
A Progressive Random Walk Algorithm for

Sampling Continuous Fitness Landscapes

Katherine M. Malan

Department of Computer Science

University of Pretoria

South Africa

Email: kmalan@cs.up.ac.za

Andries P. Engelbrecht

Department of Computer Science

University of Pretoria

South Africa

Email: engel@cs.up.ac.za

Abstract—A number of fitness landscape analysis approaches
are based on random walks through discrete search spaces.
Applying these approaches to real-encoded problems requires
the notion of a random walk in continuous space. This paper
proposes a progressive random walk algorithm and the use of
multiple walks to sample neighbourhood structure in continuous
multi-dimensional spaces. It is shown that better coverage of
a search space is provided by progressive random walks than
simple unbiased random walks.

I. INTRODUCTION

Over the last few decades, the evolutionary computation

community has dedicated considerable research effort to the

analysis of fitness landscapes and the link to problem difficulty.

Following the limited success in finding a single measure

of problem hardness [1], [2], [3], [4], recent research efforts

have instead been focussing on measuring multiple problem

characteristics [5], [6], [7], [8] with the aim of automatically

selecting an appropriate algorithm for solving a problem [9],

[10], [11]. For this approach to be successful, there is a need

for multiple techniques that measure different aspects of fitness

landscapes, and there is a wealth of these in the literature (for

a survey see [12]).

Many fitness landscape techniques were originally defined

based on a complete enumeration of a discrete search space,

but this is obviously not feasible for most real-world discrete

problems or any real-valued problems. A form of sampling

of the search space is therefore required on which to base an

approximation of some originally precise measure. There are

techniques that require a simple random sample of solution

points, such as fitness distance correlation [13], density of

states [14], dispersion metric [15] and exploratory landscape

analysis features [6]. Other techniques are based on a random

walk through the search space to capture a sequence of neigh-

bouring solutions, such as autocorrelation techniques [16],

correlation length [17] and entropic measures of ruggedness

and smoothness with respect to neutrality [18]. Adapting

these for real-valued problems would require a method for

performing a random walk in a continuous space.

This paper proposes a random walk algorithm for continu-

ous spaces with the following aims:

1) The random walk should be unbiased in terms of fit-

ness, that is, fitness information should not be used to

influence the direction of the walk. This is in contrast

to online sampling (where the points are generated by

the search algorithm itself) and other sampling strategies

that use a particular search operator to define neigh-

bourhood (as is the case with techniques that mea-

sure evolvability such as fitness clouds [19], negative

slope coefficient [20], fitness-probability clouds [21] and

accumulated escape probability [21]). The reason for

requiring an algorithm-independent sample is so that

the analysis based on the sample could be applicable to

any search algorithm. If the ultimate aim is to select an

appropriate algorithm based on the characteristics of the

problem, then the characterisation should be algorithm

independent.

2) The points in a walk should be ordered based on some

generic notion of neighbourhood, such as Euclidean

distance. In this way, a walk captures neighbourhood

information and the series of fitness values generated

through a walk can be assumed to be related in space

based on the distance metric used.

3) The set of walks used to sample the search space should

attempt to provide as wide a coverage of the search

space as possible within the constraints of acceptable

computational cost. If the purpose of analysing a prob-

lem is to obtain information to guide the choice of an

appropriate algorithm, then the computational cost of

sampling should be significantly less than solving the

problem with multiple algorithms using a trial-and-error

approach.

Although requirement 3 above stresses that the computa-

tional effort of sampling and characterising a problem should

be significantly less than the computational effort in using a

trial-and-error approach with multiple algorithms, one could

argue that this is not an essential feature. A trial and error

approach to solving an unknown problem has no guarantee of

producing a good solution to the problem. On the other hand,

characterising a problem should lead to a deeper understanding

of the problem and better choices of algorithms and therefore

have an increased chance of producing a solution of higher

quality than the uninformed application of multiple search

algorithms.

2507

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

The proposed random walk algorithm discussed in this

paper was implemented in a previous study [22] to investigate

the ruggedness, funnels and gradients in fitness landscapes and

the effect on the performance of a traditional particle swarm

optimisation (PSO) algorithm. The progressive random walk

algorithm was used as the basis for a ruggedness measure

based on entropy and a variant on this random walk, called

a Manhattan progressive random walk, was used as the basis

of a measure for estimating gradients. Results showed that the

ruggedness and gradient measures were moderately correlated

to the performance of a traditional PSO on a range of bench-

mark problems [22] and a further study [23] showed that the

gradient measure, in particular, was a good predictor of failure

for different variations on the PSO algorithm. The purpose

of this paper is to properly describe the progressive random

walk algorithm and to highlight why such an approach is

justified as the basis for sampling neighbouring fitness values

in continuous spaces.

