plan consists of the aircraft’s route (r),

activation time (Ta), initial speed (S) and requested flight level

(RFL). The aircraft’s route, r = W1,W2, ,Wj , contains j

waypoints, W , each with a latitude-longitude coordinate and

optionally an elevation. Waypoint W1 is the activation point

for the aircraft and Wj is the deactivation or final point. Both

of these points could either be an airport at ground level or

an en route waypoint.

At various stages of the real-time visual simulation, requests

are generated and evaluated for the suitability for incorporation

into the real-time simulation. The requests are generated as a

list of requests Q ={qk}
M
k=1, where qk = (ai, T, Y, δ). M is

the total number of requests in the list, ai is the aircraft which

made the request, T is the time the request is to be made, Y

is the type of request to be made and δ is a value specific to

the request, for example the number of feet to climb.

The aim of the optimisation is to generate a number of

requests that is likely to influence and change the taskload

complexity measured in the real-time simulation for a specific

period of time towards a predefined target level. Taskload

complexity can be calculated from an air traffic state using

a number of methods [13]. One widely used methods is a

method commonly known as the NASA–II method [14]. This

method takes into account various characteristics of the traffic

state of a specified area, the measured sector. This includes

the number of aircraft in the area, the number of aircraft

with heading changes, speed changes and altitudes changes

greater than 15◦, 10 kts and 750 ft respectively in the last

two minutes and several groupings of aircraft pairs based

on their lateral separation distances (0-25NM, 25-40NM, 40-

70NM) and three dimensional distances (0-5NM, 5-10NM).

The complexity of the traffic state is calculated periodically

by summing these metrics after being multiplied by a weight.

By using the weights, aircraft pairings which fall into the 0-

25 NM lateral distance group make a bigger contribution to

the complexity figure than the aircraft pairings which fall into

the 40-70 NM group, as the aircraft parings falling into the

0-25NM group are a bigger concern for the ATC than the

pairings in the 40-70NM group. To determine if the taskload

complexity at a particular time has met the predefined target

we use Equation 1, where x is the taskload complexity, T is

the target level of complexity, d+i is over achievement of the

target and d−i is under achievement of the target.

x− d+i + d−i = T (1)

As the aim is to change the taskload complexity of a specific

period of time, we use Equation 2 to determine how well

the complexity measurements for this period meets the target.

In Equation 2, f is the objective or fitness function, which

is calculated by taking the sum of the deviations of each

of the complexity measurements from the target level in the

specified time period. As all deviations are non-negative, a

global optimal solution for this optimisation problem occurs

when the objective value is zero.

f =

N∑
i=1

d+i + d−i (2)
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III. METHODOLOGY

A. Overview

As illustrated in Figure 1, two major components exist in

our system: a shadow simulator and DE.

Fig. 1. System overview

The main simulator sends snapshots of air traffic to our

system and the DE produces possible solutions (requests)

effecting the future taskload, which are evaluated by a shadow

simulator. Based on the fitness, the best requests are sent

to the main simulator and are executed. The details of each

component are discussed in the following sections respectively.

B. Simulation

A number of different simulation systems were used as part

of this study. The simulation systems used included the Air

Traffic Operations and Management Simulator (ATOMS) [6],

a basic simulator which does not include many of the domain

specific features of ATOMS and another basic simulator which

includes a limited number of the domain specific features

found in ATOMS. All three of these systems use an agent-

based system architecture for simulation.

ATOMS can simulate end-to-end airspace operations and

air navigation procedures for conventional air traffic, as well

as for free flight. A complex aerodynamic model based on

the Base of Aircraft Data (BADA) [15], which includes the

detailed aircraft climb/descent, acceleration/deceleration, and

turning models, supports ATOMS to provide high fidelity

simulation results for any level operation analysis and opti-

misation exercises [16]. However, the computational cost of

ATOMS for such detailed aerodynamic modelling may not be

suitable to use it as an evaluator when involving population

based optimisation method for a time constrained optimisation

problem.

