
 
 

 

  

Abstract— This paper details a cultural algorithm (CA) 
system designed to assist archaeological expedition teams in the 
task of finding historic artifacts. In our system, the goals that the 
agents are trying to achieve continuously change as the 
environment changes. We are thus able to simulate the 
real-world challenge of a dynamic environment that human 
cultures must deal with and react to, making our system a very 
useful tool for finding the archaeological remains of such 
cultures. Although it is very new, our system has already had 
yielded promising results in the service of Dr. John O'Shea's 
Lake Huron expedition team which is studying the prehistoric 
Alpena-Amberley Land Bridge. We hope to use it to assist other 
expeditions as well in the near future. 

 
Index Terms—Anthropology, Archaeology, Artificial 

Intelligence, Cultural Algorithms, Huron. 

I. INTRODUCTION 
HE Alpena-Amberley Ridge, an underwater feature 
currently submerged under Lake Huron, was actually a dry 
land corridor during a portion of the Early Holocene which 

spanned the lake and linked what is now Alpena, Michigan, 
USA to what is now Amberley, Ontario, Canada. In 2008, Dr. 
John O'Shea of the University of Michigan hypothesized that 
when the Ridge was a dry land corridor, it may have provided 
a dry path for migration of caribou and other animals across 
Lake Huron and thus a hunting ground for Paleoindian 
hunter-gatherers. To test his hypothesis, Dr. O'Shea collected 
underwater samples and data from portions of the Ridge using 
sonar and underwater autonomous vehicles. He found what 
appeared to be manmade hunting paraphernalia such as 
hunting blinds and caribou drive lanes [1]. This find was met 
with interest from the research community, including the 
Artificial Intelligence community. This paper details a system 
that was originally designed to aid Dr. O'Shea's expedition 
team in finding other lost artifacts in the Alpena-Amberley 
Ridge region, but can also be used to find artifacts in other 
environments for the benefit of other archaeological projects. 
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Fig. 1.  The "Dragon Blind", an Interesting Structure Found by Dr. O'Shea's 
Initial Expedition to the Alpena-Amberley Ridge in 2008 [1] 

 Given data describing the rate of change of various factors 
within an environment, our system provides automatic design 
of the changed environment for all desired intervals within a 
given time period. This allows researchers to design and 
perform experiments where environmental change is a crucial 
factor without having to manually redesign the environment 
whenever it changes. Additionally, many helpful tools and 
functionalities for designing and implementing experiments 
are provided. 
 When the program is started, the system first generates a 
3D simulation world and a 2D hashmap of that world from 
raw text files containing height information. To provide data 
for the specific system within the program which is the 
central focus of this paper, the user also has the option of 
including text files containing time series data for 
environmental variables. For all such variables included, the 
system automatically fills all gaps in their time series data 
through linear interpolation until there is one value for each 
year in the period spanned by the series. For the purposes of 
the main experiments discussed in this paper we have 
included only a water level environmental variable (although 
in some other experiments done in the past we also included a 
temperature variable as well). 

The system has two basic modes: The standard mode and 
the CA-loaded hunting blind finder mode. The first mode 
allows the user to enter any year and have the system 
automatically modify the program's 3D simulation world and 
2D hashmap so that it accurately represents the historic 
environment during that year based on the time series data 
provided. Additionally, it is very easy to run experiments 
within these 3D historic simulation worlds. For instance, a 
herd of caribou may be generated and made to migrate from a 
given start point to a given end point. (To find their way from 
start to end, the caribou  use an AI path planning algorithm in 
which each square is weighted according to various factors 
such as distance to the end point and vegetation value. 
Finally, if the user so chooses, instead of calling up a 
particular year they can engage the "fast-forward" and 
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Fig. 2. Our System in Action 

II. OBJECTIVES AND HISTORICAL O

A. Bottlenecks 
In order to set up our experiment

Alpena-Amberley Ridge, the first obvious q
be answered is during what period of tim
crossable? To answer this question, we noti
has two low-lying points that serve as bottle
the northwest and the second in the southeast
of these, shown on the map in Figure 1 
covered with water, the Ridge is not a Land B
two peninsulas with a strait between them. (

fluid cinematic 
. 
er, is a CA which 
ated years, it plots 

ng to the locations 
simulated hunters 
d of caribou and 
dscape, choosing 
the start and end 

bou have reached 
on various factors, 
ent of the blinds in 
es a screenshot of 
ent and saves it to 

he last simulation 
s can be used as 
nvironment itself, 
ng blind usage. 
ng the percentage 
was in use versus 

er's most valuable 
hat the more often 
ely archaeologists 
her paraphernalia 

peartips or spear 
nting blind, or a 
n built by hunters 
ic area. Hence, 
conjunction with 

heir expeditions.  