The remainder of the paper is organised as follows: Section

II provides an overview of approaches to random walks in the

literature, Section III looks at a simple unbiased random walk

algorithm for continuous spaces and shows that the coverage

of the search space is not adequate. Section IV proposes

an alternative algorithm called a progressive random walk

algorithm. The coverage of walks in higher dimensions is

tested in Section V, followed by a conclusion in Section VI.

II. RANDOM WALKS

This section provides a brief overview of random walks in

general and describes how random walks have been used in

fitness landscape analysis.

A. Random walks in general

Random walks have been used to describe features and

phenomena in a wide variety of fields such a physics, biology,

chemistry, psychology and economics. Many of the models of

random walks are defined for a particular dimension, such as

a one-dimensional walk representing the price of a fluctuating

stock, a two-dimensional walk for the search path of a foraging

animal or a three-dimensional walk of a particle in gas

(Brownian motion). In the domain of continuous optimisation

problems, however, random walk models are n-dimensional to

apply to the solution space of any n-dimensional problem.

The first description of a random walk in literature appeared

in a letter to the journal Nature from Pearson in 1905 [24] and

is described as follows: “A man starts from a point O and

walks I yards in a straight line; he then turns through any

angle whatever and walks another I yards in a second straight

line. He repeats this process n times.” Pearson’s description

is a fixed step length random walk in two-dimensional contin-

uous space. The randomness is captured in the angle that the

man turns at each point. The walk is isotropic, because the man

can turn in any direction. If there is some restriction or bias

on the size of the angle, then the walk would be anisotropic.

Examples of models of anisotropic walks in two-dimensional

continuous space include a random walk of a particle with

directional memory [25] and the model of random motion

with preferential direction [26]. The progressive random walk

algorithm proposed in this paper generates an anisotropic

random walk in n-dimensional continuous space.

When a random walk has random step lengths, the step

length can be based on some probability distribution, such as

uniform, Gaussian, or a heavy-tailed distribution (in the case

of Lévy flights). The random walk algorithms described in

this paper generate walks with step lengths based on a uni-

form distribution. Uniform distributions are commonly used

for generating the stochastic elements of many optimisation

algorithms, such as PSOs.

B. Random walks in fitness landscapes

Random walks featured as the basis of the earliest fitness

landscape analysis techniques with Kauffman and Levin’s

[27] adaptive walk. An adaptive walk is a biased random

walk, originally defined for binary spaces, where each next

point in the walk has a better fitness value than the previous

point. If the expected length of an adaptive walk is short,

then this would signify an uncorrelated (or rugged) fitness

landscape. Since then, a number of other fitness landscape

analysis techniques have been proposed based on biased and

unbiased random walks, such as autocorrelation measures

[16], [28], correlation length [17], entropic measures [29],

[18], [30] and the length of neutral walks [31]. All of these

techniques assumed a discrete problem with each point in

the space having a finite number of neighbouring points. For

binary problems, a random walk could be implemented as

follows [18]: start from a randomly chosen point, generate

all neighbours of the current point by mutation (bit flip),

choose randomly one neighbour as the next point, generate

all neighbours of the new point, and so on. In the case of

continuous search spaces, however, there is no equivalent set

of all possible neighbours of any point, since the number of

neighbours of a point is theoretically infinite. Section III-A

defines a simple hypercube model of neighbourhood for n-

dimensional space from which neighbours can be sampled

using a uniform distribution spanning the neighbourhood in

each dimension.

A recent contribution in fitness landscape analysis of con-

tinuous problems, based on random walks, is Morgan and

Gallagher’s [32] length scale property. This approach char-

acterises continuous landscapes using the entropy of length

scale values, sampled using a Lévy flight. Due to the heavy-

tailed distribution used for choosing step lengths, this random

walk in solution space has frequent small steps interspersed

with infrequent large steps. For the purposes of this study, a

Lévy walk was not considered as a suitable approach, since it

does not meet the second aim outlined in Section I. Due to the

occasional large steps, adjacent points on a Lévy walk could

be positioned relatively far away from each other, resulting

in neighbouring fitness values from very different parts of the

fitness landscape.