The two basic simulators were developed as agent-based

systems. The aircraft in these simulators are modelled as point

masses in 3-D space and use the equations of motion to

model the movement of the aircraft. The first simulator (Basic

Simulator 1) does not take into account any of the aerodynamic

properties, aircraft performance, atmospheric conditions or

weather conditions which are considered in ATOMS. This

simulator uses a fixed rate of climb/decent (ROCD) and a

fixed rate of acceleration/deceleration (ROAD) for all aircraft,

irrespective of aircraft model, elevation and speed. The second

basic simulator (Basic Simulator 2) is an extension of the

first basic simulator, but takes into account an additional

feature which is available in ATOMS. This simulator uses

aircraft performance data available from BADA to determine

an aircraft’s rate of climb and decent and acceleration rate

based on its model and elevation. The major differences of

these three simulators are summarised in Table I.

TABLE I
COMPARISON OF MAJOR THE DIFFERENT SIMULATORS

Feature ATOMS Basic Simulator 1 Basic Simulator 2

Climb Aerodynamic Model 42 ft/s BADA tables

Descent Aerodynamic Model 35 ft/s BADA tables

ROAD Aerodynamic Model 0.3 m/s2 BADA Tables

Turning 3◦/s Direct turn Direct turn

Navigation Fly pass Fly over Fly over

A comparison of a sample aircraft’s speed and elevation

along time can be seen in Figure 2 when being simulated with

ATOMS, the Basic Simulator 1, and the Basic Simulator 2. The

sample aircraft’s flight plan was as follows: Take off from an

elevation of 0ft, climb to a cruise elevation of 29,000ft, when

the fifth waypoint is reached descend to 24,000ft, when the

sixth waypoint is reached return to cruise altitude, when the

seventh waypoint is reached descend to 25,000ft and finally

when the eighth waypoint is reached return to cruise altitude.

It can be seen from Figure 2 that the speed and elevation

profile for this flight varies between the three simulators.

The average speeds when using both Basic Simulators are

higher than when using ATOMS. As a result, waypoints are

reached earlier in both Basic Simulators, so the climbing and

descending requirements from the flight plan are carried out

and fulfilled earlier. From Figure 2(b), it can be seen that the

climb rate used in the three simulators are also different and

that it is not possible for the aircraft to descend to the required

altitude in ATOMS before the waypoint is reached. Figure 2(b)

also shows that the rate of climb/descent (ROCD) of Basic

Simulator 2 is more similar to ATOMS than Basic Simulator 1.

In addition, Basic Simulator 2 has similar behavior to ATOMS

in terms of speed profile when the aircraft is descending,

which is illustrated by the window of 600 to 800 seconds

in Figure 2(a).

In all experiments in this study, two simulations were op-

erated simultaneously. One of the simulations was a real time

visual simulation conducted with ATOMS, while the second

simulation, the shadow simulation, operates in a fast-time

mode in the background without visualisation. The shadow

simulation runs at a much faster rate than real-time. The aim of

the shadow simulation is to evaluate and estimate the impact of

dynamically changing the complexity of the measured sector

by allowing the aircraft to make requests to deviate from their
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(a) Comparison of speed (b) Comparison of altitude

Fig. 2. Comparison of the speed and altitude of an aircraft using ATOMS and the Basic Simulator 2

TABLE II
TIME WINDOWS FOR OPTIMISATIONS AND REQUESTS

Request 1 Request 2

Look ahead time start TLS = Most recent traffic snapshot time

Look ahead time end TLE = TLS + 10 minutes

Optimisation cut-off time TOE = TLS + 2minute

Execution time range start TES1 = TOE + 1 minute TES2 = TEE1

Execution time range end TEE1 = TES1 + (TEE2 − TES1)/2 TEE2 = TLE2 − 1 minute

original flight plan at specific periods of time. The shadow

simulation and the aircraft requests will be discussed in more

detail in the following sections.

