
Cooperation Mechanism for Distributed Resource
Scheduling Through Artificial Bee Colony Based

Self-Organized Scheduling System
Ana Madureira

GECAD Research Group-School of
Engineering

Polytechnic Institute of Porto
Porto, Portugal

amd@isep.ipp.pt

Bruno Cunha
GECAD Research Group-School of

Engineering
Polytechnic Institute of Porto

Porto, Portugal
bmaca@isep.ipp.,pt

Ivo Pereira
GECAD Research Group-School of

Engineering
Polytechnic Institute of Porto

Porto, Portugal
iaspe@isep.ipp.pt

Abstract— In this paper a Cooperation Mechanism for

Distributed Scheduling based on Bees based Computing is
proposed. Where multiple self-interested agents can reach
agreement over the exchange of operations on cooperative
resources. Agents must collaborate to improve their local
solutions and the global schedule. The proposed cooperation
mechanism is able to analyze the scheduling plan generated by
the Resource Agents and refine it by idle times reducing taking
advantage from cooperative and the self-organized behavior of
Artificial Bee Colony technique. The computational study allows
concluding about statistical evidence that the cooperation
mechanism influences significantly the overall system
performance.

Keywords— Self-Organization; Cooperation; Distributed
Resource Scheduling; Distributed Resource Scheduling;
Artificial Bee Colony.

I. INTRODUCTION
Cooperation in an economic and social context can be

stated as the process of two or more entities or organizations
working or acting throughout common objectives [1]. The
current financial/economic scenario and the increasing
competitiveness of markets could be identified as the main
factors responsible for the promotion of research and
development of new approaches for solving scheduling
problems in manufacturing systems in the perspective of
supporting human decisions. Making the right decision at the
right instant can effectively strengthen the performance, agility
and position of organizations over competitors.

In this paper, we start with the belief that by understanding
the solutions that nature employs in its quotidian, we can use
this acquired knowledge to solve real world problems in direct
analogy with Biomimetic Computing. Using insights from
biological systems to specify intelligent computational systems
has focused on optimization techniques inspired by biological
observations, including Neural Networks, Genetic Algorithms,
and more recently Swarm based Algorithms [2]. Artificial Bee
Colony (ABC) is one of the most recently introduced swarm-
based algorithms. ABC simulates the intelligent foraging
behavior of a honeybee colony. In this paper, the modified
version of ABC is used. Biologically inspired systems have
been gaining importance and it is clear that many other ideas
can be developed by taking advantage of the examples that

nature offers. Some social systems encountered in nature can
present an intelligent collective behavior although they are
composed by simple individuals with limited capabilities. The
intelligent solutions to problems can naturally emerge from the
self-organization and indirect communication of the
individuals. These systems provide important techniques that
can be used in the development of distributed artificial
intelligent systems [2][3].

Social issues in the organization of Multi-Agent Systems
(MAS) have been increasingly relevant over the last decades as
a platform to define the basis of agent interactions in open and
dynamic environments [3]. A Cooperation Mechanism for
Distributed Resource Scheduling (CMDS) for Artificial Bee
Colony based Self-Organized Scheduling System is proposed.
This CMDS is embedded in the AutoDynAgents scheduling
system architecture [5], which consists on a system with a
community of agents that model a real manufacturing system
subject to perturbations. Agents must cooperate to improve
their local solutions and the global schedule. The proposed
CMDS is able to analyze the scheduling plan generated by the
Resource Agents and refine it by idle times reducing taking
advantages from cooperative and the self-organized behavior
of Artificial Bee Colony technique.

The remaining sections are organized as follows. Section II
compiles issues and contributions for cooperation in Multi-
Agent Systems. Theoretical foundations, the biological
motivation and fundamental aspects of Bee based Computing
with focalization on the design and implementation of an ABC
algorithm and some recent applications for scheduling
resolution are summarized in section III. In Section IV the
proposed Cooperation Mechanism is described. Section V
presents a computational study and discusses the obtained
results. Finally, the paper presents some conclusions and puts
forward some ideas for future work.

II. COOPERATION IN MULTI-AGENT SYSTEMS
Multi-Agent Systems highlight the joint behaviors of agents

with some degree of autonomy and the complexities arising
from their interactions [6]. Due to the interactions among the
agents, MAS complexity can increase rapidly with the number
of agents or their behavioral intricacy.

565

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

In a multi-agent environment there is more than one agent,
interacting with each other and constraints such that agents
may not, at any given time, know everything about the
environment that other agents know, including the internal
state of the other agents themselves [6]. Due to these
interactions and constraints, it is necessary to incorporate
coordination and cooperative behaviors between agents,
leading to cooperative MAS, which are the ones that
cooperatively solve tasks or maximize utility [6].