All of the fitness landscape techniques discussed above

are based on random walks that are created by generating

2508

points in a sequence based on some concept of neighbourhood.

A point in the search space is chosen as a starting point,

then some algorithm is followed to repeatedly choose the

next point in the neighbourhood until the required random

sequence of points has been created. An alternative approach

could be to generate a sample of points using a sampling

strategy with a good coverage of the search space, such as

Latin Hypercube sampling for continuous spaces, and then to

connect the points into a walk using a form of pathfinding

with nearest neighbour search. The algorithm proposed in this

paper using the former approach, but it would be interesting to

see if a computationally cheap way could be developed using

the latter approach.

III. SIMPLE RANDOM WALK IN CONTINUOUS SPACE

This section proposes an algorithm for generating an

isotropic walk in n-dimensional continuous space. A definition

of neighbourhood is defined for n-dimensional continuous

space, the algorithm is proposed and sample runs are plotted

for different step bounds.

A. Hypercube neighbourhood

The neighbourhood of a multidimensional point x is com-

monly defined as the set of points within the hypersphere with

some small radius and centre x [33]. However, this approach

requires Euclidean distance calculations to ensure that one

point is in the neighbourhood of another point. To simplify

the computational complexity of neighbourhood checking, a

neighbourhood based on hypercubes is proposed. Formally,

the neighbourhood set N(xk) of an n-dimensional point xk

is defined as follows:

xj ∈ N(xk) ⇐⇒ |xki − xji| < s, ∀i ∈ [1, . . . , n] (1)

where s is half of one length of the hypercube specifying

the neighbourhood size. Note that this definition assumes that

the neighbourhood size is equal in all dimensions. In some

cases it may be desirable to define s, not as a scalar value,

but as a multidimensional vector s. For example, consider a

two-dimensional search space where variables x1 and x2 have

domains of [0, 100] and [0, 1], respectively. The neighbourhood

size could be specified as s = [10, 0.1], so that although the

neighourhood is technically a rectangle, it is a square relative

to the seach space, since each side of the neighbourhood is

10% of the domain.

B. Simple Random Walk algorithm

Given the definition of neighbourhood in Equation 1, a

simple approach to a random walk through a continuous

space could be the following: start at a random position

within the bounds of the multi-dimensional search space; take

a step of random size and direction, within the bounds of

the multi-dimensional hypercube defining the neighbourhood,

always ensuring that the walk stays within the outer bounds

of the search space, until the required number of steps are

reached. This simple random walk algorithm is expressed more

formally in Appendix A and Figure 1 plots the position vectors

of sample runs for a two-dimensional space using different

values of s. As can be seen, taking steps in random directions

has a tendency for the points of a walk to be clustered

in limited areas of the search space, which becomes more

pronounced as the value of s decreases. This can result in

poor coverage of the search space.

IV. PROPOSED PROGRESSIVE RANDOM WALK

To address the problem of points in the random walk being

clustered in limited areas of the search space, a directional

bias is introduced in the step to produce an anisotropic or

progressive random walk. This is similar to Huang et al.’s

[26] approach for two-dimensional space, where the walk has

a preferential direction on a given axis.

The basic idea of a progressive random walk is as follows:

A walk starts on the edge of the multi-dimensional search

space, progresses in a random way, but with a bias in direction

towards the opposite side of the search space. If a search

space boundary is reached, the bias is changed to the opposite

direction. Multiple walks are generated from different random

starting positions on the outer boundaries of the search space.

The details of the approach are specified below.

A. Starting Zones for Progressive Random Walks

As described in Table I, for an n-dimensional search space,

there are 2n non-overlapping starting zones. Each starting zone

is identified using an n-bit string b1 . . . bn, which specifies the

corner point (c1, . . . , cn) of the starting zone as follows:

ci =

{

xmin
i if bi = 0

xmax
i if bi = 1

(2)

A point (x1, . . . , xn) is defined as being in the starting zone

identified by the binary number b1 . . . bn with corner point

(c1, . . . , cn) when the following hold:

∀i ∈ [1, . . . , n], |xi − ci| <
xmax

i
−xmin

i

2 , and

∃i ∈ [1, . . . , n], where xi = ci
(3)

For a one-dimensional search space, there are only two

possible starting positions on the edge of the search space: the

minimum and maximum points defining the problem domain.