C. Requests

An aircraft travelling through the measured sector can be

chosen to make one of eight requests:

• Climb: The aircraft can request to climb 2000ft

• Descend: The aircraft can request to descend 2000ft

• Change speed: Exit the sector up to 5 minutes earlier

• Change speed: Exit the sector up to 5 minutes later

• Turn right: Change heading by 5◦ in a clockwise direc-

tion, then return to original path after 2 minutes

• Turn left: Change heading by 5◦ in a counter-clockwise

direction, then return to original path after 2 minutes

• Skip upcoming waypoints: Skip a number of upcoming

waypoints such that it results in a net heading change

• Emergency landing: Immediately begin descent to a flight

level lower than the sector

The request to be made by a particular aircraft is generated

using the shadow simulation and a set of probabilities opti-

mised using differential evolution. The execution time of the

requests is also generated from differential evolution.

In order to obtain a wider variety of requests, only one

instance of each request is allowed to be sent for execution

within a predefined period in the real time visual simulation.

The emergency landing request is allowed to be executed only

once during the entire real time visual simulation as this event

occurs rarely relative to the other listed requests in real world

traffic conditions. In air traffic management environments the

pilot may need approval from the air traffic controller before

some of these requests can be executed. But for the purpose

of this study, it is assumed that all requests are approved by

the ATC.

D. Shadow simulation

While the visual ATOMS simulation is operating in real

time, another set of simulations, the shadow simulations, are

run in the background. The shadow simulation is run without

visualisation and at a much faster rate than real time. The

aim is to use the shadow simulation, in conjunction with

differential evolution, to dynamically change the complexity

of a measured sector by allowing the aircraft to make requests

to deviate from its original flight plan at specific periods of

time.

The optimisation system receives a snapshot of the current

traffic state (ie. each aircraft’s positions, speed and heading) at

regular intervals, Isnapshot , from the real-time environment.

When the snapshot is received, the optimisation system is

triggered. The optimisation system aims to produce up to

two requests which are to be executed at two different times.

The execution time for each request is determined from a

time range relative to the simulation time received from
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the snapshot, which can be seen in Table II. The execution

time and the request are determined using the probabilities

generated from the differential evolution component. When

the optimisation cut-off time is reached, the optimisation is

stopped and the best generated set of requests thus far is sent

to the real time simulation. A one minute gap between the

cut-off time and the execution time of the second request is

kept in order to accommodate transfer time of the request to

the real time environment.

Request 1 is generated first and then Request 2 is generated

from the same set of probabilities. Request 2 is constrained

to be a different request from that of Request 1. It is also

constrained to be generated for a different aircraft from the

aircraft that was associated with Request 1. If it is not possible

to generate Request 2 with the previous two constraints, and

after ten unsuccessful attempts, then the simulation goes ahead

with only Request 1.

Before any request generation can occur, the traffic scenario

is simulated using the shadow simulation from the most recent

traffic snapshot time, TLS , to the look ahead end time, TLE .

During this simulation, all the aircraft which entered the

measured sector between the times TLS and TLE are recorded

and the aircraft which did not enter during this period are

disregarded from use in further simulations for the generation

of this particular request. This is done in order to reduce

the total number of aircraft being simulated which do not

have a bearing on the final outcome of the optimisation; only

aircraft which enter or are already inside the measured sector

during this period impact complexity. Additionally, as there

are fewer aircraft being simulated, the overall simulation time

of the shadow simulation will be faster than simulations which

included these inconsequential flights and will therefore allow

for more simulations before the time TOE is reached.

Multiple lists of probabilities are produced using differential

evolution (which will be discussed in more detail in the

following sections). These lists contain the probability that

each of the requests will be executed and a probability for

each aircraft for making the request. Each list of probabilities

is used separately as an input into the shadow simulation. The

shadow simulation then uses these probabilities to generate a

request-aircraft pairing. The scenario is then simulated from

time TLS to TLE with the generated requests being executed.

