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Abstract— In this paper a Cooperation Mechanism for 

Distributed Scheduling based on Bees based Computing is 
proposed. Where multiple self-interested agents can reach 
agreement over the exchange of operations on cooperative 
resources. Agents must collaborate to improve their local 
solutions and the global schedule. The proposed cooperation 
mechanism is able to analyze the scheduling plan generated by 
the Resource Agents and refine it by idle times reducing taking 
advantage from cooperative and the self-organized behavior of 
Artificial Bee Colony technique. The computational study allows 
concluding about statistical evidence that the cooperation 
mechanism influences significantly the overall system 
performance. 

Keywords— Self-Organization; Cooperation; Distributed 
Resource Scheduling; Distributed Resource Scheduling; 
Artificial Bee Colony.  

I.  INTRODUCTION   
Cooperation in an economic and social context can be 

stated as the process of two or more entities or organizations 
working or acting throughout common objectives [1]. The 
current financial/economic scenario and the increasing 
competitiveness of markets could be identified as the main 
factors responsible for the promotion of research and 
development of new approaches for solving scheduling 
problems in manufacturing systems in the perspective of 
supporting human decisions. Making the right decision at the 
right instant can effectively strengthen the performance, agility 
and position of organizations over competitors. 

In this paper, we start with the belief that by understanding 
the solutions that nature employs in its quotidian, we can use 
this acquired knowledge to solve real world problems in direct 
analogy with Biomimetic Computing. Using insights from 
biological systems to specify intelligent computational systems 
has focused on optimization techniques inspired by biological 
observations, including Neural Networks, Genetic Algorithms, 
and more recently Swarm based Algorithms [2].  Artificial Bee 
Colony (ABC) is one of the most recently introduced swarm-
based algorithms. ABC simulates the intelligent foraging 
behavior of a honeybee colony. In this paper, the modified 
version of ABC is used. Biologically inspired systems have 
been gaining importance and it is clear that many other ideas 
can be developed by taking advantage of the examples that 

nature offers.  Some social systems encountered in nature can 
present an intelligent collective behavior although they are 
composed by simple individuals with limited capabilities. The 
intelligent solutions to problems can naturally emerge from the 
self-organization and indirect communication of the 
individuals. These systems provide important techniques that 
can be used in the development of distributed artificial 
intelligent systems [2][3]. 

Social issues in the organization of Multi-Agent Systems 
(MAS) have been increasingly relevant over the last decades as 
a platform to define the basis of agent interactions in open and 
dynamic environments [3]. A Cooperation Mechanism for 
Distributed Resource Scheduling (CMDS) for Artificial Bee 
Colony based Self-Organized Scheduling System is proposed. 
This CMDS is embedded in the AutoDynAgents scheduling 
system architecture [5], which consists on a system with a 
community of agents that model a real manufacturing system 
subject to perturbations. Agents must cooperate to improve 
their local solutions and the global schedule. The proposed 
CMDS is able to analyze the scheduling plan generated by the 
Resource Agents and refine it by idle times reducing taking 
advantages from cooperative and the self-organized behavior 
of Artificial Bee Colony technique. 

The remaining sections are organized as follows. Section II 
compiles issues and contributions for cooperation in Multi- 
Agent Systems. Theoretical foundations, the biological 
motivation and fundamental aspects of Bee based Computing 
with focalization on the design and implementation of an ABC 
algorithm and some recent applications for scheduling 
resolution are summarized in section III. In Section IV the 
proposed Cooperation Mechanism is described. Section V 
presents a computational study and discusses the obtained 
results. Finally, the paper presents some conclusions and puts 
forward some ideas for future work. 

II. COOPERATION IN MULTI-AGENT SYSTEMS 
Multi-Agent Systems highlight the joint behaviors of agents 

with some degree of autonomy and the complexities arising 
from their interactions [6]. Due to the interactions among the 
agents, MAS complexity can increase rapidly with the number 
of agents or their behavioral intricacy.  
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In a multi-agent environment there is more than one agent, 
interacting with each other and constraints such that agents 
may not, at any given time, know everything about the 
environment that other agents know, including the internal 
state of the other agents themselves [6]. Due to these 
interactions and constraints, it is necessary to incorporate 
coordination and cooperative behaviors between agents, 
leading to cooperative MAS, which are the ones that 
cooperatively solve tasks or maximize utility [6]. 

