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Abstract— Many interesting optimization problems cannot be
solved efficiently. Recently, a lot of work has been done on meta-
heuristic optimization methods that quickly find approximate
solutions to otherwise intractable problems. While successful,
the field suffers from a notable lack of reuse of methods, both
in practical applications as in research.

In this paper, we describe a semi-automated approach to
design more re-usable methods, based on key principles of
re-usability such as simplicity, modularity and generality. We
illustrate this methodology by designing general metaheuristics
(using hyperheuristics) and show that the methods obtained
are competitive with the contestants of the Cross-Domain
Heuristic Search Competition (2011). In particular, we find a
method performing better than the competition’s winner, which
can be considered the state-of-the-art in domain-independent
metaheuristic search.

I. INTRODUCTION

Many interesting combinatorial optimization problems can-
not be solved in polynomial time, i.e. are NP-hard. Clas-
sical examples of such problems are the Maximum Satisfi-
ability (MAX-SAT), Vehicle Routing (VRP) and Traveling
Salesman Problem (TSP). Already for relatively small in-
stances, solving these problems can become intractable. As
the problems we are interested in solving in practice are
often even magnitudes larger, non-exact methods are often
considered. One approach that recently received a lot of
attention are so called metaheuristic optimization methods
([1], [2]). Metaheuristic optimization methods attempt to find
good solutions to a problem by iteratively trying to improve a
(set of) candidate solution(s). In practice, these methods often
manage to quickly find approximate solutions to otherwise
intractable problems. In recent years, a wide variety of
metaheuristic methods and techniques were developed, both
by researchers and practitioners. However, the field suffers
from a notable lack of reuse of these methods.

First we offer some insight as to why this is the case. We
do so by evaluating some properties affecting the re-usability
of methods, well known in the (software) engineering com-
munity.

Simplicity: A lot of methods are used for no other reason
than that they are simple. Complex methods are difficult to
understand, implement, reproduce,... i.e. reuse.
State-of-the-art metaheuristic methods are often very com-
plex, a complexity we argue not to be intrinsic, but rather
accidental, i.e. simpler alternatives exist, but are just not
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considered. Heuristics are by nature vague and inexact no-
tions, implementations on the other hand must be exact.
This prompts us to make ad-hoc design decisions, adding
accidental complexity. When first testing a method, typ-
ically various issues in performance are observed, which
we subsequently patch. These patches often solve problems
only partially, or cause new problems, incrementally adding
further complexity.

Modularity: A modular method is a composition of
components, each of which can be replaced and reused
independently. This opens up the possibility of partial reuse
and allows us to contain complexity.
In research, methods are often presented as an integral
solution to some problem, i.e. a monolithic whole.

Generality: The generality of an algorithm is its ability
to solve a wide range of problem instances. Generality
is essential for practical applicability and thus re-usability
of a method. In research, methods are typically designed
to solve specific problems, i.e. are “made-to-measure” [3].
This approach is partly motivated by the “No Free Lunch
Theorem” [4], stating that the average performance over all
instances is the same for every method. Additionally, analysis
usually focuses on peak performance on a small set of well
known benchmark instances. Practical applications fail when
this performance does not generalize to the problem instances
we actually want to solve.

In this paper we describe a systematic approach to design
more simple, modular, general, state-of-the-art methods. At
its root lies the realization that, as a designer of meta-
heuristics, we are actually faced with a (meta-)optimization
problem. Here, the search space consists of all possible ways
to (approximately) solve some optimization problem (e.g.
TSP), and the objective is to maximize some measure of
performance (e.g. median length of the tour found after 10
minutes of optimization). The inexact notion, i.e. heuristic,
the designer comes up with is no single method, but a
potentially interesting subset of this search space. In making
additional ad-hoc design decisions and patches he is in fact
exploring this space manually through “trial & error”. A
slow and tedious process that, as described above, tends to
lead to overly complex methods. In the approach described,
we solve this meta-optimization problem semi-automatically.
We still use expert knowledge and creativity to prune the
search space, but the resulting reduced optimization problem
is solved automatically. In formulating this meta-optimization
problem, we ensure that the solution (method) obtained is
simple, modular and general.
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Fig. 1. A graphical illustration of how a high-level search strategy can
be reused through separation of problem specific and problem independent
components

We illustrate this approach by using it to design a general
metaheuristic method. General metaheuristics strive to solve
a wide range of problems. Rather than trying to outperform
“made-to-measure” methods, these methods attempt to pro-
vide a cheap “off-the-peg” alternative. General metaheuristics
can be obtained by explicitely separating problem specific
from problem independent components, i.e. the high level
search strategy. This high level search strategy accesses
problem specific components through a problem independent
interface (a.k.a. the “domain barrier” [5]) and can therefore
be applied to any domain, given the domain-specific com-
ponents are provided (see Figure 1). In order to evaluate
how good high level search strategies are, we need problem
dependent components and benchmark instances for multiple
domains. For this reason, we used the HyFlex framework [6]
in our implementation.