At the end of the simulation, the measured complexity for this

period is used to evaluate the effect of implementing these

requests using Equation 2.

Once time TOE has been reached in the real-time simula-

tion, the best set of requests is sent to the real time environment

for execution. The request is automatically executed when the

request’s execution time is reached.

E. Request Probabilities

The aircraft which makes a request and the nature of

the request is based on given probabilities, obtained from

the chromosomes which were generated using differential

evolution. The given probabilities include a probability for

each request type, R = {P (ri)}
N
i=1, where N is the number

of request types and ri is request type ID i; and another

probability for each aircraft, A = {P (aj)}
M
j=1, where M is

the number of aircraft entering the measured sector between

TLS and TLE , and aj is aircraft number j. The probability of

a particular request being made from a certain aircraft at a

given time is found using Equation 3.

P (ri|aj) = P (ri)× P (aj) (3)

The execution time for each request were also obtained from

chromosomes generated using differential evolution.

F. Differential Evolution

Fig. 3. Chromosome representation for use in the differential evolution
process where T is the execution time for each request, R is the probability
for a request and A is the probability for each of aircrafts

Differential evolution (DE) was used as the search technique

to optimize the objective function. A list of un-normalized

probabilities was generated randomly then was used as an

input to generate a list of requests for the shadow simulation.

Based on feedback from the shadow simulation environment,

each list of requests was then evaluated to determine the fitness

of each list. DE search for the list of probabilities which can

generate the minimum value for the objective function.

Each solution (called a chromosome in DE) is represented

naturally as a vector of real numbers. As shown in Figure 6,

the chromosome used in this system included one parameter

for each aircraft and another for each of the eight request types.

There were also two parameters for the execution time for each

of the requests to be generated. The eight parameters for the

request types represent the probability of that request being

made at a particular time while the parameters for the aircraft

represent the probability that the request is coming from the

corresponding aircraft. The parameters are initialised with

random values. The minimum and maximum values for the

execution time are obtained from Table II while the minimum

and maximum values for the remaining parameters are 0 and

100 respectively. If a particular request is not allowed, then its

maximum value is set to 0, thus making it impossible to be

selected using Equation 3;

DE searches the space by using existing solutions to decide

on possible directions where the fitness function will improve.

Each time a new potential solution is generated, its fitness is

determined using a shadow simulation.

IV. EXPERIMENT DESIGN

Three different experiments were conducted as part of this

study. Each experiment used each of the simulators introduced

in the previous section for the shadow simulation, while all

experiments used ATOMS for the real time environment. A

breakdown of the experiments can be seen in Table III.
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Fig. 4. Cumulative Taskload complexity from the three different simulators
for the input scenario

TABLE III
EXPERIMENTS SETUPS

Experiment Visual Simulation Shadow Simulation

AB1 ATOMS Basic Simulator 1

AB2 ATOMS Basic Simulator 2

AA ATOMS ATOMS

Each of the experiments were conducted with the same

input scenario. This input scenario contained 42 aircraft with a

range of different characteristics. Some aircraft were activated

outside the measured sector, some had origin airports within

the sector and some had destination airports within the sector.

The measured sector was defined in 3D space above 25,000ft.

Most aircraft entering the sector had an intersecting route with

another aircraft that was also within the sector, but intersection

may not have necessarily resulted in a violation of separation

required to increase the taskload complexity. A screenshot of

the real-time environment can be seen in Figure 5. This figure

shows the measured sector and the flight plans of some aircraft

in the input scenario. The real time environment was run for

50 minutes in each of the three experiments. Each request type

was only allowed to be executed in the real-time environment

once in the first 25 minutes and again in the second 25 minute

block.