Natural evolution is based on the law of survival, in which 
only the fittest survive. As a way to counteract that natural rule, 
groups of individuals of the same species (or even different 
species) tend to cooperatively join their behaviors, in order to 
fight for survival [7]. Cooperation exists at multiple levels of 
activity in a wide range of populations. People pursue their 
own goals through communication and cooperation with other 
people or machines. Animals interact (with limited language), 
cooperate with each other, and form communities. Particles 
interact with each other and compose different types of 
material and phases of matter [8]. These are examples of how 
cooperation is ubiquitous in the real world and can be observed 
at different organizations, ranging from microorganisms and 
animal groups to human societies [9]. 

Solving the problem of how cooperation emerges among 
self-interested entities is a challenging issue that has motivated 
scientists and practitioners from different disciplines including 
psychology, sociology, economics, and computer science, 
amongst others. The emergence of cooperation is often studied 
in the context of social dilemmas, in which selfish individuals 
must decide between a socially reciprocal cooperative behavior 
and a self-interested behavior of defection to pursue their own 
short-term benefits. Social dilemmas often arise in many 
situations in MAS, e.g., file sharing in peer-to-peer systems, 
load balancing/packet routing in wireless sensor networks and 
bandwidth allocation/frequency detection in 
telecommunication systems [10]. As Kraus [8] mentioned, 
“cooperation (not merely coordination) may improve the 
performance of the individual agents or the overall behavior of 
the system they form”. This paper proposed a cooperation 
mechanism embedded in a Multi-Agent Scheduling System. 

In the literature, it is possible to find several approaches of 
cooperation in MAS. Adler et al. [11] explored the use of 
cooperative MAS to improve dynamic routing and traffic 
management. On the supply-side, real-time control over the 
transportation network is accomplished through an agent-based 
distributed hierarchy of system operators. Allocation of 
network capacity and distribution of traffic advisories are 
performed by agents that act on behalf of information service 
providers. The cooperation between agents seeks a more 
efficient route allocation across time and space. Results from 
simulation experiments suggest that this cooperation can 
achieve increased network performance and driver satisfaction.  

De Gennaro and Jadbabaie [12] proposed a decentralized 
cooperative controller for a group of mobile agents. The 
control design was based on the navigation function formalism. 
The aim of the group control law was to generate a pattern in a 
given workspace while avoiding obstacles and collisions. The 
desired goal was specified in terms of distances among the 
agents. Authors showed that it is always possible to design a 

control law as the gradient of a suitably-defined navigation 
function whose minimum corresponds to the desired 
configuration. Srinivasan and Choy [13] described a 
cooperative multi-agent approach employing multiple hybrid 
agents to provide effective signal control for real-time traffic 
management. The detailed MAS use cooperative behaviors to 
improve individual agents' learning process and adaptability. 
Each agent cooperates with other agents within its cooperative 
zone, the size of which changes dynamically according to the 
changing needs of the agent. The performance of the proposed 
cooperative MAS was tested on a complex traffic network and 
compared against two other approaches. The results 
demonstrate the efficacy of the cooperative multi-agent 
approach in dealing with the approximated version of an 
infinite horizon dynamic problem. Choi et al. [14] presented an 
algorithm and analysis of distributed learning and cooperative 
control for MAS so that a global goal of the overall system can 
be achieved by locally acting agents. The proposed algorithm is 
executed by each agent independently, in order to estimate an 
unknown field of interest from noisy measurements and to 
coordinate multiple agents in a distributed manner to discover 
peaks of the unknown field. The proposed algorithm is based 
on a recursive spatial estimation of an unknown field. Authors 
showed that the closed-loop dynamics of the proposed MAS 
can be transformed into a form of a stochastic approximation 
algorithm and proved its convergence. 