The remainder of the paper is organized as follows. Section
II introduces the HyFlex framework. In Section III we
formulate the meta-optimization problem and Section IV
describes the algorithm we used to solve it. In Section V
we solve our illustrative problem, and compare the resulting
method to the state-of-the-art. Section VI discusses related
research. Finally, in Section VII we conclude.

II. HYFLEX FRAMEWORK

HyFlex is a modular and flexible Java class library for
developing and testing iterative general-purpose heuristic
search algorithms. HyFlex currently provides 6 different
problem domains: Maximum Satisfiability, Bin Packing, Per-
mutation Flow Shop, Personnel Scheduling [7], Traveling
Salesman and Vehicle Routing problem [8]. Each of which
consists of:
• A set of 10-12 benchmark instances which can be

solved.
• A set of low-level heuristics: One construction heuristic

and multiple perturbative and recombination heuristics.1

1Each perturbative and recombination heuristic in addition takes two
parameters: intensity of mutation (α) and depth of search β, (0 ≤ α, β ≤ 1).
In all our experiments we used α, β = 0.2 (default value)

function SOLVE(problem, tallowed)
initialize()
ccurrent, cbest ← problem.construction heuristic()
while tallowed − telapsed > 0 do

option← hyper heuristic.select(options)
cproposed ← option.apply(ccurrent)
cbest ← problem.best of(cproposed, cbest)
if acceptance condition.accepts(cproposed) then

ccurrent ← cproposed
end if
if restart condition.isMet() then

initialize()
ccurrent ← problem.construction heuristic()
cbest ← problem.best of(ccurrent, cbest)

end if
end while
return cbest

end function

Fig. 2. The high-level search strategy considered in our illustration

• An evaluation function, measuring the cost of a candi-
date solution, to be minimized.

HyFlex has been used to support the first Cross-domain
Heuristic Search Challenge (CHeSC 2011), during which 20
contestants were tested (31 10 min. runs) on 30 instances,
5 from each of the 6 domains implemented in HyFlex.
The winner [9] was the algorithm obtaining the highest
accumulated score across these instances. The competition
inspired the performance measure (see Section III-B) used in
our illustration, and in our analysis we show that the method
we obtain is competitive with its contestants.

III. META-OPTIMIZATION PROBLEM

In order to automatically solve the meta-optimization
problem we are faced with, we must first specify it formally.
In general an optimization problem can be formulated as
follows:

“Find x ∈ S such that ∀y ∈ S : f(x) ≤ f(y)”
Where S is the set of candidate solutions, i.e. the search
space, and f the objective function to be minimized.

A. Search Space

The search space of our meta-optimization problem is the
set of possible designs for our metaheuristic. We specify
this set as follows: When designing a metaheuristic, we are
faced with various design decisions pi (1 ≤ i ≤ n), each of
which has a set of alternative choices Di. A configuration
is a combination of such choices (one for each design
decision), and each configuration corresponds to a specific
implementation. The set of such configurations we call a
design space. The search space is then the subset of the
design space we deem interesting (i.e. after pruning). Remark
that design decisions can be conditional e.g. the choice for
pj is only relevant when pi = a.