In two dimensions, there are four lines of boundary points;

in three dimensions there are six planes of boundary points;

and so on. In an attempt to provide a wide coverage of the

search space, the set of points on the boundary is divided

into non-overlapping zones, so that multiple random walks

can start in different portions of the outer boundary. The

proposed approach to dividing the boundary points into zones

is described in Table I, where the domain for each dimension

i is specified as [xmin
i , xmax

i].

B. Progressive Random Walk Algorithm

Given a binary number specifying the starting zone, a

random progressive walk starts by generating a random po-

sition in the specified starting zone. Steps are then based on

random offsets in each dimension, within the neighbourhood,

in the direction of the opposite boundaries. The algorithm is

2509

-100

-50

 0

 50

 100

-100 -50 0 50 100

(a) s = 20

-100

-50

 0

 50

 100

-100 -50 0 50 100

(b) s = 10

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) s = 2

Fig. 1. Plots of the position vectors of sample simple (isotropic) random walk runs for a two-dimensional space with differing values of s (step bound). Each
sub-figure shows four independent sample walks of 50 steps each.

TABLE I
DESCRIPTION OF PROPOSED STARTING ZONES FOR DIFFERENT

DIMENSIONS.

Description of starting zones and random walk progression

1-D Two starting zones, which are the single points (xmin),
starting zone 0, and (xmax), starting zone 1.

2-D Four starting zones, corresponding to each corner of the
rectangular search space. Each starting zone is defined as
the set of points falling on the two lines extending from
the corner point up to the midpoints of the ranges along
the axes, as illustrated in Figure 2. Starting zone 00 refers
to the lines extending from corner (xmin

1
, xmin

2
). Similarly,

zones 01, 10 and 11 refer to the lines extending from
corners (xmin

1
, xmax

2
), (xmax

1
, xmin

2
), and (xmax

1
, xmax

2
),

respectively.

3-D Eight starting zones (identified as zones 000 to 111 in binary)
corresponding to the eight corners of the cuboid defining the
search space. Each starting zone is defined as the set of points
on the planes falling on the outer boundaries of the search
space extending from the given corner up to the midpoints of
the ranges of the axes.

n-D 2n starting zones corresponding with the 2n corner points,
where each corner point is of the form (c1, . . . , cn), such that
∀i ∈ [1, . . . , n], ci ∈ {xmin

i
, xmax

i
}. Each starting zone is

defined as the set of points falling on the outer boundary of
the search space extending from the given corner point up to
the midpoints on the ranges of the axes.

expressed more formally in Appendix B, while Figure 3 plots

the position vectors generated by sample runs of the algorithm

for a two-dimensional space using different values of s.

In constrast to Figure 1, it can be seen that a better coverage

is obtained by the progressive random walks than the simple

random walks in two dimensions. It can also be seen that

a step bound of 20 (10% of the range of the domain on

a single dimension) provides a better coverage of the space

than smaller bounds, while still maintaining a reasonably close

proximity between points on the walk.

V. TESTING COVERAGE OF WALKS

This section proposes a technique for quantifying the cov-

erage of a sample in continuous space in terms of deviation

from the distribution of a uniform sample.

A. Estimating coverage

A histogram is a standard technique for visualising and

estimating the distribution of a sample. For example Figure

4 shows the distributions of three samples of 10 000 points

in a two-dimensional space with domain [−100, 100]. The

frequencies are based on 100 (10 × 10) bins of equal size,

resulting in a mean of 100 points per bin. Figure 4(a) shows

the distribution of a uniform random sample of the space.

It can be seen that the frequencies deviate slightly from the

mean of 100. Figures 4(b) and 4(c) show the distributions of

samples resulting from simple random and progressive random

walks respectively. In both cases the samples were generated

from four equal-length walks with a step bound of 20 (10%

of the domain), with the progressive random walks starting

in different starting zones. As can be seen, the distribution of

samples produced by the progressive random walks is more

similar to a uniform distribution than the simple random walks.

The problem of clustering of points in the search space is

clearly evident in the histogram of the simple random walks.