III. BEES BASED COMPUTING 
Optimization algorithms inspired from the collective 

behavior of biological populations that can be observed in 
nature such as ants, bees, fish, and birds are associated with the 
paradigm of Swarm Intelligence and have been referred as a 
creative approach to optimization problem solving. ACS, PSO 
and ABC algorithms are among the most promising Swarm 
Intelligence (SI) optimization techniques for scheduling 
resolution [2]. The Bees Algorithm is a relatively new 
population-based search algorithm, initially proposed in 2005 
by Pham et al. [15] and Karaboga et al. [16] independently. 
The algorithm mimics the food foraging behavior of swarms of 
honey bees. In its basic version, the algorithm performs a kind 
of neighborhood search combined with random search and can 
be used for optimization problems. In 2005, Pham proposed a 
Bees Algorithm in a technical report [15] inspired in the 
foraging behavior of honey bees to find food sources. At the 
same time Karaboga [16] proposed an Artificial Bee Colony 
(ABC) algorithm that drew a similar inspiration in the foraging 
behavior of the bees.  

Real bees are social insects living in an organized group 
called hive. In a beehive, the group has some specific tasks 
performed by specialized individuals. The goal of this 
organization is to maximize the amount of nectar in the colony 
by getting the utmost from food sources. Natural bees are 
known for the production of honey and for the adaptation to 
changes in the environment in a collective intelligent way. 
Bees have photographic memory, proper navigation systems, 
use the nectar for energy and use the pollen as protein for the 
creation of their offspring [4][17].  

Generally, a bee colony contains a reproductive female 
(queen), a few thousand males (drones), and many thousands 
of sterile females (workers). After mating with multiple drones, 
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the queen produces many young bees ushering in a new 
generation [4][17]. The queen has a life expectancy of 3 to 5 
years, is the mother of all members of the colony, and its main 
task is mating with the drones, a reproductive operation that is 
known as mating flight. The fertilized eggs become females 
(workers and future queen) and unfertilized eggs become males 
(drones). Drones are the males in the hive, have a life 
expectancy of around 90 days and do not live longer than six 
months. Its main task is to mate with the queen and die after 
having done so successfully. Worker bees are females without 
reproductive capacity, representing most of the bees in the 
hive, and usually live between 4-9 months. In the first half of 
their life, they are responsible for many tasks in the hive, from 
maintenance to defense. In the second half of their life, the 
main task of these bees is looking for food, and initially they 
make short flights in order to learn the location of the hive and 
the topology of the environment. Searching for food is the most 
important task of a bee colony [4][17]. This process begins 
with the search for food sources by exploiting a group of 
flowers, with the aim of extracting nectar. The value of a food 
source depends on several factors such as proximity to the 
hive, the concentration of energy, and ease of food extraction. 
For the sake of simplicity, the profitability of a food source can 
be represented by a single numerical value which represents 
the quality [4]. After unloading the nectar, the explorer bee 
who found the food source becomes "used" and performs a 
special move, a sort of dance, in order to share information 
about the source of food with spectator bees, causing them to 
explore this food source as well. Besides the value of the food 
source, this shared information also involves the direction and 
distance from the hive [17][19]. The sharing of information 
between the bees is the most important part in the formation of 
collective knowledge. So there are three different types of 
dances that bees can do: round dance, waggle dance, and 
tremble dance [17][18]. If the distance of the food source in 
relation to the hive is less than 100 meters, the bees perform a 
round dance; otherwise they perform a waggle dance. While 
the round dance gives no information about the direction of the 
food source, the waggle dance gives information about the 
direction to the sun, the distance to the hive and the quality of 
the food source. Finally, the tremble dance is used when the 
bee detects delays when discharging its nectar. 

Spectator bees watch various dances from different bees 
and decide which food source they want to use, and there is a 
higher probability of choosing more profitable sources. Once 
they choose and locate the food source, spectator bees become 
worker bees by exploiting this source to extract its nectar. 
When the food source is exhausted, employed bees become 
explorers [4][17]. 