Natural evolution is based on the law of survival, in which
only the fittest survive. As a way to counteract that natural rule,
groups of individuals of the same species (or even different
species) tend to cooperatively join their behaviors, in order to
fight for survival [7]. Cooperation exists at multiple levels of
activity in a wide range of populations. People pursue their
own goals through communication and cooperation with other
people or machines. Animals interact (with limited language),
cooperate with each other, and form communities. Particles
interact with each other and compose different types of
material and phases of matter [8]. These are examples of how
cooperation is ubiquitous in the real world and can be observed
at different organizations, ranging from microorganisms and
animal groups to human societies [9].

Solving the problem of how cooperation emerges among
self-interested entities is a challenging issue that has motivated
scientists and practitioners from different disciplines including
psychology, sociology, economics, and computer science,
amongst others. The emergence of cooperation is often studied
in the context of social dilemmas, in which selfish individuals
must decide between a socially reciprocal cooperative behavior
and a self-interested behavior of defection to pursue their own
short-term benefits. Social dilemmas often arise in many
situations in MAS, e.g., file sharing in peer-to-peer systems,
load balancing/packet routing in wireless sensor networks and
bandwidth allocation/frequency detection in
telecommunication systems [10]. As Kraus [8] mentioned,
“cooperation (not merely coordination) may improve the
performance of the individual agents or the overall behavior of
the system they form”. This paper proposed a cooperation
mechanism embedded in a Multi-Agent Scheduling System.

In the literature, it is possible to find several approaches of
cooperation in MAS. Adler et al. [11] explored the use of
cooperative MAS to improve dynamic routing and traffic
management. On the supply-side, real-time control over the
transportation network is accomplished through an agent-based
distributed hierarchy of system operators. Allocation of
network capacity and distribution of traffic advisories are
performed by agents that act on behalf of information service
providers. The cooperation between agents seeks a more
efficient route allocation across time and space. Results from
simulation experiments suggest that this cooperation can
achieve increased network performance and driver satisfaction.

De Gennaro and Jadbabaie [12] proposed a decentralized
cooperative controller for a group of mobile agents. The
control design was based on the navigation function formalism.
The aim of the group control law was to generate a pattern in a
given workspace while avoiding obstacles and collisions. The
desired goal was specified in terms of distances among the
agents. Authors showed that it is always possible to design a

control law as the gradient of a suitably-defined navigation
function whose minimum corresponds to the desired
configuration. Srinivasan and Choy [13] described a
cooperative multi-agent approach employing multiple hybrid
agents to provide effective signal control for real-time traffic
management. The detailed MAS use cooperative behaviors to
improve individual agents' learning process and adaptability.
Each agent cooperates with other agents within its cooperative
zone, the size of which changes dynamically according to the
changing needs of the agent. The performance of the proposed
cooperative MAS was tested on a complex traffic network and
compared against two other approaches. The results
demonstrate the efficacy of the cooperative multi-agent
approach in dealing with the approximated version of an
infinite horizon dynamic problem. Choi et al. [14] presented an
algorithm and analysis of distributed learning and cooperative
control for MAS so that a global goal of the overall system can
be achieved by locally acting agents. The proposed algorithm is
executed by each agent independently, in order to estimate an
unknown field of interest from noisy measurements and to
coordinate multiple agents in a distributed manner to discover
peaks of the unknown field. The proposed algorithm is based
on a recursive spatial estimation of an unknown field. Authors
showed that the closed-loop dynamics of the proposed MAS
can be transformed into a form of a stochastic approximation
algorithm and proved its convergence.

III. BEES BASED COMPUTING
Optimization algorithms inspired from the collective

behavior of biological populations that can be observed in
nature such as ants, bees, fish, and birds are associated with the
paradigm of Swarm Intelligence and have been referred as a
creative approach to optimization problem solving. ACS, PSO
and ABC algorithms are among the most promising Swarm
Intelligence (SI) optimization techniques for scheduling
resolution [2]. The Bees Algorithm is a relatively new
population-based search algorithm, initially proposed in 2005
by Pham et al. [15] and Karaboga et al. [16] independently.
The algorithm mimics the food foraging behavior of swarms of
honey bees. In its basic version, the algorithm performs a kind
of neighborhood search combined with random search and can
be used for optimization problems. In 2005, Pham proposed a
Bees Algorithm in a technical report [15] inspired in the
foraging behavior of honey bees to find food sources. At the
same time Karaboga [16] proposed an Artificial Bee Colony
(ABC) algorithm that drew a similar inspiration in the foraging
behavior of the bees.