 

OVERVIEW 

t regarding the 
question that must 

me was it actually 
ice that the Ridge 
enecks, the first in 
t. When the lower 
as “α”, becomes 

Bridge, but at best 
(α is about 57.5m 

below today’s Lake Huron level, a
today’s sea level.) When the other b
map as “β”, becomes covered with w
two peninsulas with one island in 
island separated from the peninsulas 
52.5m below current Lake Huron l
above current sea level.) Now, when
water it is arguable that caribou cou
continue the migration across to th
when β becomes covered with wate
that swimming α 's gap plus β's 
daunting a task for any caribou herd, 
have to give up on using the Alpen
migration corridor at that time, prov
for our experiment. Likewise, this re
with a start date for our experiment, 
begin using the Alpena-Amberley R
levels of the Algonquin period r
bottleneck points.  

 

Fig. 3.  NOAA Bathymetry Map of the Lake 
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Fig. 4.  Prehistoric Great Lakes Water Levels According to [3] 

C. Hunting Blinds 
Hunting blinds of the type Dr. O'Shea's team has found on 

the Alpena-Amberley Ridge are semi-permanent or 
permanent structures made of several large stones whose 
most obvious purpose was to keep animals from seeing the 
hunters so that the animals would unwittingly wander into 
spear or atlatl range where they could be killed. However, it is 
curious that the hunters chose stone rather than lighter 
materials such as wood or large mounds of dirt to build these 
blinds. It is quite possible that some of the hunters did use 
these materials on some occasions, but only the stone blinds 
have survived millennia of being underwater. Still, it is 
undeniable that some hunters chose to use large stones in lieu 
of lighter materials [1] [5]. A probable reason is that a blind 
built of wood or dirt would be washed away by a good-sized 
flash flood. Today, flash floods are a relatively common 
occurrence in certain parts of Michigan which are adjacent to 
the various large lakes. In addition to this, meltwater pulses at 
various stages of the collapse of the ice sheet may have been 
yet another source of flash floods back in the prehistoric era. 
Since the Alpena-Amberley Land Bridge has never been very 
high above lake level, even when lake level was at its lowest, 
there is no doubt that it experienced many flash floods which 
would destroy the temporary blinds made of dirt or wood. 
Permanent stone blinds would thus seem to be reserved for 
the most important locations and those that have proven 
themselves very productive over many years. 

III. CULTURAL ALGORITHMS AND SYSTEM DESIGN 
It is rare to find anything manmade as old as the prehistoric 

hunting blind and caribou drive lane remnants discovered by 
O'Shea's team. The research community is lucky to have 
found these few scattered remnants, yet they are not 
numerous enough for us to directly create a straightforward 
model of prehistoric hunting blind placement from their 
locations alone. We must thus do the next best thing, which is 
to use AI to simulate the hunters' human intelligence and thus 
their ability to decide where and when to place the blinds. 

Given that humans are tribal creatures with the ability not 
just to individually acquire but to share knowledge among 
groups, this situation calls for a technique that reflects not just 

an individual but a tribal ability to accumulate knowledge and 
store it for use in future situations. In the 1970s [6], such a 
technique was developed by Dr. Robert G. Reynolds called 
cultural algorithms. In creating CAs, Dr. Reynolds drew an 
analogy between group learning, the process of Darwinian 
natural selection in biology, and the tendency of group 
knowledge acquired in the past to influence current decisions 
by individual members of groups [7]. 

A. Structure and General Algorithm 
 CAs contain a population space which is influenced by a 
belief space. Population space is defined as a set of solutions 
to the problem which have the ability to evolve from 
generation to generation. The belief space can be defined as 
the collected set of experiential knowledge, which has the 
ability to be influenced by individuals within the population 
space according to their varying degrees of success, and 
which has the ability to influence subsequent generations of 
individuals within the population space. 
 The following is a general statement of a generic CA: 
 1. The population space and belief space are initialized. 
 2. Population members are evaluated through a fitness 
function, and the population is ranked. 
 3a. The population members ranked highest are allowed to 
influence the belief space. 
 3b. In some CAs, the population members ranked lowest 
are also allowed  to influence the belief space by providing 
negative information to it about their solutions. 
 4. The best solutions are allowed to reproduce. Operators 
are  applied to at least some of the children which make them 
into mutated variants of their parents. 
 5. The belief space influences the children's genomes 
and/or their behavior in the problem space. 
 6. Steps 2-5 are repeated until a stop condition is reached. 
  