A. Artificial Bee Colony algorithm 
In this work the Modified ABC (MABC) algorithm 

proposed by Karaboga and Akay [4] will be used.  The 
Modified ABC algorithm (Table I) has three main phases, 
corresponding to three types of specialized bees, Employed, 
Onlooker and Scout, that represent a minimal model of the real 
swarm intelligent forage selection [4][17]. Employed bees are 
in the same number as food sources (solutions) and are 
responsible for exploring one and only one food source at the 
time and give information to other bees. When an employed 

bee leaves its food source it becomes a scout bee. Onlooker 
bees wait in the hive until employed bees inform them of the 
whereabouts of a good food source. Scouts bees search the 
environment trying to find a new food source depending on an 
internal motivation or external clues or randomly. Half of the 
hive is composed by employed bees and the other half by 
onlooker bees. A solution represents a food source that is 
measured by the nectar amount corresponding to the quality of 
the solution. 

TABLE I. MODIFIED ABC ALGORITHM 
Input: ABC Parameters and scheduling data problem 
Output: Best solution 

1: Begin  
2:    Initialization of Bee Population 
3:    Cycle = 1  
4:    While cycle != Maximum Cycle Number 
5:       Employed Bees Phase 
6:       Calculate Probabilities for Onlookers 
7:       Onlooker Bees Phase 
8:       Scout Bees Phase 
9:     Keep the best solution achieved so far 
10:     Increment Cycle 
11:   EndWhile 
12: End 

 

In the initialization phase, the algorithm randomly 
generates sn/2 initial solutions, were sn is the size of the 
population, which will be the food field for the employed bees. 
Each xi (i=1, 2, sn/2) is a dimensional vector D. Values 
between the limits of the parameterization are assigned to the 
solution and a failurei value is also added to analyze when this 
solution i must be abandoned. After validating the population, 
the algorithm repeats a specified number of cycles of 
employed, onlooker and scout bees’ phases.   

1) Employed bees phase 
An employed bee performs a change in their position of 

food source based on equation (1) and evaluates the nectar 
amount in the new position/solution vij[4]:  

 

௜௝ݒ  ൌ ቊݔ௜௝ ൅ ∅൫ݔ௜௝ െ ,௞௝൯ݔ ݂݅ ௝ܴ ൏ ,௜௝ݔܴܯ ݁ݏ݅ݓݎ݄݁ݐ݋  
(1) 

 
where k∈{1,2,…,sn} is a randomly chosen index that has to 

be different from i, and ∅  is an uniformly distributed random 
real number in the range of [−1,1]. Rj is an uniformly 
distributed random real number in the range [0,1] and MR is a 
control parameter of the ABC algorithm in the range of [0,1] 
which controls the number of parameters to be modified. Then 
the algorithm selects the solution by the following rules: 

• Two realizable solutions – selects the one with the best 
amount of nectar (fitness) value; 

• One solution realizable and one unrealizable – select 
the realizable; 

• Two unrealizable solutions - select the one with the 
smaller degradation factor. 

Finished the search, the employed bees share the 
information with the onlooker bees and the solutions are 
selected based on a probability of the value of fitness or 
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violation of the solutions depending if they are realizable or 
not. 

2) Onlooker bees phase 
Onlooker bees select their own food source based on a 

probabilistic rate, according to the amount of nectar on the 
solution. The algorithm uses the equation (1) to create a new 
food source, validating and adjusting the new solution 
according to the parameterization. 

3) Scout bees phase 
After the above steps, all food sources that are not being 

explored anymore are abandoned. The employed bees that left 
the food source get a new position resulting from the scout 
bees search. 

For additional information and full explanation of MABC, 
see [4]. 

B. Parameters Configuration 
The parameters for an SI based algorithm can have a major 

influence on the efficiency and effectiveness of the search. The 
setting of parameters to use is not obvious at first. The 
parameters’ values depend on the problem, instances’ structure 
and the available time to solve the problem. In general, there 
are no universal values for the parameters considered for SI 
based algorithms. Being widely accepted that its definition 
must result from a careful experimental effort, towards their 
tuning.  