In specifying the search space in such manner, we ex-
plicitely modularize the design decisions to be made when
implementing our heuristic. Accidental complexity can be
avoided by including simple(r) alternatives for each design
decision. Furthermore, prior art can be reused by including
alternatives commonly used in literature.
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<root> Algorithm

Algorithm($hh,LocalSearch,AcceptAll,$restart)

Algorithm($hh,$os_not_ls,$accept,$restart)

<hh> HyperHeuristic

Uniform

QSelect(RouletteWheel,$pos_eval)

QSelect($rank_sel,$pos_eval)

QSelect($rank_sel,$eval)

<rank_sel> SelectionRule

EpsilonGreedy(0.25)

PolyRank({1.0,2.0})

<pos_eval> EvaluationRule

Speed

SpeedAccepted

SpeedNew

ImprovementOverTime(5)

<eval> EvaluationRule

Average($oe)

ExpAverage($oe,{0.2,0.5})

WindowAverage($oe,{5,10,20})

<oe> EvaluationRule

NewBest

Improvement

Change

<os_not_ls> Options

PerturbativeHeuristic

IteratedLocalSearch

<accept> AcceptanceCondition

AcceptAll

AcceptNoWorse

AcceptTopList(20)

AcceptBestList(10)

AcceptLate(10000.0)

AcceptRandomWorse(0.1)

AcceptProbalisticWorse(0.5)

AcceptSA(2.0)

<restart> RestartCondition

RestartNever

RestartStuck

Fig. 3. Description of the search space considered in our illustration.

In our illustration, we consider simple, single point, high
level search strategies as candidate solutions (see Figure 2).
First, the construction heuristic is used to generate an initial
candidate solution, then iteratively a hyperheuristic is used
to select an option.2 Next, the selected option is applied to
generate a proposal candidate solution, and an acceptance
condition is used to decide whether to accept it or not.
Finally, we either perform a new iteration or restart the
search process.

Here the main design decisions are the hyperheuristic,
options, acceptance and restart condition used. In the Ap-
pendix, we briefly describe the alternatives considered for
each. Figure 3 depicts the resulting design space, listing
for each design decision its alternatives. Alternatives for a
design decision pi are either specified in a named section
<pi> and referenced using $pi or anonymously and inline,
in which case a comma separated list, surrounded by curly
brackets, is used for multiple alternatives. When choosing a
certain alternative a introduces further (conditional) design
decisions, these are specified in round brackets after its name.

B. Objective Function

The objective function should quantify how good a method
is. To do so, one typically evaluates its performance on a
set of benchmark instances. While optimizing performance
over a set of benchmark instances can be considered a multi-
objective optimization problem, most often the objective
function is scalarized, taking the average performance over
all benchmark instances as the single objective. One of the
main challenges is choosing a measure of performance (per
instance) that summarizes in a meaningful way, i.e. without
creating a bias towards a particular instance.

In our illustration we use the following objective function:

f(x) =
1

|P |
∑
π∈P

E[s(Rx,π, π)]

2Options here correspond to one or more applications of the domain-
specific heuristics.

Here P is the set of benchmark instances used in the CHeSC
(2011) competition. Rx,π is the result obtained by method
x on an instance π, which is a random variable when x
is stochastic. The scoring function s assigns a score to the
result of method x on an instance π as follows: A method
is assigned 10, 8, 6, 5, 4, 3, 2 or 10(8−r) points, based
on the rank of its result r among the median results of
the contestants on π.3 When multiple methods tie, they’re
assigned the average of the scores for the tied ranks.

In general the distribution of Rx,π , i.e. the solution quality
distribution [2], is unknown and we can’t compute f directly.
In practice we will therefore use an evaluation function e that
is a consistent unbiased estimator of f :

e(x) =
1

|P̃ |

∑
π∈P̃

1

nπ

∑
r∈R̃x,π

s(r, π)

where R̃x,π is the set of results obtained by method x
over nπ independent runs on the benchmark instance π and
P̃ = {π ∈ P : nπ > 0}.

IV. META-OPTIMIZATION ALGORITHM

To automatically solve the problem formulated in Section
III, we need an algorithm. If we consider design decisions
to be parameters, we obtain a parametrization problem. Var-
ious automatic parametrization methods have been described
[10]–[15], and can thus be readily reused. Note that some
adaptations to algorithm or problem might be required to
handle conditional parameters.

Instead of advocating a particular algorithm, we’ll list
some properties we believe the algorithm should have.
Typically, the algorithm will most of the time be testing
(i.e. running) some candidate solution. Therefore, the key
question is how to distribute these runs over the methods in
the search space.
• More promising methods should receive more runs.

This way, we avoid wasting too much time on poor
methods and are able to reliably discriminate between
good methods.

• Asymptotically ∀x ∈ S : e(x) = f(x). Having this
property guarantees that we, in the limit, will find the
best method. Not having this property, we risk over-
confidence [16] as maxx∈S(e(x)) is a biased estimator
for maxx∈S(f(x)).