Real bees are social insects living in an organized group
called hive. In a beehive, the group has some specific tasks
performed by specialized individuals. The goal of this
organization is to maximize the amount of nectar in the colony
by getting the utmost from food sources. Natural bees are
known for the production of honey and for the adaptation to
changes in the environment in a collective intelligent way.
Bees have photographic memory, proper navigation systems,
use the nectar for energy and use the pollen as protein for the
creation of their offspring [4][17].

Generally, a bee colony contains a reproductive female
(queen), a few thousand males (drones), and many thousands
of sterile females (workers). After mating with multiple drones,

566

the queen produces many young bees ushering in a new
generation [4][17]. The queen has a life expectancy of 3 to 5
years, is the mother of all members of the colony, and its main
task is mating with the drones, a reproductive operation that is
known as mating flight. The fertilized eggs become females
(workers and future queen) and unfertilized eggs become males
(drones). Drones are the males in the hive, have a life
expectancy of around 90 days and do not live longer than six
months. Its main task is to mate with the queen and die after
having done so successfully. Worker bees are females without
reproductive capacity, representing most of the bees in the
hive, and usually live between 4-9 months. In the first half of
their life, they are responsible for many tasks in the hive, from
maintenance to defense. In the second half of their life, the
main task of these bees is looking for food, and initially they
make short flights in order to learn the location of the hive and
the topology of the environment. Searching for food is the most
important task of a bee colony [4][17]. This process begins
with the search for food sources by exploiting a group of
flowers, with the aim of extracting nectar. The value of a food
source depends on several factors such as proximity to the
hive, the concentration of energy, and ease of food extraction.
For the sake of simplicity, the profitability of a food source can
be represented by a single numerical value which represents
the quality [4]. After unloading the nectar, the explorer bee
who found the food source becomes "used" and performs a
special move, a sort of dance, in order to share information
about the source of food with spectator bees, causing them to
explore this food source as well. Besides the value of the food
source, this shared information also involves the direction and
distance from the hive [17][19]. The sharing of information
between the bees is the most important part in the formation of
collective knowledge. So there are three different types of
dances that bees can do: round dance, waggle dance, and
tremble dance [17][18]. If the distance of the food source in
relation to the hive is less than 100 meters, the bees perform a
round dance; otherwise they perform a waggle dance. While
the round dance gives no information about the direction of the
food source, the waggle dance gives information about the
direction to the sun, the distance to the hive and the quality of
the food source. Finally, the tremble dance is used when the
bee detects delays when discharging its nectar.

Spectator bees watch various dances from different bees
and decide which food source they want to use, and there is a
higher probability of choosing more profitable sources. Once
they choose and locate the food source, spectator bees become
worker bees by exploiting this source to extract its nectar.
When the food source is exhausted, employed bees become
explorers [4][17].

A. Artificial Bee Colony algorithm
In this work the Modified ABC (MABC) algorithm

proposed by Karaboga and Akay [4] will be used. The
Modified ABC algorithm (Table I) has three main phases,
corresponding to three types of specialized bees, Employed,
Onlooker and Scout, that represent a minimal model of the real
swarm intelligent forage selection [4][17]. Employed bees are
in the same number as food sources (solutions) and are
responsible for exploring one and only one food source at the
time and give information to other bees. When an employed

bee leaves its food source it becomes a scout bee. Onlooker
bees wait in the hive until employed bees inform them of the
whereabouts of a good food source. Scouts bees search the
environment trying to find a new food source depending on an
internal motivation or external clues or randomly. Half of the
hive is composed by employed bees and the other half by
onlooker bees. A solution represents a food source that is
measured by the nectar amount corresponding to the quality of
the solution.

TABLE I. MODIFIED ABC ALGORITHM
Input: ABC Parameters and scheduling data problem
Output: Best solution

1: Begin
2: Initialization of Bee Population
3: Cycle = 1
4: While cycle != Maximum Cycle Number
5: Employed Bees Phase
6: Calculate Probabilities for Onlookers
7: Onlooker Bees Phase
8: Scout Bees Phase
9: Keep the best solution achieved so far
10: Increment Cycle
11: EndWhile
12: End

In the initialization phase, the algorithm randomly
generates sn/2 initial solutions, were sn is the size of the
population, which will be the food field for the employed bees.
Each xi (i=1, 2, sn/2) is a dimensional vector D. Values
between the limits of the parameterization are assigned to the
solution and a failurei value is also added to analyze when this
solution i must be abandoned. After validating the population,
the algorithm repeats a specified number of cycles of
employed, onlooker and scout bees’ phases.