The MABC algorithm has a certain number of parameters 
that need to be set appropriately [4][16]. As such, we 
performed a preliminary study to identify which set of values 
would yield better results for minimizing total weighted 
tardiness, for each size in consideration.  After some 
preliminary parameter tuning the parameters of MABC 
algorithm were defined, considering identical computational 
effort, to allow a better comparison in efficiency 
(computational time) and effectiveness (quality of solution). 
The selected parameterization is as follows: A population size 
of 50 (100), a maximum failure of 1000(2000) and the cycle 
number being 3000 (4500) for small/biggest instances. The 
solutions are encoded by a natural representation (string), each 
position corresponds to a job index and the position of the job 
index is the correspondent processing order. The number of 
positions on the string corresponds to the number of jobs 
(problem size). The initial bee colony generation process 
consists in applying some mechanism generator to a starting 
individual. The initial solution is defined by the priority rule 
Earliest Due Date (EDD), in which an initial solution (bee) is 
defined by the due dates increasing ordering, thus giving 
priority to tasks with small due dates. 

In order to evaluate the performance of the proposed 
cooperation mechanism using the MABC for local 
optimization, it has a certain number of specific parameters that 
need to be set appropriately. An extensive computational effort 
has been made for parameter tuning of the SI techniques in 
order to ensure identical computational effort. In Table II the 
different parameterization values for MABC are summarized. 
As performance evaluations’ criteria were considered the 
makespan [20], also referred in the literature as Cmax (as the 
total execution time, that is, when all the jobs have finished 

processing), and system utilization (as the proportion of the 
available time that the resources are operating). 

IV. COOPERATION MECHANISM FOR DISTRIBUTED 
SCHEDULING 

The proposed Cooperation Mechanism for Distributed 
Scheduling (CMDS) aims to provide the system with 
cooperative intelligence in order to analyze the scheduling plan 
generated by the Resource Agents and improve it by reducing 
idle times. This procedure has the main objective of 
minimizing completion times (makespan or Cmax) and 
maximizing of system utilization [20]. 

The proposed Cooperation Mechanism is incorporated in a 
Collaborative Dynamic Scheduling architecture- 
AutoDynAgents scheduling system- that consists in MAS in 
which a community of agents models a real manufacturing 
system subject to perturbations and imponderables [5][21-22]. 
Agents must be able to learn and manage their internal 
behavior and their relationships with other autonomic agents, 
by cooperating in accordance with business policies defined by 
managers and operational managers.  

Task Agents

Resource Agents

- Orders (Jobs)
- ShopFloor  layout
- SI Parameterization 
- Evaluation Criteria

UI Coordinator 
Agent

Solution

Solution

New Orders
Orders Cancelation
Dates Negotiation
Prioritization  

Scheduling Plan

Self-* Agents

Cooperation 
Mechanism

 

 Fig. 1.  AutoDynAgents scheduling system model with MABC 
 

The Cooperation Mechanism is used when a global solution 
has been attained by the scheduling module. The cooperation 
mechanism pretends to improve the final solution. As a 
principal concept for this module we pretend to minimize the 
machines’ (resources) idle times, by swapping operations, 
keeping all restrictions imposed by the problem. A backup 
copy of the best scheduling solution is maintained, which is 
updated every time the cooperation module reaches a new best 
solution. This behavior guarantees that even when the final 
solution is not improved by the cooperation mechanism, the 
system has always a possible solution that will never be 
degraded. When the cooperation module reaches a better 
solution, it updates the backup copy, when a worse solution is 
obtained the previous one is restored. 
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The scheduling module is based on a R
decomposition approach where the sched
decomposed into a series of Single Ma
Problems (SMSP)[21-22]. The Resource Age
MABC method associated) obtain local so
cooperate in order to overcome inter-agen
achieve a better global schedule. This consid
of social interaction, known as competitive
where the group of agents work together t
solution for the problem. 