The traffic state snapshots were sent from the real-time

environment once every five minutes. The air traffic com-

plexity was measured for a rolling window for the previous

five minutes with a frequency of ten times a minute in all

simulations. A comparison of the taskload complexity from

the three different simulators can be seen in Figure 4. It shows

the complexity of the scenario as simulated by ATOMS for

the 50 minute period used in the experiments. It can be seen

from this figure that the taskload complexity slowly builds

up from around 8:10 and reaches a peak at around 8:30 as

more aircraft become active and ready to enter the measured

sector. A number of key differences can be seen between the

taskload complexity plots from the different simulators. This

Fig. 5. Screenshot of the realtime visual simulation

is a result of the fidelity of the different simulators and the

way each of them handle heading changes, elevation changes

and speed changes; and the flow on effects of causing aircraft

pairings to be classed under different groups when calculating

the complexity. When simulating between TLS and TLE with

a snapshot from the real-time environment, these differences

are lowered, but not entirely eliminated. When we look at the

cumulative complexity in Figure 4, the differences between

ATOMS and the Basic Simulator 2 is much smaller.

The target, T , for Equation 2 was set to 45, which is the

average taskload complexity from the input scenario when

using ATOMS as seen in Figure 4.

For each snapshot, differential evolution was operated for

100 generations with a population size of 20 individuals.

The parameters for the differential evolution was set at the

recommended initial values for the crossover constant (CR)

of 0.9 and the amplification factor (F) of 0.5 [17]. If the

differential evolution run was completed before time TOE (2

minutes), it gets re-initialised with the same snapshot, but

with a different seed for the random number generator. This

process continued until time TOE was reached in the real-time

environment. At this point of time, the best list of requests

generated from all differential evolution runs for this snapshot

were selected for use in the real-time simulation.

V. RESULTS

The results obtained from the three experiments show that

the system was successful at meeting the aim of changing

the taskload complexity of the real-time environment as can

be seen in Figure V. Comparisons among different shadow

simulators on the cumulative complexity are presented in

Figure 7.

It can be seen in Figure 7 that the cumulative taskload

complexity largely follows that of the input scenario when

the Basic Simulator 1 was used as the shadow simulator.

When ATOMS was used as the shadow simulator, there was

a greater effect on taskload complexity, as can be seen in

Figure 7, particularly during the first 25-minute period when

the taskload complexity was higher than the baseline, a time

when the baseline complexity was lower than the target level.
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However, the complexity could not be pushed down enough

to the level which the Basic Simulator 2 has achieved in

the second 25 minutes period. In fact, it has resulted in an

increase in complexity for parts of this period when compared

to the baseline. The most dramatic change on the cumulative

taskload complexity can be seen when using Basic Simulator

2, particularly for the period around 8:30. If we see Figure V,

we can see a significant drop in the taskload complexity when

using Basic Simulator 2 during this period relative to the other

shadow simulators and the baseline.
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Fig. 6. Taskload complexity as measured by the ATOMS real-time simulation
for each experiment

As shown in both Figure V and 7, it seems that the Basic

Simulator 2 has a better overall performance among the three

shadow simulators.

TABLE IV
AVERAGE DEVIATION FROM THE TARGET LEVEL OF COMPLEXITY

Average deviation for 10 minutes starting at Overall
Experiment 8:00 8:10 8:20 8:30 8:40 average

Baseline 37.24 14.16 7.90 12.58 7.36 11.21

ABS1 34.88 12.88 9.47 13.15 7.52 11.40

ABS2 34.93 13.96 6.27 8.44 8.44 9.97

AA 35.37 11.37 10.00 13.29 4.98 10.57

The average deviation of the complexity measurements from

the target level of complexity is calculated using Equation 2 for

the entire 50 minute session and dividing the obtained value by

the total number of measurements, N . The average deviation

from the target level of complexity for each experiment can

be seen in Table IV. From this table, we see that using Basic

Simulator 1 and ATOMS as the shadow simulator resulted in

an overall average deviation greater than that of the unaltered

input scenario, the baseline. Although ATOMS as the shadow

simulator achieved smaller variations in the first 20 minutes,

the Basic Simulator 2 has much smaller variations for the

remaining periods which corresponds to the observations from

Figure V.