1) Employed bees phase
An employed bee performs a change in their position of

food source based on equation (1) and evaluates the nectar
amount in the new position/solution vij[4]:

௜௝ݒ ൌ ቊݔ௜௝ ൅ ∅൫ݔ௜௝ െ ,௞௝൯ݔ ݂݅ ௝ܴ ൏ ,௜௝ݔܴܯ ݁ݏ݅ݓݎ݄݁ݐ݋
(1)

where k∈{1,2,…,sn} is a randomly chosen index that has to

be different from i, and ∅ is an uniformly distributed random
real number in the range of [−1,1]. Rj is an uniformly
distributed random real number in the range [0,1] and MR is a
control parameter of the ABC algorithm in the range of [0,1]
which controls the number of parameters to be modified. Then
the algorithm selects the solution by the following rules:

• Two realizable solutions – selects the one with the best
amount of nectar (fitness) value;

• One solution realizable and one unrealizable – select
the realizable;

• Two unrealizable solutions - select the one with the
smaller degradation factor.

Finished the search, the employed bees share the
information with the onlooker bees and the solutions are
selected based on a probability of the value of fitness or

567

violation of the solutions depending if they are realizable or
not.

2) Onlooker bees phase
Onlooker bees select their own food source based on a

probabilistic rate, according to the amount of nectar on the
solution. The algorithm uses the equation (1) to create a new
food source, validating and adjusting the new solution
according to the parameterization.

3) Scout bees phase
After the above steps, all food sources that are not being

explored anymore are abandoned. The employed bees that left
the food source get a new position resulting from the scout
bees search.

For additional information and full explanation of MABC,
see [4].

B. Parameters Configuration
The parameters for an SI based algorithm can have a major

influence on the efficiency and effectiveness of the search. The
setting of parameters to use is not obvious at first. The
parameters’ values depend on the problem, instances’ structure
and the available time to solve the problem. In general, there
are no universal values for the parameters considered for SI
based algorithms. Being widely accepted that its definition
must result from a careful experimental effort, towards their
tuning.

The MABC algorithm has a certain number of parameters
that need to be set appropriately [4][16]. As such, we
performed a preliminary study to identify which set of values
would yield better results for minimizing total weighted
tardiness, for each size in consideration. After some
preliminary parameter tuning the parameters of MABC
algorithm were defined, considering identical computational
effort, to allow a better comparison in efficiency
(computational time) and effectiveness (quality of solution).
The selected parameterization is as follows: A population size
of 50 (100), a maximum failure of 1000(2000) and the cycle
number being 3000 (4500) for small/biggest instances. The
solutions are encoded by a natural representation (string), each
position corresponds to a job index and the position of the job
index is the correspondent processing order. The number of
positions on the string corresponds to the number of jobs
(problem size). The initial bee colony generation process
consists in applying some mechanism generator to a starting
individual. The initial solution is defined by the priority rule
Earliest Due Date (EDD), in which an initial solution (bee) is
defined by the due dates increasing ordering, thus giving
priority to tasks with small due dates.

In order to evaluate the performance of the proposed
cooperation mechanism using the MABC for local
optimization, it has a certain number of specific parameters that
need to be set appropriately. An extensive computational effort
has been made for parameter tuning of the SI techniques in
order to ensure identical computational effort. In Table II the
different parameterization values for MABC are summarized.
As performance evaluations’ criteria were considered the
makespan [20], also referred in the literature as Cmax (as the
total execution time, that is, when all the jobs have finished

processing), and system utilization (as the proportion of the
available time that the resources are operating).

IV. COOPERATION MECHANISM FOR DISTRIBUTED
SCHEDULING

The proposed Cooperation Mechanism for Distributed
Scheduling (CMDS) aims to provide the system with
cooperative intelligence in order to analyze the scheduling plan
generated by the Resource Agents and improve it by reducing
idle times. This procedure has the main objective of
minimizing completion times (makespan or Cmax) and
maximizing of system utilization [20].

The proposed Cooperation Mechanism is incorporated in a
Collaborative Dynamic Scheduling architecture-
AutoDynAgents scheduling system- that consists in MAS in
which a community of agents models a real manufacturing
system subject to perturbations and imponderables [5][21-22].
Agents must be able to learn and manage their internal
behavior and their relationships with other autonomic agents,
by cooperating in accordance with business policies defined by
managers and operational managers.

Task Agents

Resource Agents

- Orders (Jobs)
- ShopFloor layout
- SI Parameterization
- Evaluation Criteria

UI Coordinator
Agent

Solution

Solution

New Orders
Orders Cancelation
Dates Negotiation
Prioritization

Scheduling Plan

Self-* Agents

Cooperation
Mechanism

 Fig. 1. AutoDynAgents scheduling system model with MABC

The Cooperation Mechanism is used when a global solution
has been attained by the scheduling module. The cooperation
mechanism pretends to improve the final solution. As a
principal concept for this module we pretend to minimize the
machines’ (resources) idle times, by swapping operations,
keeping all restrictions imposed by the problem. A backup
copy of the best scheduling solution is maintained, which is
updated every time the cooperation module reaches a new best
solution. This behavior guarantees that even when the final
solution is not improved by the cooperation mechanism, the
system has always a possible solution that will never be
degraded. When the cooperation module reaches a better
solution, it updates the backup copy, when a worse solution is
obtained the previous one is restored.