The AutoDynAgents architecture model (
four different types of agents: User Inte
Agent, Task Agents, Resource Agents (RA) 
[5]. The model envisages representing the ma
a dynamic scheduling in a manufacturing env
designed to simulate resources and tasks
decision making process involving coopera
responsible for scheduling the operatio
processing in the machine supervised by the a
able to find an optimal or near optimal loca
MABC for SMSP and cooperate with othe
Additionally, RA must also deal with dyn
arriving, cancelled jobs, changing jobs 
change/adapt the parameters of the basic alg
to the current situation and cooperate with ot
aims at sequencing a set of jobs on a single m

The User Interface Coordinator agent 
agent) is responsible for coordinating and int
solutions obtained by each Resource Agent s
obtain a global schedule for the original sch
and by coordinating the process of Cooper
Self-* agents are responsible for guarant
adaptation. 

A. Algorithm 
Table II illustrates the notation used fo

Mechanism algorithm. 
TABLE II. NOTATION 

Symbol Description 

ρ Current plan 

ρb Backup plan 

c Cost of ρ  

cb Cost of ρb 

v Set of idle times 

fini Flag to know if it is the first time the algorith

fend Flag to know if the algorithm is finished 

fcoop Flag to know when Cooperation should be st
 
The system is designed to loop until

cannot create improvements to the plan. Th
detailed in Fig. 2.  The system takes the
generated by the resource agents and integra
schedule by UI Coordinator. The global solu
(ρb) in order to be compared later with the
that the improvement can be measured). 
Mechanism cycle begins with the original pla

Cooperation mechanism algorithm (Tab
the lowest level, of operations swapping. It st

Resource Oriented 
duling problem is 
achine Scheduling 
ents (which have a 
olutions and later 
nt constraints and 
ders a specific kind 
e problem solving, 
to achieve a good 

(Fig. 1) is based on 
rface Coordinator 
and self-* Agents 

ain components of 
vironment and it is 
 in a scheduling 

ation. Each RA is 
ons that require 
agent, and must be 
al solution through 
er agents (Fig. 1). 
namism (new jobs 

attributes, etc), 
gorithm according 
ther agents. SMSP 

machine [20]. 
(UI Coordinator 

tegrating the single 
solution in order to 
heduling problem, 
ration Mechanism. 
teeing agility and 

or the Cooperation 

hm is being executed 

tarted from scratch 

l the cooperation 
he whole cycle is 
e scheduling plan 
ates it into a global 
ution is then saved 
e best solution (so 

The Cooperation 
an.  

le III) consists, at 
tarts by calculating 

the biggest idle time in the pla
are related to it (getIdleTime
the two possible actions can be
obtain a better solution. The f
possible to swap the current op
same machine (testOperat
second one tries to switch the 
that is being analyzed in t
(testOperationsSwapPrece
is only applied if the first one is
are feasible, the mechanism st
larger idle time after the one th
to use the clause “If fcoop” 
is not repopulated). The cooper
no idle times left to test. 

Fig. 2.  Sequ
 

After the swapping opera
sends back the current plan, wh
Coordinator in order to ensure
problem. The full loop is then 
now its cost is compared (comp
that has been stored (ρb) pr
solution is the one that is k
guaranteed that not only is the 
also that there exists a plan in 
generated. If the backup plan (
the cooperation starts over, but
(otherwise it would generate the

an and finding which operations 
es). Next, it calculates which of 
e applied to the plan in order to 
first one will investigate if it is 
eration with its following, in the 
tionsSwapSucceeding). The 
operation that precedes the one 

the task with its predecessor 
eding). The second hypothesis 
s not possible. If neither of them 
tarts over, but using instead the 
hat was used (therefore the need 
to ensure that the idle times set 

ration is finished when there are 

  
uence Diagram 

ations (if possible), the system 
hich needs to go through the UI 

e all restrictions imposed by the 
restarted with the new plan, but 
parePlans) against the backup 
eviously, and the best overall 
kept. With this behavior it is 
solution never downgraded, but 
case that improvements are not 

(ρb) is better than the new plan, 
t now it skips the first idle time 
e same plan). 
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If the generated plan has improved the 
and the cooperation will start from scratch 
which idle time to use). The system only sto
idle times from the best plan are analyze
operations are used as a “starting point to sw
no more room for improvement by switchin
The synchronization between the modules is
flags (fini, fend, fcoop). The overall cycle - backu
plan, apply cooperation, repair and compare 
- keeps is repeated until an assurance that 
solution (using the original plan) was ob
mechanism, the system is able to gradually i
the overall solution by cooperation, which w
an improved scheduling plan. At the en
schedules will be sending to Resource A
restore current behavior. 