To test the coverage of the random walk algorithms in higher

dimensions, experiments were conducted on search spaces

with domain [−100, 100] for dimensions (D) 1, 2, 3, 4, 6 and

10. Sample sizes were chosen to be in the order of 104×D (the

maximum number of function evaluations sometimes used in

real-parameter optimisation competitions [34]), but adjusted to

allow for a set mean of 100 points in a bin, while also ensuring

equal sized bins (kD for some integer k). The number of points

and bins for each dimension is given in Table II.

For the two random walk algorithms, 30 samples were

generated through independent runs of the algorithm for each

dimension. Each run consisted of 2D walks using a step bound

of 20 (10% of the domain). For the progressive random walk

each walk of a sample started in a different starting zone. For

each run in a sample, the standard deviation of the frequency in

the bins was calculated and the mean of the standard deviations

over the 30 runs was calculated. The deviations based on

uniform random samples were also calculated and the results

are given in Table II. As can be seen, a uniform random sample

on average deviates by approximately 10 points in a bin from

the mean of 100 in all dimensions. A sample generated by

2510

Fig. 2. Four starting zones for a two-dimensional search space.

-100

-50

 0

 50

 100

-100 -50 0 50 100

(a) s = 20

-100

-50

 0

 50

 100

-100 -50 0 50 100

(b) s = 10

-100

-50

 0

 50

 100

-100 -50 0 50 100

(c) s = 2

Fig. 3. Plots of the position vectors of sample progressive random walk runs for a two-dimensional space with differing values of s (step bound). Each
sub-figure shows four sample walks of 50 steps each, each starting in a different starting zone. Wider coverage of the search space is obtained than in the
case of the simple random walks as illustrated in Figure 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

F
re

q
u

e
n

c
y
 o

f
p

o
in

ts

Equal sized bins

(a) Uniform sample

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

F
re

q
u

e
n

c
y
 o

f
p

o
in

ts

Equal sized bins

(b) Simple random walks

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

F
re

q
u

e
n

c
y
 o

f
p

o
in

ts

Equal sized bins

(c) Progressive random walks

Fig. 4. Histograms showing the distribution of samples of 10 000 points in a two-dimensional space. Frequency is in terms of numbers of points in 10 ×
10 equal-sized bins.

2511

a simple random walk has much higher average deviations,

ranging from approximately 20 in 1 dimension to over 30

in 10 dimensions. Samples generated by progressive random

walks have significantly smaller deviations on average than

simple random walks.

These results show that a progressive random walk sample

is more uniformly distributed than a simple random walk

sample, but not as uniformly distributed as a uniform random

sample. The advantage of progressive random walk samples

over uniform random samples is that additional information

is provided in the form of the neighbourhood captured in the

sequence of points in the sample.

B. Multiple random walks in multi-dimensional space

In multi-dimensional spaces, the size of the search space

increases exponentially as the dimension increases. When

performing a random walk, larger search spaces require more

walks to sample the space. When sampling an n-dimensional

space using a random walk, the number of walks should

ideally be equal to the number of starting zones, that is

2n, as described in Table I. This is clearly infeasible for

high dimensions, especially since the aim is to provide a

characterisation of a problem that is less computationally

expensive than actually solving the optimisation problem.

To keep within a limit of 103 × n sample points as the

basis for fitness landscape measures (10 times less than the

maximum number of function evaluations commonly used

in real-parameter optimisation competitions), the following

approach is proposed for n-dimensional space:

• The number of walks performed is equal to the number

of dimensions, so n independent walks are performed

with each walk starting in a different starting zone.

This ensures a linear growth in computation time as the

dimension increases.

• To distribute different walks across the starting zones,

every (2
n

n
)th starting zone is used as the starting point

for a walk. For example, for a 4-dimensional space with

16 starting zones, 4 walks will be performed starting in

zones 0000, 0100, 1000 and 1100.

Note that any sampling of a high dimensional space will

provide inadequate coverage of the search space. The aim

is to have a random sampling technique that can be used

as the basis of measures that are reasonably reliable (that is,

the resulting characterisation measures do not have very large

standard deviations).

The use of multiple progressive random walks as described

above was used in a previous study [22] to estimate the macro

ruggedness of a range of benchmark functions in different

dimensions. The ruggedness estimate was determined based on

D progressive random walks of 103 steps, with a step bound

of (xmax − xmin) ∗ 0.1, where xmax and xmin define the

bounds of the search space. Using a fairly large step bound

such as this (up to 10% of the range of the domain) has

the effect of estimating ruggedness on a larger scale (macro

ruggedness), rather than micro ruggedness. Thirty independent

runs of the ruggedness estimation algorithm were performed

on each function and dimension combination. Figure 5 plots

the mean ruggedness values for dimensions 1, 2, 5, 15, and

30 for a number of benchmark functions (definitions and one-

dimensional plots of the functions are provided in [22]).