In our illustrative example, we used the FOCUSEDILS
metaheuristic described in [15]. FOCUSEDILS is an Iterated
Local Search (ILS) procedure, with random initialization and
restart, operating on the 1-exchange neighborhood. The 1-
exchange neighborhood of a configuration consists of all
configurations that can be obtained by changing a single de-
sign choice. Initially, R configurations are drawn uniformly
at random. From the best of these configurations, a local
search procedure is started, and the local optimum obtained
is used as the initial incumbent solution of the ILS procedure.

3Ordered according to increasing cost, as determined by the domain-
specific evaluation function.
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In ILS, iteratively a proposal is generated by performing a
random walk of s steps, starting from the incumbent solution,
followed by local search. If the generated proposal is better
than the incumbent solution, it is used as incumbent solution
in the subsequent iteration. At the end of each iteration, the
algorithm is restarted with a probability of p.

FOCUSEDILS assigns runs to configurations in a particular
fashion. Each time two configurations are compared (to see
which one is best), an additional test will be performed
using the least tested configuration (both in case of ties).
Subsequently, further tests are performed until the highest
evaluated configuration has at least as much runs as the
configuration to which it is compared. Each time a better con-
figuration is found, a number of bonus tests are performed,
equal to the number of tests performed since we last found
a better configuration. Benchmark instances are considered
in a fixed order, i.e. the (i + 1)th test of a configuration is
performed on the (i%|P | + 1)th instance, where % is the
modulo operator.

V. EXPERIMENTS

In this section we describe the experiments performed in
this paper, and discuss their results. It is organized as follows.
In Section V-A we solve the meta-optimization problem
from our illustration. Section V-B compares the best method
obtained to the contestants of the CHeSC (2011) competition.
Finally, in Section V-C we verify its generality.

A. Meta-optimization Experiment

1) Setup: In this experiment we used FOCUSEDILS to
solve the meta-optimization problem described in Section III.

To reduce the duration of our experiments, and to add
diversification, we ran 30 processes of FOCUSEDILS in
parallel. Each of these processes used the default parameter
settings (R = 10, p = 0.01, s = 3), but considered the
benchmark instances in a different, random order. We do
so to compensate for FOCUSEDILS’s initial bias towards
methods performing well on the benchmarks that are re-
evaluated first.

For fair comparison, we applied the benchmark program
provided on the CHeSC (2011) website4 before each run to
determine tallowed such that tallowed time on our machine
corresponds to 10 minutes on the machine used during the
competition.

2) Results: The results in this section are those accumu-
lated over all the meta-optimization processes. In total 52870
results where obtained, distributed over 2414 candidate so-
lutions and 30 instances.

We first discuss how FOCUSEDILS distributed these runs.
Ideally, we’d like runs to be distributed equally amongst
all instances. On average 1762.33 tests were performed per
instance, with a standard deviation of 288.72. This standard
deviation, while acceptable, is rather large, and is about 7
times more than is expected under a uniform distribution.

4http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html
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Fig. 4. Distribution of runs over the fraction best methods

This is due to the fact that FOCUSEDILS considers bench-
marks in a fixed order, and most methods were tested less
than |P | times. As discussed in Section IV, we want more
promising candidate solutions to receive more runs. Figure
4 shows the fraction of runs performed by the fraction of
highest evaluated methods. Here we observe that the better
methods clearly receive more runs: 45% of the runs were
performed using the 10% best configurations, and 20% were
assigned to the very best. In addition, it shows that nearly
every candidate solution was tested at least once.

Next, we have a look at the best methods found in our
experiment. Here we only consider those evaluated at least
once on every instance. This was the case for (only) 143 of
the methods. Table I shows the design choices made,5 the
number of runs performed, and the evaluation function value
of the 15 top ranked methods.

Looking at the design choices, we find that 12 out
of 15 of these methods use a QSELECT hyperheuristic
with ROULETTEWHEEL selection. All 15 methods use the
ITERATEDLOCALSEARCH options, in fact, the best methods

5See Appendix for the abbreviations used.