It is expected that using Basic Simulator 1 as the shadow

simulator would yield results with a greater average deviation
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Fig. 7. Cumulative taskload complexity as measured by the ATOMS real-
time simulation for each experiment

than Basic Simulator 2 as the fidelity of Basic Simulator 2

is greater than that of Basic Simulator 1. Using ATOMS as

the shadow simulator may have resulted in a greater average

deviation due to the time constraints placed on the optimisa-

tion. Figure V demonstrates that the number of evaluations

completed when using ATOMS as the shadow simulator is

significantly smaller than that when using the two basic

simulators. This is expected as ATOMS is a significantly

higher fidelity simulator and therefore requires more time

to complete simulations consisting of a similar number of

aircraft when compared to the basic simulators. ATOMS can

achieve better results when the number of aircraft (agents)

are smaller. When number of aircraft (agents) increases, the

explored search space by DE with ATOMS is limited by the

time constraint. The number of aircraft (agents) affect the other

two basic simulators somehow as shown in Figure V, but the

built-in low fidelity model enables DE to handle more aircraft

and to explore more of the search space.

The experiments were repeated with varying parameters

for the differential evolution to understand the sensitivity of

these parameters on the system. The CR was varied to three

levels: 0.3, 0.6 and 0.9; and the F was also varied between

three levels: 0.1, 0.3 and 0.5; giving a total of nine different

combinations. The three experiments were repeated with 20

runs for each combination of CR and F. Due to resource

constraints these experiments were conducted on a number of

different computers and as such the two minute optimisation

limit would not have given fair results, particularly those using

ATOMS as the shadow simulator. So the optimisation was

instead limited to a maximum number of evaluations. The

average number of evaluations for each shadow simulator was

determined from Figure V and then halved. The resulting

figure was the evaluation limit used in place of the two minute

limit for the respective shadow simulator. The average of the

average deviations from the target for each experiment and CR

and F combination can be seen in Table V. From this table
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it can be seen that for all but one combination, the ATOMS

shadow simulator has the lowest average of average deviations

from the target.

TABLE V
AVERAGE OF AVERAGE DEVIATIONS FROM TARGET LEVEL OF

COMPLEXITY FOR DIFFERENT DIFFERENTIAL EVOLUTION PARAMETERS

USING THE THREE SHADOW SIMULATORS

CR F BS1 BS2 ATOMS

0.3 0.1 11.64 ±1.34 11.28 ±0.61 11.20 ±1.49
0.6 0.1 11.58 ±0.87 11.56 ±0.74 11.06 ±1.38
0.9 0.1 11.90 ±1.04 11.65 ±0.87 10.70 ±0.68

0.3 0.3 11.54 ±1.19 11.52 ±1.08 11.10 ±0.84
0.6 0.3 11.32 ±1.15 11.49 ±1.05 11.62 ±1.63
0.9 0.3 11.53 ±1.30 11.40 ±1.23 10.95 ±1.40

0.3 0.5 11.33 ±1.26 11.65 ±0.77 10.56 ±0.78
0.6 0.5 11.88 ±1.17 11.73 ±0.78 11.43 ±1.72
0.9 0.5 11.49 ±1.19 11.50 ±0.74 10.95 ±0.92
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Fig. 8. Number of evaluation completed by each shadow simulation method
for each snapshot

VI. CONCLUSION

In this paper, we proposed an approach to optimise ATC

taskload in real time by using shadow simulators and DE.

Three simulators with different fidelities are used as shadow

simulators. As demonstrated by the results, DE can utilise

all shadow simulators to produce acceptable solutions for

adjusting ATC taskload in real time. However, the performance

of each shadow simulator is different from the others.

A high fidelity simulator can help DE to achieve better

results if no time constraint was applied. On the other hand, a

lower fidelity simulator allows DE to evaluate more solutions;

thus producing acceptable solutions in a short time window.

In summary, we demonstrate that a lower fidelity simulator

can be beneficial when there is a time constraint on the

optimisation proces.
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