 
Fig. 5.  Visual Schemata of Cultural Algorithms [8] 

B. High-Level Design 
 1.) Overall Simulation: Historically speaking, it is 
suspected that the caribou migrated across the land bridge 
twice per year, once for a fall migration and once for a spring 
migration. However, since we intend to do 16 runs of our 
experiment and our experimental period is 3,450 years long, 
we will take into account only one "representative" migration 
every five years, meaning that each run of our experiment will 
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contain 690 time intervals containing one caribou migration 
each and spanning five years each. We will assume also that 
the hunting blinds are set up once per five year period in 
anticipation of the caribou migration, and that they are not 
moved during the year once they have been set up. As 
described in previous sections, our system has the ability to 
update the terrain based on environmental change over time. 
To simulate the fact that the hunters cannot exactly predict 
how the environment is going to change, for each time 
interval we will first have the hunters choose locations for 
their blinds at the beginning of the interval (using certain 
weights provided by GA chromosomes, to be discussed later). 
Then we will use our system to update the terrain for that 
year, and then the caribou will migrate through. Each blind 
will then be scored by an objective function containing 
several factors which together are a fair determinant of hunt 
success. Each blind will then update the belief space with the 
values of these factors for its specific location (and, reflecting 
the assumption of local knowledge but non-omniscience 
discussed in the last subsection, the belief space will be 
updated with the values of these factors for each square 
within a 3-square Moore neighborhood of the blind as well). 
After this, the chromosomes for each blind will undergo 
various mutation operations which will produce a new batch 
of chromosomes (this procedure biased in favor of the 
chromosomes that produced the best blinds in the generation 
that just finished). Each chromosome will encode a "weight" 
for each important factor in hunting blind placement. The 
value of the weight for a certain factor determines how 
important the hunters controlling that blind consider that 
factor compared to other factors. Actual blind placement is 
determined by looking at each square in the belief space and 
choosing the square with the "best" values for each factor 
based on the weights encoded in the hunting blind's 
chromosome. Once the blinds are placed, yet another time 
interval will begin (as described before), and this process will 
continue until a certain terminal condition is reached. As 
discussed in section II B, 8350 BP is when the land bridge 
becomes two peninsulas separated by a strait due to rising 
water levels and never reconnects again. This seems the most 
logical choice for our terminal year for this experiment. 
 2.) Evaluating Hunting Blind Success and Failure: Now 
we need to consider precisely what factors make a blind 
successful or unsuccessful. One obvious factor is how close 
the blind is to the prey's path. Obviously a hunter throwing his 
weapon at prey that is closeby is much more apt to hit the prey 
than if he were throwing it from farther away.  
 Another factor is the difference between the altitude of the 
blind and that of the caribou. If the blind is higher than the 
caribou, a hunter throwing at the caribou from that blind has 
the advantage that gravity is working for him. In other words, 
a projectile thrown from that spot at the caribou below will 
travel faster (due to gravity) than an equivalent projectile 
thrown at another caribou at the same vertical level as the 
blind. Thus in the first case, the projectile will travel faster 
increasing not only the likelihood of actually hitting a moving 
caribou, but also the damage done to the caribou, and thus the 
likelihood that the caribou will be hit but still get away is 
decreased. Similarly, a hunter trying to hit a caribou above 

him has gravity working against him. Projectiles that he 
throws are more likely to miss, and what hits he makes are 
more likely not to result in killing or at least halting the 
caribou. 
A third factor is closeness to the nearest other hunting blind. 
This is because hunting parties crowded too close together 
tend to interfere (unwittingly) with each other's success in the 
hunt. For example, when one hunting party makes a kill and 
goes to collect their kill, the herd usually reacts either by 
trying to move away, or sometimes even begins to panic. If 
the herd does panic, it is okay for the first hunting party 
because they have already made their kill, and all that is left is 
to haul it in and dress it, and then carry it back home. 
However, the second band, which has yet to make a kill, now 
must deal with a panicked herd or at least one which is wary 
of the spot where their fellow caribou died. This makes it 
much less likely that the second band will have a successful 
hunt. Of course on other days, the second group will make a 
kill first and it will be the first group which will be in the 
disadvantaged position. Overall, both groups will have fewer 
kills on average per year than if they had been spaced farther 
apart. Even worse, overcrowded hunting parties have an 
increased risk of accidentally killing each other while trying 
to kill caribou or other game. Obviously the farther parties are 
spaced apart, the less likelihood there is of a tragic accident. 
 Closeness to water is a factor which, although not directly 
impacting the quality of the blind location, would still impact 
the hunters' decision where to place the blind. Locations close 
to water are more likely to be flooded during the course of the 
year, and an underwater blind is of course useless.  