 

TABLE III. COOPERATION MECHANISM AL

Input: ρ  // Repaired plan  
Output: ρ  // Plan after cooperation 

1: Begin 
2:      If fcoop then      //if first time running the co
3:  v ← getIdleTimes(ρ) // sorted in  
4:     EndIf 
5:     If sizeOf(v) > 0  Then          // If idle times 
6:           If testOperationsSwapSucceeding(ρ) T
7:  ρ← swapOperationsSucceeding (ρ
8:           Else If testOperationsSwapPreceding (
9:  ρ← swapOperationsPreceding(ρ)

10:         EndIf 
11:         v ← removeIdleTime(v)   
12:      Else     
13:         fend← true    
14:     EndIf 
15: return ρ  
16: End 

 

B. Illustrative Example 
Using the following scheduling proble

processed on 3 machines (Table IV): 
 

TABLE IV. SCHEDULING PROBLEM EXA

Task Operation Machine tproc 

T1 
T1.1 M1 5 
T1.2 M2 10 
T1.3 M3 4 

T2 
T2.1 M1 4 
T2.2 M2 5 
T2.3 M3 8 

T3 
T3.1 M1 5 
T3.2 M2 3 
T3.3 M3 7 

 

Fig. 3.  Scheduling Plan obtained by Scheduling Module
 

The minimization of the makespan 
optimization criteria. All Resource agen
behavior to generate the initial plan. For this

backup, it is kept 
(no restriction on 

ops when all of the 
d and the related 
ap” – until there is 
ng any operations. 
s maintained using 
up the current best 
it with the backup 
the best possible 

btained. With this 
mprove and refine 
will permit getting 
nd the new local 
gents in order to 

LGORITHM 

ooperation for ߩ 
descending order           

(still) exist 
Then 
(ρ)   
(ρ) Then 
)     

 

em, with 3 tasks 

AMPLE 

tstart 
0 
5 

15 
0 
4 
9 
0 
5 
8 

 
e 

will be used as 
nts will use that 
s example, we take 

the plan described in Fig. 3 a
scheduling module. This soluti
encountered up to this point
complements the schedule mec
to improve the final solution. B
plan will (if possible) be more
idle times and, consequently, r
tasks.

Fig. 4.  Plan after the first cooperation 
 

TABLE V.  IDLE TIMES WITHOU

Machine Number of stops

M1 1 
M2 1 
M3 1 

Total 3 
 

TABLE VI.  IDLE TIMES WITH 

Machine Number of stops

M1 1 
M2 1 
M3 1 

Total 3 

 

On the first iteration, the idl
corresponds to operation t1.3 –
the machine, so the first coop
the second test is successful, 
preceding operation in the task
machine (t3.2). This allows t1
succeeding operations and imp
time units (Fig. 4). The coo
because no additional improvem

When analyzing the initial 
times presented in Table V. 
cooperation mechanism, the idl
shown in Table VI. At the 
improved. There is the sam
completion times and the ma
permitting an increase in the s
maximization of system usage. 
this it is possible to realize the 
In problems that have an exte
each one has a diverse set of
almost mandatory to increase sy

V. COMPUTA
A software tool was 

computational study aiming 
scheduling system’s performa
proposed cooperation mechani
makespan (Cmax) and the max

as the result from the system’s 
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utilization. The computational tests were performed on an 
Intel® Core™ 2 Quad Q6600 @ 2.40 GHz processor, 4 GB of 
RAM memory, a 250 GB 7200 rpm disc, and Windows 7 64-
bit as operative system. Considering that academic benchmark 
problems are an effective evaluation framework, since multiple 
authors and diverse application areas have used them over the 
years, the performance was tested on 36 benchmark instances 
of Job-Shop Scheduling Problem (JSSP) of different sizes [23]. 
The instances analyzed were selected based on their dimension 
(number of jobs). Therefore, for this study we used different 
problem instances from Fisher and Thompson [24], Lawrence 
[25], Adams, Balas and Zawack [26], Storer, Wu and Vaccari 
[27] and Yamada and Nakano [28].  