TABLE I
TOP 15 METHODS FOUND BY THE META-OPTIMIZATION PROCESSES

r hh os ac rc runs e
1 QS(RW,SN) ILS APW(0.5) RS 1573 5.77
2 QS(RW,SA) ILS APW(0.5) RS 4577 5.38
3 QS(RW,SN) ILS APW(0.5) RN 1322 5.23
4 QS(RW,SA) ILS APW(0.5) RN 5929 5.01
5 QS(RW,SA) ILS ATL(20) RN 810 4.99
6 QS(RW,SN) ILS AL(10k) RN 128 4.93
7 QS(PR(2),EA(C,0.2)) ILS APW(0.5) RN 203 4.91
8 QS(RW,IOT(5)) ILS ATL(20) RS 236 4.89
9 QS(RW,IOT(5)) ILS ATL(20) RN 554 4.81

10 QS(EG(0.25),IOT(5)) ILS APW(0.5) RS 102 4.81
11 QS(RW,SN) ILS ATL(20) RN 185 4.8
12 QS(RW,IOT(5)) ILS APW(0.5) RS 2192 4.79
13 QS(RW,IOT(5)) ILS APW(0.5) RN 1815 4.76
14 QS(RW,SA) ILS ASA(2) RS 193 4.73
15 QS(PR(2),IOT(5)) ILS APW(0.5) RN 223 4.71
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TABLE II
THE RESULTS OF THE CHESC 2011 COMPETITION WITH FS-ILS AS

COMPETITOR

r algorithm stotal ssat sbp sps sfs stsp svrp
1 FS-ILS 182.1 39.6 20 10.5 47 34 31
2 AdapHH 162.18 28.93 45 9 31 35.25 13
3 VNS-TW 115.68 28.93 2 39.5 26 15.25 4
4 ML 110 10.5 8 30 31.5 10.0 20
5 PHUNTER 80.25 7.5 3 11.5 6 22.25 30
6 EPH 74.75 0 8 9.5 16 30.25 11
7 NAHH 65 11.5 19 1 18.5 10.0 5
8 HAHA 64.27 26.93 0 25.5 0.83 0.0 11
9 ISEA 59.5 3.5 28 14.5 1.5 9 3
10 KSATS-HH 53.85 19.85 8 8 0 0 18
11 HAEA 39.33 0 2 1 5.33 9 22
12 ACO-HH 32.33 0 19 0 6.33 6 1
13 GenHive 30.5 0 12 6.5 5 2 5
14 SA-ILS 21.75 0.25 0 17.5 0 0 4
15 DynILS 20 0.0 11 0 0 9 0
16 XCJ 18.5 3.5 10 0 0 0 5
17 AVEG-Nep 16.5 10.5 0 0 0 0 6
18 GISS 16.25 0.25 0 10 0 0 6
19 SelfSearch 4 0 0 1 0 3 0
20 MCHH-S 3.25 3.25 0 0 0 0 0
21 Ant-Q 0 0 0 0 0 0 0

using the PERTURBATIVEHEURISTIC or LOCALSEARCH
alternatives are only evaluated at 3.83, 0.65 and ranked 65th,
133th respectively. 4 out of the 8 acceptance conditions
considered appear in one of the top 15 methods, of which
ACCEPTPROBABILISTICWORSE (9) and ACCEPTTOPLIST
(4) are the most prevalent. Notably, the best method using
ACCEPTALL is evaluated at 1.87 and ranks 124th, moti-
vating the use of acceptance conditions in general. While
restart conditions are not required to obtain performant
methods, we do note that the methods ranked 1st and 2nd,
using RESTARTSTUCK, do outperform their variations, using
RESTARTNEVER, ranked 3rd and 4th respectively.

The differences in evaluations among the 4 best methods
are rather large and based on a large number of runs.
Therefore, these differences are likely to be significant and
unlikely to suffer from over-confidence. In our following
experiments, we therefore focus on the best method found,
which we’ll from now on refer to as “Fair Share Iterated
Local Search” (FS-ILS).6

B. FS-ILS as a CHeSC Contestant

1) Setup: In this experiment we compared the perfor-
mance of FS-ILS to that of the contestants of the CHeSC
(2011) competition. Here we computed, using the program
available at the competition website, the outcome of the
competition as if FS-ILS would have been a competitor.
This program takes as input the median solution quality FS-
ILS obtains on each instance. To avoid any artifacts caused
by over-confidence, results were taken from 930 new runs,
31 on each instance.

2) Results: Table II shows the outcome of the CHeSC
(2011) competition with FS-ILS as competitor. It shows the
total score and scores on each domain for all contestants.