568

The scheduling module is based on a R
decomposition approach where the sched
decomposed into a series of Single Ma
Problems (SMSP)[21-22]. The Resource Age
MABC method associated) obtain local so
cooperate in order to overcome inter-agen
achieve a better global schedule. This consid
of social interaction, known as competitive
where the group of agents work together t
solution for the problem.

The AutoDynAgents architecture model (
four different types of agents: User Inte
Agent, Task Agents, Resource Agents (RA)
[5]. The model envisages representing the ma
a dynamic scheduling in a manufacturing env
designed to simulate resources and tasks
decision making process involving coopera
responsible for scheduling the operatio
processing in the machine supervised by the a
able to find an optimal or near optimal loca
MABC for SMSP and cooperate with othe
Additionally, RA must also deal with dyn
arriving, cancelled jobs, changing jobs
change/adapt the parameters of the basic alg
to the current situation and cooperate with ot
aims at sequencing a set of jobs on a single m

The User Interface Coordinator agent
agent) is responsible for coordinating and int
solutions obtained by each Resource Agent s
obtain a global schedule for the original sch
and by coordinating the process of Cooper
Self-* agents are responsible for guarant
adaptation.

A. Algorithm
Table II illustrates the notation used fo

Mechanism algorithm.
TABLE II. NOTATION

Symbol Description

ρ Current plan

ρb Backup plan

c Cost of ρ

cb Cost of ρb

v Set of idle times

fini Flag to know if it is the first time the algorith

fend Flag to know if the algorithm is finished

fcoop Flag to know when Cooperation should be st

The system is designed to loop until

cannot create improvements to the plan. Th
detailed in Fig. 2. The system takes the
generated by the resource agents and integra
schedule by UI Coordinator. The global solu
(ρb) in order to be compared later with the
that the improvement can be measured).
Mechanism cycle begins with the original pla

Cooperation mechanism algorithm (Tab
the lowest level, of operations swapping. It st

Resource Oriented
duling problem is
achine Scheduling
ents (which have a
olutions and later
nt constraints and
ders a specific kind
e problem solving,
to achieve a good

(Fig. 1) is based on
rface Coordinator
and self-* Agents

ain components of
vironment and it is
 in a scheduling

ation. Each RA is
ons that require
agent, and must be
al solution through
er agents (Fig. 1).
namism (new jobs

attributes, etc),
gorithm according
ther agents. SMSP

machine [20].
(UI Coordinator

tegrating the single
solution in order to
heduling problem,
ration Mechanism.
teeing agility and

or the Cooperation

hm is being executed

tarted from scratch

l the cooperation
he whole cycle is
e scheduling plan
ates it into a global
ution is then saved
e best solution (so

The Cooperation
an.

le III) consists, at
tarts by calculating

the biggest idle time in the pla
are related to it (getIdleTime
the two possible actions can be
obtain a better solution. The f
possible to swap the current op
same machine (testOperat
second one tries to switch the
that is being analyzed in t
(testOperationsSwapPrece
is only applied if the first one is
are feasible, the mechanism st
larger idle time after the one th
to use the clause “If fcoop”
is not repopulated). The cooper
no idle times left to test.

Fig. 2. Sequ

After the swapping opera
sends back the current plan, wh
Coordinator in order to ensure
problem. The full loop is then
now its cost is compared (comp
that has been stored (ρb) pr
solution is the one that is k
guaranteed that not only is the
also that there exists a plan in
generated. If the backup plan (
the cooperation starts over, but
(otherwise it would generate the

an and finding which operations
es). Next, it calculates which of
e applied to the plan in order to
first one will investigate if it is
eration with its following, in the
tionsSwapSucceeding). The
operation that precedes the one

the task with its predecessor
eding). The second hypothesis
s not possible. If neither of them
tarts over, but using instead the
hat was used (therefore the need
to ensure that the idle times set

ration is finished when there are

uence Diagram

ations (if possible), the system
hich needs to go through the UI

e all restrictions imposed by the
restarted with the new plan, but
parePlans) against the backup
eviously, and the best overall
kept. With this behavior it is
solution never downgraded, but
case that improvements are not

(ρb) is better than the new plan,
t now it skips the first idle time
e same plan).