It can be observed from Figure 5 that in 30 dimensions,

there are three distinct groups of functions with similar macro

ruggedness values. Functions Ackley, Rastrigin, Salomon and

Schwefel 2.26 have the highest macro ruggedness values.

Functions Griewank, Spherical and Step have similar rugged-

ness values (on a macro level, these functions have the same

basic shape) and Quadric has the lowest value. More impor-

tantly, it can be seen from Figure 5 that the standard deviations

of the ruggedness measure do not in general increase with an

increase in dimension, indicating that the walks on which the

measure is based provide sufficient information to characterise

the ruggedness for these benchmark problems.

VI. CONCLUSION

A random walk is used for sampling a fitness landscape

when the relative fitness values of neighbouring points is of

relevance. This paper proposes an algorithm for performing

an anisotropic random walk in continuous spaces that could

be used as the basis of techniques for approximating land-

scape topology features such as ruggedness, smoothness and

neutrality. The algorithm is called a progressive random walk

and works on the principle of a walk that starts at a random

position on the boundary of a search space and progresses in

a random way with a bias towards the boundaries at the other

side of the search space. It is shown that, when used with an

appropriate step bound, the distribution of progressive random

walk samples is more uniform than the distribution of simple

random walk samples and so provides a better coverage of

the entire search space. In high dimensions, multiple random

walks starting in different zones on the boundary can be used

as the basis for obtaining sufficient information to distinguish

between different classes of problems based on estimated

characteristics.

REFERENCES

[1] H. Guo and W. H. Hsu, “GA-Hardness Revisited,” in Proceedings of the

2003 Genetic and Evolutionary Computation Conference, ser. Lecture
Notes in Computer Science. Berlin: Springer-Verlag, 2003, vol. 2724,
pp. 1584–1585.

[2] J. He, C. Reeves, C. Witt, and X. Yao, “A Note on Problem Difficulty
Measures in Black-Box Optimization: Classification, Realizations and
Predictability,” Evolutionary Computation, vol. 15, no. 4, pp. 435–443,
2007.

[3] T. Jansen, “On Classifications of Fitness Functions,” in Theoretical

aspects of evolutionary computing. London, UK: Springer-Verlag, 2001,
pp. 371–385.

[4] B. Naudts and L. Kallel, “A Comparison of Predictive Measures of
Problem Difficulty in Evolutionary Algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 4, no. 1, p. 1, April 2000.

[5] P. Caamaño, F. Bellas, J. A. Becerra, V. Dı́az, and R. J. Duro, “Ex-
perimental analysis of the relevance of fitness landscape topographical
characterization,” in IEEE Congress on Evolutionary Computation, June
2012, pp. 1–8.

[6] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory landscape analysis,” in Proceedings of the

13th Annual Conference on Genetic and Evolutionary Computation,
2011, pp. 829–836.

2512

TABLE II
AVERAGE STANDARD DEVIATIONS FROM THE MEAN FREQUENCY IN A BIN (MEAN EQUALS 100), BASED ON 30 RUNS, WITH STANDARD DEVIATIONS

SHOWN IN BRACKETS.

Dimension Number of
points in sample

Number of
bins

Average standard deviations from the mean of 100

Uniform random sample Simple random walk Progressive random walk

1 10,000 100 10.21 (±0.55) 20.02 (±4.34) 9.59 (±0.69)
2 19,600 196 (142) 10.03 (±0.64) 24.75 (±2.48) 12.75 (±2.33)
3 34,300 343 (73) 10.06 (±0.40) 26.36 (±1.88) 16.47 (±2.57)
4 62,500 625 (54) 9.93 (±0.27) 26.56 (±1.35) 18.34 (±1.59)
6 72,900 729 (36) 10.07 (±0.25) 31.07 (±1.47) 23.86 (±1.17)
10 102,400 1024 (210) 9.98 (±0.26) 33.61 (±0.89) 19.67 (±0.62)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 5 15 30

M
a
c
ro

 r
u
g
g
e
d
n
e
s
s

Problem dimension

Ackley
Griewank

Quadric
Rastrigin
Salomon

Schwefel 2.26
Spherical

Step

Fig. 5. Estimate of macro ruggedness for a number of benchmark functions in different dimensions. Values are means over 30 independent runs with standard
deviations indicated as error bars.