6Code can be found at https://github.com/Steven-Adriaensen/FS-ILS

TABLE III
COMPARISON OF FS-ILS TO ADAPHH

algorithm êtraining êtest êtotal
FS-ILS 9.08 8.16 8.43
AdapHH 9.17 8.02 8.36

We see that FS-ILS would have won the competition and
performs best on 3 of the 6 domains. Furthermore, the worst
score it obtains on any domain is higher than the worst score
of any other contestant.

Note that this comparison is not entirely fair. To design
FS-ILS, we used information not available to the other
contestants, i.e. the benchmark instances used during the
competition and the performance of the other contestants.
Nonetheless, FS-ILS could have been a competitor and
as such the comparison above does illustrate its competi-
tiveness. Furthmore, it’s worth mentioning that FS-ILS is
far less complex than most other contestants, in particular
ADAPHH [9], its main competitor.

C. Validation of FS-ILS

1) Setup: In previous experiments, we showed that FS-
ILS performs extremely well on the benchmark instances
used in the competition. However, in practice, we are inter-
ested in solving new instances, and the results from prior
experiments give no guarantees that the observed perfor-
mance will generalize. In our meta-optimization process, in
anology with machine learning, we learn a metaheuristic that
performs well on a given set of “training” instances. To avoid
over-fitting, the metaheuristic obtained must be validated, i.e.
we must evaluate its performance on a set of new “test”
instances.

In our final experiment, we test FS-ILS on 28 new bench-
mark instances (30 runs each), 7 from all 4 domains available
prior to the CHeSC (2011) competition,7 but not used in
the competition itself. These instances were chosen because
results for 8 benchmark algorithms were made available for
them prior to the competition.8 The availability of these
benchmark algorithms allows us to reuse the evaluation
function described in Section III-B using these 8 benchmark
algorithms (ê), instead of the 20 CHeSC contestants.

As these 8 benchmark algorithms can hardly be considered
state-of-the-art, we compare the performance of our method
to that of ADAPHH. For a fair comparison, we evaluate
the performance of a publicly available version of ADAPHH
(using the default parameter settings) on these 28 benchmark
instances (30 runs), under the same conditions.

2) Results: Table III shows the evaluation (ê) of FS-ILS
and ADAPHH on all 40 instances for which results of the
8 benchmark algorithms were made available (êtotal), 12 of
which were CHeSC (2011) benchmark instances (êtraining)
and 28 that weren’t (êtest).

7Maximum Satisfiability, Bin Packing, Permutation Flow Shop, Personnel
Scheduling

8http://www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html
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In comparing êtraining and êtest, we find that FS-ILS per-
forms better on the training instances, than the test instances.
This is unlikely due to over-fitting, as we observe the same
for ADAPHH. More likely, the 8 benchmark algorithms just
happen to be slightly more competitive on the test instances.
Overall FS-ILS performs slightly better than ADAPHH, and
ironically ADAPHH performs better on the training instances
(for which FS-ILS was optimized), while FS-ILS performs
better on the test instances.

This experiment shows that the performance of FS-ILS
generalizes well to new instances of the 4 original domains.

VI. RELATED RESEARCH

Various authors have noted the lack of reuse and made
suggestions to improve the modularity (GLSM [2, Chapter
3]) and generality (algorithm selection [17], portfolios [18],
hyperheuristics [3]) of metaheuristic methods.

While to date, most methods are designed using the tradi-
tional “trial & error” approach, attempts have been made to
automate (part of) the design process. E.g. Genetic program-
ming [19] was used to generate heuristics from scratch [3,
Section 5], and Automatic parametrization ([12]–[15]) was
used to determine the best values for the parameters of a
given method.

The approach followed in this paper was largely inspired
by, and built upon this research. In combining various of
these ideas, we strive to obtain more reusable, metaheuristics.

VII. CONCLUSION

In this section we conclude and give a short summary of
the ground covered in this paper, discussing limitations and
further research.
In summary this paper makes two main contributions:
• We describe a semi-automated approach to design

(re)usable metaheuristic methods. In this approach, we
perform an explicit modularization and abstraction of
the design decisions in a method, considering various
alternatives for each design decision. Next, an automatic
search is performed to find the combination of design
choices that results in the most performant method.
Unlike the traditional “trial & error” approach, this sys-
tematic approach allows us to control the accidental
complexity, modularity and generality of the result,
encouraging reuse of both methods and components.