569

If the generated plan has improved the
and the cooperation will start from scratch
which idle time to use). The system only sto
idle times from the best plan are analyze
operations are used as a “starting point to sw
no more room for improvement by switchin
The synchronization between the modules is
flags (fini, fend, fcoop). The overall cycle - backu
plan, apply cooperation, repair and compare
- keeps is repeated until an assurance that
solution (using the original plan) was ob
mechanism, the system is able to gradually i
the overall solution by cooperation, which w
an improved scheduling plan. At the en
schedules will be sending to Resource A
restore current behavior.

TABLE III. COOPERATION MECHANISM AL

Input: ρ // Repaired plan
Output: ρ // Plan after cooperation

1: Begin
2: If fcoop then //if first time running the co
3: v ← getIdleTimes(ρ) // sorted in
4: EndIf
5: If sizeOf(v) > 0 Then // If idle times
6: If testOperationsSwapSucceeding(ρ) T
7: ρ← swapOperationsSucceeding (ρ
8: Else If testOperationsSwapPreceding (
9: ρ← swapOperationsPreceding(ρ)

10: EndIf
11: v ← removeIdleTime(v)
12: Else
13: fend← true
14: EndIf
15: return ρ
16: End

B. Illustrative Example
Using the following scheduling proble

processed on 3 machines (Table IV):

TABLE IV. SCHEDULING PROBLEM EXA

Task Operation Machine tproc

T1
T1.1 M1 5
T1.2 M2 10
T1.3 M3 4

T2
T2.1 M1 4
T2.2 M2 5
T2.3 M3 8

T3
T3.1 M1 5
T3.2 M2 3
T3.3 M3 7

Fig. 3. Scheduling Plan obtained by Scheduling Module

The minimization of the makespan
optimization criteria. All Resource agen
behavior to generate the initial plan. For this

backup, it is kept
(no restriction on

ops when all of the
d and the related
ap” – until there is
ng any operations.
s maintained using
up the current best
it with the backup
the best possible

btained. With this
mprove and refine
will permit getting
nd the new local
gents in order to

LGORITHM

ooperation for ߩ
descending order

(still) exist
Then
(ρ)
(ρ) Then
)

em, with 3 tasks

AMPLE

tstart
0
5

15
0
4
9
0
5
8

e

will be used as
nts will use that
s example, we take

the plan described in Fig. 3 a
scheduling module. This soluti
encountered up to this point
complements the schedule mec
to improve the final solution. B
plan will (if possible) be more
idle times and, consequently, r
tasks.

Fig. 4. Plan after the first cooperation

TABLE V. IDLE TIMES WITHOU

Machine Number of stops

M1 1
M2 1
M3 1

Total 3

TABLE VI. IDLE TIMES WITH

Machine Number of stops

M1 1
M2 1
M3 1

Total 3

On the first iteration, the idl
corresponds to operation t1.3 –
the machine, so the first coop
the second test is successful,
preceding operation in the task
machine (t3.2). This allows t1
succeeding operations and imp
time units (Fig. 4). The coo
because no additional improvem

When analyzing the initial
times presented in Table V.
cooperation mechanism, the idl
shown in Table VI. At the
improved. There is the sam
completion times and the ma
permitting an increase in the s
maximization of system usage.
this it is possible to realize the
In problems that have an exte
each one has a diverse set of
almost mandatory to increase sy

V. COMPUTA
A software tool was

computational study aiming
scheduling system’s performa
proposed cooperation mechani
makespan (Cmax) and the max

as the result from the system’s
ion is stored as the best solution
t. The cooperation mechanism
chanism, being used as a method
By the end of the cooperation, the
e continuous, reducing machine
reducing completion times of all

iteration

UT THE COOPERATION MECHANISM

s Idle Times

2
9

13
24

THE COOPERATION MECHANISM

s Idle Times

8
5
6

19

le time on M3 is analyzed, and it
– which is the last operation on
peration test fails. Nevertheless,

as it is possible to swap the
k (t1.2) with its preceding in the
1.2 to start earlier, affecting the
proving the overall solution by 4
operation mechanism will stop
ment is possible.

solution (Fig. 3), it had the idle
And after going through the

le times presented in the plan are
end, the overall solution was

me number of stops, the task
achine idle times are reduced
system’s efficiency through the
Even with a small example like
contribution of this mechanism.

ensive number of machines and
f operations, the cooperation is
ystem effectiveness.