[7] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “Landscape characteri-
zation of numerical optimization problems using biased scattered data,”
in IEEE Congress on Evolutionary Computation, June 2012, pp. 1–8.

[8] K. Smith-Miles and L. Lopes, “Measuring instance difficulty for com-
binatorial optimization problems,” Computers & Operations Research,
vol. 39, no. 5, pp. 875 – 889, 2012.

[9] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, “Algorithm
selection based on exploratory landscape analysis and cost-sensitive
learning,” in Proceedings of the Fourteenth International Genetic and

Evolutionary Computation Conference, 2012, pp. 313–320.

[10] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “A meta-learning
prediction model of algorithm performance for continuous optimization
problems,” in Proceedings of the 12th International Conference on

Parallel Problem Solving from Nature – Part I, 2012, pp. 226–235.

[11] K. Smith-Miles, “Towards insightful algorithm selection for optimisa-
tion using meta-learning concepts,” in Proceedings of the IEEE Joint

Conference on Neural Networks, 2008, pp. 4118–4124.

[12] K. M. Malan and A. P. Engelbrecht, “A survey of techniques for
characterising fitness landscapes and some possible ways forward,”
Information Sciences, vol. 241, pp. 148–163, 2013.

[13] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure of
Problem Difficulty for Genetic Algorithms,” in Proceedings of the Sixth

International Conference on Genetic Algorithms, 1995, pp. 184–192.

[14] H. Rosé, W. Ebeling, and T. Asselmeyer, “The Density of States - a
Measure of the Difficulty of Optimisation Problems,” in Proceedings

of the 4th International Conference on Parallel Problem Solving from

Nature. London, UK: Springer-Verlag, 1996, pp. 208–217.

[15] M. Lunacek and D. Whitley, “The dispersion metric and the CMA
evolution strategy,” in Proceedings of the 8th Annual Genetic and

Evolutionary Computation Conference, 2006, pp. 477–484.

[16] E. Weinberger, “Correlated and Uncorrelated Fitness Landscapes and
How to Tell the Difference,” Biological Cybernetics, vol. 63, no. 5, pp.
325–336, September 1990.

[17] M. Lipsitch, “Adaptation on rugged landscapes generated by iterated
local interactions of neighboring genes,” in Proceedings of the 4th

International Conference on Genetic Algorithms, R. K. Belew and L. B.
Booker, Eds., 1991, pp. 128–135.

[18] V. K. Vassilev, T. C. Fogarty, and J. F. Miller, “Smoothness, Ruggedness
and Neutrality of Fitness Landscapes: from Theory to Application,”
in Advances in Evolutionary Computing: Theory and Applications.
Springer-Verlag New York, Inc., 2003, pp. 3–44.

[19] S. Verel, P. Collard, and M. Clergue, “Where are bottlenecks in NK fit-
ness landscapes?” in Proceedings of the 2003 Congress on Evolutionary

Computation, vol. 1, 2003, pp. 273–280.

[20] L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, and S. Verel,
“Fitness Clouds and Problem Hardness in Genetic Programming,” in
Proceedings of Genetic and Evolutionary Computation Conference, ser.
Lecture Notes in Computer Science, K. Deb, Ed. Springer Berlin
Heidelberg, 2004, vol. 3103, pp. 690–701.

[21] G. Lu, J. Li, and X. Yao, “Fitness-Probability Cloud and a Measure

2513

of Problem Hardness for Evolutionary Algorithms,” in Evolutionary

Computation in Combinatorial Optimization, ser. Lecture Notes in
Computer Science, vol. 6622. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 108–117.

[22] K. M. Malan and A. P. Engelbrecht, “Ruggedness, Funnels and Gra-
dients in Fitness Landscapes and the Effect on PSO Performance,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2013,
pp. 963–970.

[23] ——, “Steep Gradients as a Predictor of PSO Failure,” in Proceedings

of the Fifteenth International Conference on Genetic and Evolutionary

Computation Conference, Companion, 2013, pp. 9–10.

[24] K. Pearson, “The problem of the random walk,” Nature, vol. 72, p. 294,
1905.