• We provide a concrete illustration of the approach
described. Here we consider the design of general
metaheuristic methods, using hyperheuristics. We find
FS-ILS. a simple Iterated Local Search (ILS) method,
and show its performance to be competitive with the
state-of-the-art. The experiments also identified various
interesting design choices. Our results support the con-
jecture that ILS is a promising high-level search strat-
egy, and the use of acceptance conditions in general. We
also identify a promising new class of hyperheuristics,
selecting options in a non-greedy, acceptance and time
proportional fashion, and provide a cross-domain adap-
tation of the popular Metropolis acceptance condition.

In a sense this paper ends where most begin. Rather than
describing a specific metaheuristic method, we describe and
illustrate a way to obtain such methods. As a consequence,
we didn’t motivate or perform any in depth analysis of
FS-ILS and its design choices, but plan to do so in the
near future. Furthermore, designing methods is an iterative
process, where the designer uses the insights obtained in
each iteration, to refine the search space, leading to further
improvements. E.g. Given the outcome of our experiments,
a logical next step would be to consider the design of
ILS methods. Finally, note that the approach described is
applicable beyond the domain of metaheuristic optimization,
and can be used to design software systems in general.

The experiments performed in this paper serve as a proof
of concept. The problem formulation and meta-optimization
method used therefore should not be considered best practice.
The described approach has some limitations. It offers no
guarantees that the performance of the method obtained will
generalize to new problem instances. Arguably, optimizing
performance on a small subset of problem instances, is
not the best indication of the performance in general [4].
Remark that the same holds for methods obtained through
the traditional “trial & error” approach. Interesting future
research would be to consider different objectives that are
better indicators of general performance.

The approach described is a time-consuming process. Both
the implementation of alternatives and the meta-optimization
process itself take a lot of time. Nonetheless, we’ll argue
that this cost is acceptable. First, we note that the tradi-
tional “trial & error” approach is time consuming as well.
Furthermore, by reusing the results, alternatives, and methods
obtained, the time required can be reduced and the time spent
armortized. Finally, during the meta-optimization process,
the researcher is free to perform other activities, for it is
the computer that is engaged.

One might argue that our quest for simplicity results in
methods that will not generalize very well. First, because
most of the complexity in state-of-the-art methods stems
from some form of adaptiveness to the problem. Second,
because it is not difficult to construct a problem on which
FS-ILS would fail. We’d argue that in both cases, problems
exist on which they’ll perform poorly. It is precisely due
to a method’s simplicity that it is obvious in which cases
this occurs. Furthermore, this obviousness is desirable when
reusing a method. For practitioners know what to be aware
off when formulating their problem, and researchers know
what to attempt to improve.
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APPENDIX

Here, we briefly describe the alternatives considered
for each of the design decisions in our illustration. When
choosing a certain alternative introduces further (conditional)
design decisions, these are specified in round brackets after
its name. The abbreviations used for alternatives in Table I,
are given in square brackets.

Hyperheuristics:
UNIFORM [U]

Selects an option uniformly at random.
QSELECT(SEL, EVAL) [QS]

Uses a selection rule sel to select an option oi based
on the quality values q(oi) assigned to each option.

Initially each option is assigned 10300, and ties in
ranks are broken randomly. After each application
of oi an evaluation rule eval is used to re-evaluate
oi based on all its ni previous applications.9

Selection rules:
ROULETTEWHEEL [RW]

Selects an option oi with probability
q(oi)∑
oj
q(oj)

.

EPSILONGREEDY(ε) [EG]
Selects the best option with probability
1− ε, and an option uniformly at random
otherwise.

POLYRANK(k) [PR]
Selects the rthi worst option with probabil-
ity rki∑

rj
rkj

.

Evaluation rules:
CHANGE [C]

e(ccurrent)− e(cproposed)
IMPROVEMENT [I]

max(0, e(ccurrent)− e(cproposed))
DURATION [D]

The time in ms it took to generate
cproposed.

ACCEPTED [AC]
1 if cproposed was accepted, 0 otherwise.

NOOP [N]
1 if cproposed = ccurrent, 0 otherwise.

NEWBEST [NB]
1 if e(cproposed) < e(cbest), 0 otherwise.

TOTAL(oe) [T]
The accumulation of evaluation rule oe
over all evaluations.

AVERAGE(oe) [A]
The moving average of evaluation rule oe
over all evaluations.