ATIONAL STUDY
developed to support the

to analyze and evaluate the
ance and the influence of the
ism, on the minimization of the
ximization of system usage or

570

utilization. The computational tests were performed on an
Intel® Core™ 2 Quad Q6600 @ 2.40 GHz processor, 4 GB of
RAM memory, a 250 GB 7200 rpm disc, and Windows 7 64-
bit as operative system. Considering that academic benchmark
problems are an effective evaluation framework, since multiple
authors and diverse application areas have used them over the
years, the performance was tested on 36 benchmark instances
of Job-Shop Scheduling Problem (JSSP) of different sizes [23].
The instances analyzed were selected based on their dimension
(number of jobs). Therefore, for this study we used different
problem instances from Fisher and Thompson [24], Lawrence
[25], Adams, Balas and Zawack [26], Storer, Wu and Vaccari
[27] and Yamada and Nakano [28].

In this paper, the performance of the proposed Cooperation
Mechanism CMDS was tested based on benchmark instances
of JSSP of different sizes, considering that they give an insight
of global behavior and performance on a class of scheduling
problems, which is our main objective.

A. Minimization of makespan
In order to evaluate the performance of the proposed

Cooperation Mechanism, the system was executed with a
MABC. For each instance under analysis, n=5 simulations
were computed. The Cooperation Mechanism for Distributed
Scheduling (CMDS) obtained improvement on 89% of the
instances.

Fig. 5. Cooperation mechanism influence for Cmax

The graph from Fig. 5 permits to conclude about the
advantage and influence of CMDS when analyzing makespan
minimization criteria.

The boxplot from Fig. 6 allows the analysis of location,
dispersion and asymmetry of data, with and without the
application of the cooperation mechanism. From its analysis it
is possible to conclude that there are outliers or extreme
values. It is also possible to observe the influence of the
cooperation mechanism in the system’s performance, in terms
of minimization of the makespan (Cmax), when comparing
median of differences between the values obtained with and
without the application of the cooperation mechanism.
However, from the graph analysis (Fig. 6), the influence of the
cooperation mechanisms in the overall system performance is
not clear.

To evaluate the significance of the Cooperation
Mechanism’s influence on the performance of the scheduling
system, the Related Samples Wilcoxon Signed Ranks Test has
been used. From inferential statistical analysis it is possible to
conclude with statistical evidence that the CMDS influence
the performance of the system with α=5% of significance
level. The null hypothesis H0, that considers CMDS does not
influence the performance of system, was rejected with 95%
of confidence level (p=0<α).

Fig. 6. Cooperation mechanism performance significance on minimization of
makespan

B. Maximization of system utilization
The graph, from Fig.7 permits to conclude about the

advantage and influence of the CMDS on the system
performance, when analyzing the maximization of system
utilization criteria.

Fig. 7. Cooperation mechanism Influence for system utilization

The boxplot from Fig. 8 permits to conclude about the
influence of the Cooperation Mechanism, in terms of
maximization of system utilization in the resolution of the
analyzed instances.

The Related Samples Wilcoxon Signed Ranks Test was
used for inferential statistical analysis. It is possible to

571

conclude with statistical evidence that the Cooperation
Mechanism influence the performance of the system with
α=5% of significance level when considering system
utilization. The null hypothesis H0, that consider the
Cooperation Mechanism does not influence significantly the
performance of the system on maximization of system
utilization, was rejected with 95% of confidence level
(p=0<α).

Fig. 8. Cooperation mechanism performance significance on maximization of
system utilization

VI. CONCLUSION
A Cooperation Mechanism for Distributed Scheduling

based on Bees based Computing is described, where multiple
self-interested agents can reach agreement over the exchange
of operations on competitive resources. Resource Agents
collaborate to improve their local solution and the global
schedule. The proposed cooperation mechanism is able to
analyze the scheduling plan generated by the Resource Agents
and integrated by the Coordinator Agent, and refine it by idle
times reduction.

Experimental analysis was performed in order to validate
the influence of the proposed cooperation mechanism in the
scheduling system’s performance. From the obtained results it
was possible to conclude with statistical evidence that the
cooperation mechanism influences significantly the overall
system’s performance, even when analyzing makespan
minimization and system utilization maximization.

Future work includes the refinement of the Cooperation
Mechanism, and its validation under dynamic environments
subject to several random perturbations.

ACKNOWLEDGMENT
This work is supported by FEDER Funds through the “Programa

Operacional Factores de Competitividade - COMPETE” program and
by National Funds through FCT “Fundação para a Ciência e a
Tecnologia” under the project: FCOMP-01-0124-FEDER-PEst-
OE/EEI/UI0760/2011 and PTDC/EME-GIN/109956/ 2009.

REFERENCES
[1] A.Diekmann, S.Lindenberg,: Sociological aspects of cooperation, Intern.

Encyclop.of the Social Sciences and behavioral sciences, Elsevier, 2001.

[2] M. Dorigo, Swarm Intelligence, New York, Springer, 2007.
[3] M. Luck, P. McBurney, O. Shehory, S. Willmott, Agent Technology:

Computing as Interaction, A Roadmap for Agent-Based Computing,
AgentLink III, 2005.