[25] C. Tojo and P. Argyrakis, “Correlated random walk in continuous space,”
Physical Review E, vol. 54, no. 1, pp. 58–63, 1996.

[26] S.-Y. Huang, X.-W. Zou, and Z.-Z. Jin, “Directed random walks in
continuous space,” Physical Review E, vol. 65, no. 5, p. 052105, 2002.

[27] S. Kauffman and S. Levin, “Towards a General Theory of Adaptive
Walks on Rugged Landscapes,” Journal of Theoretical Biology, vol. 128,
no. 1, pp. 11–45, September 1987.

[28] B. Manderick, M. K. de Weger, and P. Spiessens, “The Genetic Algo-
rithm and the Structure of the Fitness Landscape,” in Proceedings of the

Fourth International Conference on Genetic Algorithms, R. K. Belew
and L. B. Booker, Eds., 1991, pp. 143–150.

[29] V. K. Vassilev, T. C. Fogarty, and J. F. Miller, “Information Characteris-
tics and the Structure of Landscapes,” Evolutionary Computation, vol. 8,
no. 1, pp. 31–60, 2000.

[30] K. M. Malan and A. P. Engelbrecht, “Quantifying Ruggedness of
Continuous Landscapes using Entropy,” in Proceedings of the IEEE

Congress on Evolutionary Computation, 2009, pp. 1440–1447.

[31] C. M. Reidys and P. F. Stadler, “Neutrality in fitness landscapes,” Applied

Mathematics and Computation, vol. 117, no. 2-3, pp. 321–350, 2001.

[32] R. Morgan and M. Gallagher, “Length scale for characterising contin-
uous optimization problems,” in Proceedings of the 12th International

Conference on Parallel Problem Solving from Nature – Part I, 2012, pp.
407–416.

[33] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken,
New Jersey: John Wiley & Sons, Inc., 2009.

[34] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization,” Nanyang
Technological University, Singapore, Tech. Rep., May 2005.

APPENDIX A

SIMPLE RANDOM WALK ALGORITHM

1: Let p be the problem on which to base the walk, which

encapsulates the number of dimensions, n, and domain

for each dimension [xmin
1 , xmax

1], . . . , [xmin
n , xmax

n]
2: Let numSteps specify the number of steps in the walk

3: Let stepSize specify the bound on the step size for each

dimension

4: Create an array of n-dimensional vectors for storing the

walk (called walk) of size numSteps+ 1
5: for all dimension i of n do

6: Generate a random number r in the range [xmin
i , xmax

i)
7: Set walk[0]i to r

8: end for

9: for all step s from 1 to numSteps do

10: for all dimension i in n do

11: repeat

12: Generate a random number, r, in the range

[−stepSize,+stepSize)
13: until walk[s− 1]i + r is in bounds of search space

14: Set walk[s]i = walk[s− 1]i + r

15: end for

16: end for

APPENDIX B

PROGRESSIVE RANDOM WALK ALGORITHM

1: Let p be the problem on which to base the walk, which

encapsulates the number of dimensions, n, and domain

for each dimension [xmin
1 , xmax

1], . . . , [xmin
n , xmax

n]
2: Let numSteps specify the number of steps in the walk

and stepSize the bound on the step size for each dimen-

sion

3: Let startingZone be a binay array of size n (a bit for

each dimension) specifying the starting zone of the walk

and how the walk should progress

4: Create an array of n-dimensional vectors for storing the

walk (called walk) of size numSteps+ 1
5: for all dimension i of n do

6: Generate a random number r in the range

[0,
xmax

i
−xmin

i

2)
7: if startingZonei equals 1 then

8: set walk[0]i to xmax
i − r

9: else

10: set walk[0]i to xmin
i + r

11: end if

12: end for

13: Generate a random dimension, rD, in range [0, . . . , n]
14: if startingZonei equals 1 then

15: set walk[0]rD to xmax
i

16: else

17: set walk[0]rD to xmin
i

18: end if

19: for all step s from 1 to numSteps do

20: for all dimension i in n do

21: Generate a random number, r in the range

[0, stepSize)
22: if startingZonei equals 1 then

23: set r to −r

24: end if

25: Set walk[s]i = walk[s− 1]i + r

26: if walk[s]i is out of bounds then

27: set walk[s]i to mirrored position inside boundary

28: Flip bit startingZonei
29: end if

30: end for

31: end for

2514