EXPAVERAGE(oe,α) [EA]
The exponential moving average of evalu-
ation rule oe over all evaluations, using a
weighting factor α.

WINDOWAVERAGE(oe,M ) [WA]
The average of evaluation rule oe in the
last M evaluations.

SPEED [S]
ni+1

Total(Duration)(oi)
.

SPEEDACCEPTED [SA]
Total(Accepted)(oi)+1
Total(Duration)(oi)

.
SPEEDNEW [SN]

Total(Accepted)(oi)−Total(Noop)(oi)+1
Total(Duration)(oi)

.
IMPROVEMENTOVERTIME(M) [IOT]

C∗WindowAverage(Improvement,M)(oi)+1
Average(Duration)(oi)

.
Here C is some large constant.10

9The first 6 evaluation rules described are oblivious, i.e. they only consider
the most recent application.

10105 in our implementation

2975



Options:
LOCALSEARCH [LS]

Each option corresponds to applying one of the
greedy domain-specific perturbative heuristics.

PERTURBATIVEHEURISTIC [PH]
Each option corresponds to applying one of the
domain-specific perturbative heuristics.

ITERATEDLOCALSEARCH [ILS]
Each option corresponds to applying the construc-
tion or one of the non-greedy domain-specific
perturbative heuristics, followed by local search.
The local search process iteratively applies the
greedy domain-specific perturbative heuristics of
the domain, where each iteration a heuristic is
selected uniformly at random. When the application
of a heuristic does not lead to improvement, it
is excluded from the selection, until some other
heuristic finds improvement. If all heuristics are
excluded, local search is terminated.

Acceptance Conditions:
ACCEPTALL [AA]

Accepts all proposals.
ACCEPTNOWORSE [ANW]

Accepts all non-worsening proposals.
ACCEPTTOPLIST(n) [ATL]

Accepts all proposals no worse than the nth best
solution observed so far.

ACCEPTBESTLIST(n) [ABL]
Accepts all proposals no worse than the nth best,
new best solution observed so far.

ACCEPTLATE(t) [AL]
Accepts all proposals no worse than the incumbent
solution k iterations ago [20], where k is number of
iterations performed during the t first milliseconds
of the run, during which every solution better than
the initial solution is accepted.

ACCEPTRANDOMWORSE(ε) [ARW]
Accepts all non-worsening proposals and worsen-
ing proposals with a probability ε.

ACCEPTPROBABILISTICWORSE(T ) [APW]
Accepts proposals with a probability

e
e(ccurrent)−e(cproposed)

T∗µimpr , where e is the evaluation
function and µimpr the (moving) average improve-
ment in improving iterations.

ACCEPTSA(T ) [ASA]
Accepts proposals with a probability

e
e(ccurrent)−e(cproposed)

T∗µimpr
∗ tallowed

(tallowed−telapsed)

where tallowed is the time we are allowed to opti-
mize and telapsed the time we have been optimizing.

Restart Conditions:
RESTARTNEVER [RN]

Never perform a restart.
RESTARTSTUCK [RS]

Perform a restart when w > tallowed
telapsed

∗wmax, where

w is the number of iterations passed since obtaining
the best candidate solution so far and wmax the
greatest number of iterations we ever had to wait for
a new best candidate solution. As an exception, the
algorithm is not restarted when the time remaining
is less than the shortest time it took to find a
candidate solution as good as the best candidate
solution obtained so far.

On restart, most variables are re-initialized (initialize()).
Exceptions are tallowed, telapsed, cbest and wmax.

The search space is defined as a subset of the design space
described above. Below we summarize how we pruned this
search space.

• Multiple of the design decisions are continuous. For
practical purposes we discretize the search space, con-
sidering only a finite set of alternatives for each design
decision.

• Some of the evaluation rule alternatives have “the
evaluation rule used” as design decision, leading to
possible infinite recursion. To avoid this, we combine
these alternatives only with the CHANGE, IMPROVE-
MENT and NEWBEST alternatives. Furthermore, other
oblivious alternatives and TOTAL are not considered as
alternatives individually.

• ROULETTEWHEEL selection is only combined with
evaluation rules that evaluate to strictly positive values.

• LOCALSEARCH options are only combined with the
ACCEPTALL acceptance condition, since all proposals
are non-worsening.

Figure 3 describes the resulting search space unambigu-
ously.
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