[4] D. Karaboga, B. Akay, A modified Artificial Bee Colony (ABC)
algorithm for constrained optimization problems, Applied Soft
Computing, vol. 11, pp. 3021-3031, 2011.

[5] A. Madureira, N. Sousa, I. Pereira, Self-organization for Scheduling in
Agile Manufacturin,10th IEEE International Conference on Cybernetic
Intelligent Systems (IEEE CIS 2011), London, UK, 2011.

[6] L. Panait and S. Luke, Cooperative Multi-Agent Learning: The State of
the Art, Autonomous Agents and Multi-Agent Systems 11(3), 2005.

[7] R. Axelrod, The Evolution of Cooperation, Basic Books, 2006.
[8] S. Kraus, Negotiation and cooperation in multi-agent environments,

Artificial Intelligence 94(1-2), pp. 79-97, 1997.
[9] L. Hofmann, N. Chakraborty, and K. Sycara, The evolution of

cooperation in self-interested agent societies: a critical study, in
Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, pp. 685–692, 2011.

[10] N. Salazar, J. Rodriguez-Aguilar, J. Arcos, A. Peleteiro, and J.
Burguillo-Rial, Emerging cooperation on complex networks, in The 10th
International Conference on Autonomous Agents and Multiagent
Systems, pp. 669–676, 2011.

[11] J.L. Adler, G. Satapathy, V. Manikonda, B. Bowles, and V.J. Blue, A
multi-agent approach to cooperative traffic management and route
guidance, Transportation Research Part B: Methodological 39(4), pp.
297-318, 2005.

[12] M.C. De Gennaro and A. Jadbabaie, Formation control for a cooperative
multi-agent system using decentralized navigation functions, American
Control Conference, 2006.

[13] D. Srinivasan and M.C. Choy, Cooperative multi-agent system for
coordinated traffic signal control, in Proceedings of Intelligent Transport
Systems 153(1), pp. 41-50, 2006.

[14] J. Choi J., S. Oh, and R. Horowitz,Distributed learning and cooperative
control for multi-agent systems,Automatica45(12), pp. 2802-2814, 2009.

[15] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S.Rahim, M. Zaidi, The
Bees Algorithm, Manufacturing Engineering Centre, Cardiff University,
United Kingdom, 2005.

[16] D. Karaboga, An Idea based on Honey Bee Swarm for Numerical
Optimization, Technical report -TR06,Erciyes University, Engineering
Faculty, Computer Engineering Department 2005.

[17] D. Karaboga and B. Akay., A survey: algorithms simulating bee swarm
intelligence. Artif. Intell. Rev. 31, 1-4, 61-85,2009.

[18] T.D. Seeley, S. Camazine, J. Sneyd, Collective decision-making in
honey bees: how colonies choose among nectar sources, Behavioral
Ecology and Sociobiology, Springer-Verlag, 28:277-290, 1991.

[19] T.D. Seeley, W.F. Towne, Tactics of dance choice in honey bees: Do
foragers compare dances? Behav. Ecol. Sociobiol. 30, 59-69, 1992.

[20] K. Baker and D.Trietsch, Principles of Sequencing and Scheduling,
Wiley, 2007.

[21] A. Madureira, I. Pereira, A. Abraham. Towards Scheduling
Optimization through Artificial Bee Colony Approach, IEEE 5th World
Congress on Nature and Biologically Inspired Computing, USA, 2013.

[22] A. Madureira, C. Ramos, S.C. Silva, A Coordination Mechanism for
Real World Scheduling Problems Using Genetic Algorithms, IEEE
World Congress on Computational Intelligence - (CEC‘2002), Honolulu
- Hawai (EUA), 2002.

[23] OR-Library–http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
[24] H. Fisher and G.L. Thompson, Probabilistic learning combinations of

local job-shop scheduling rules, Industrial Scheduling, Prentice Hall,
Englewood Cliffs, New Jersey, pp.225-251, 1963.

[25] S. Lawrence, Resource constrained project scheduling: an experimental
investigation of heuristic scheduling techniques, Graduate School of
Industrial Adminis., Carnegie-Mellon University, Pennsylvania, 1984.

[26] J. Adams, E. Balas, and D. Zawack, The shifting bottleneck procedure
for job shop scheduling, Management Science 34, pp. 391-401, 1988.

[27] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing
instances with application to job shop,Management, Science38,pp.
1495-1509, 1992.

[28] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale
job-shop instances, R. Manner, B. Manderick (eds.), Parallel instance
solving from nature 2, North-Holland, Amsterdam, pp. 281-290, 1992.

572