In this paper, the performance of the proposed Cooperation 
Mechanism CMDS was tested based on benchmark instances 
of JSSP of different sizes, considering that they give an insight 
of global behavior and performance on a class of scheduling 
problems, which is our main objective.   

A. Minimization of makespan 
In order to evaluate the performance of the proposed 

Cooperation Mechanism, the system was executed with a 
MABC. For each instance under analysis, n=5 simulations 
were computed. The Cooperation Mechanism for Distributed 
Scheduling (CMDS) obtained improvement on 89% of the 
instances.  

 
Fig. 5. Cooperation mechanism influence for Cmax 

The graph from Fig. 5 permits to conclude about the 
advantage and influence of CMDS when analyzing makespan 
minimization criteria.  

The boxplot from Fig. 6 allows the analysis of location, 
dispersion and asymmetry of data, with and without the 
application of the cooperation mechanism. From its analysis it 
is possible to conclude that there are outliers or extreme 
values. It is also possible to observe the influence of the 
cooperation mechanism in the system’s performance, in terms 
of minimization of the makespan (Cmax), when comparing 
median of differences between the values obtained with and 
without the application of the cooperation mechanism. 
However, from the graph analysis (Fig. 6), the influence of the 
cooperation mechanisms in the overall system performance is 
not clear. 

To evaluate the significance of the Cooperation 
Mechanism’s influence on the performance of the scheduling 
system, the Related Samples Wilcoxon Signed Ranks Test has 
been used. From inferential statistical analysis it is possible to 
conclude with statistical evidence that the CMDS influence 
the performance of the system with α=5% of significance 
level. The null hypothesis H0, that considers CMDS does not 
influence the performance of system, was rejected with 95% 
of confidence level (p=0<α). 

 

 
Fig. 6. Cooperation mechanism performance significance on minimization of 
makespan 

B. Maximization of system utilization 
The graph, from Fig.7 permits to conclude about the 

advantage and influence of the CMDS on the system 
performance, when analyzing the maximization of system 
utilization criteria.  

 
Fig. 7. Cooperation mechanism Influence for system utilization 

The boxplot from Fig. 8 permits to conclude about the 
influence of the Cooperation Mechanism, in terms of 
maximization of system utilization in the resolution of the 
analyzed instances. 

The Related Samples Wilcoxon Signed Ranks Test was 
used for inferential statistical analysis. It is possible to 
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conclude with statistical evidence that the Cooperation 
Mechanism influence the performance of the system with 
α=5% of significance level when considering system 
utilization. The null hypothesis H0, that consider the 
Cooperation Mechanism does not influence significantly the 
performance of the system on maximization of system 
utilization, was rejected with 95% of confidence level 
(p=0<α). 

 

 
Fig. 8. Cooperation mechanism performance significance on maximization of 
system utilization  

VI.  CONCLUSION 
A Cooperation Mechanism for Distributed Scheduling 

based on Bees based Computing is described, where multiple 
self-interested agents can reach agreement over the exchange 
of operations on competitive resources. Resource Agents 
collaborate to improve their local solution and the global 
schedule. The proposed cooperation mechanism is able to 
analyze the scheduling plan generated by the Resource Agents 
and integrated by the Coordinator Agent, and refine it by idle 
times reduction. 

Experimental analysis was performed in order to validate 
the influence of the proposed cooperation mechanism in the 
scheduling system’s performance. From the obtained results it 
was possible to conclude with statistical evidence that the 
cooperation mechanism influences significantly the overall 
system’s performance, even when analyzing makespan 
minimization and system utilization maximization. 

Future work includes the refinement of the Cooperation 
Mechanism, and its validation under dynamic environments 
subject to several random perturbations. 
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