IV.   IMPLEMENTATION 

A. Algorithm Development 
 To develop our low-level algorithm, we first constructed a 
preliminary version with which we ran several experiments 
on a small subset of Area 1 of the Land Bridge (we call this 
subset the "proof-of-concept area"). We used this setup to 
tune our constants, parameters, and algorithm components 
until we were receiving generally reasonable behavior from 
the algorithm. The main reason for using the proof-of-concept 
area for this task is that we were most wary of the challenge of 
designing a CA that could handle truly dynamic 
environments. Our proof-of-concept area happens to be one 
of the most rapidly changing, dynamic portions of all of Area 
1, much more so than Area 1 taken as a whole. We figured 
that if our algorithm could handle the proof-of-concept area, 
it could handle anything else. Thus the vast majority of our 
algorithm was devised in anticipation of, or during, these 
proof-of-concept experiments, the only exception being a few 
small changes thought of after these experiments concluded. 

B. Pseudocode 
  Here is the pseudocode used in our algorithm for our full 
experiment. 
 
//Initialization Steps 
nCaribou = 99 /*No. of caribou that cross Land Bridge each 
generation is 99.*/ 
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nHuntingBlinds = 50 /*No. of blinds (i.e., population for the 
GA) is 50.*/ 
 
beliefSpace.Initialize() 
/*The belief space is an influence map with a tile 
corresponding to each of the regular map tiles. Each belief 
space tile contains four parameters, each corresponding with 
one of the four factors described in the high-level algorithm 
(closeness to caribou, height above caribou, distance from 
nearest other hunting blind, and closeness to water).*/ 
 
populationSpace.Initialize(numHuntingBlinds) 
/*Initializes each hunting blind's chromosome, setting each 
binary bit within to a random value of 0 or 1. In this CA, each 
blind's chromosome consists of 16 binary bits, which are 
divided into 4 sets of 4 bits each. Each of these sets denotes a 
decimal integer which corresponds to one of the four weights 
that belong to this blind and help to determine its actions in 
response to what it believes about the environment. The four 
weights, in turn, relate to the distance from a given square the 
closest caribou approach, the height of a given square above 
(or below) the closest caribou, the distance from a given 
square to the closest other blind, and the distance from a 
given square to the nearest tile covered by water. (The 
weights themselves and the weight function process are more 
fully discussed in the next subsection, "Weight Function".)*/ 
 
//Main Loop 
/*A logical starting point is 11800 BP, when Land Bridge is 
first traversable, but user can start sim at later points as well 
if desired.*/ 
 
do  
 
HBLocations = Simulation.GetHBLocs(population.genes, 
beliefSpace, WeightFunction) 
/*Determines the locations for the hunting blinds for this 
generation. If this is the first generation, locations are 
random. If not, locations are determined by a weight function 
which takes the hunting blind genes as an argument and is 
applied to each tile in the belief space in order to determine 
what the blind builders think is the most desirable spot for 
building the blind. (This is discussed in further depth in 
subsection C, "Weight Function".) In essence, each blind's 
new location is determined by where it believes the best place 
is according to what properties it values (which is encoded by  
its weights) and what all blinds collectively believe about the 
environment (which is encoded  in the belief space). 
 
Also, any two hunting blinds must have at least one empty 
square between them. This measure was implemented to 
prevent the severe clumping that we saw during some of the 
earlier generation of our proof of concept run, where large 
numbers of blinds would form a solid "block" around a 
desirable area. Although a severe score penalty for being too 
close to another blind did eventually convince them not to 
clump directly adjacent to one another anymore, the fact still 
is that such close clumping would never occur in real life, 
which is why it is being completely disallowed for the main 

experiment. Note that all other aspects of the regular 
"closeness" penalty still apply, a blind that is only just a few 
(but more than one) squares away from another, although 
this is still allowed, still receives a hefty penalty for being too 
close to another blind, and the blinds eventually figure out 
that they must keep a reasonably healthy distance between 
themselves.*/ 
 
Simulation.PlaceHuntingBlinds(population, 
HBLocations) 
/*The AI hunting teams place their hunting blinds in the 
locations determined by the previous function. It should be 
noted that our model does not include an  explicit cost for 
constructing the blinds within the locations, however for each 
generation, each AI team cannot build any more than their 
one hunting blind built during this step. */ 
 
Simulation.Run() 
 
population.FitnessFunction() 
/*Computes a score for each blind based on each of the 3 
important factors that determine success or failure described 
in the high-level design: distance to caribou, height above (or 
below) caribou and closeness to the nearest other hunting 
blind. Any underwater blind, however, automatically receives 
a score of negative infinity representing its uselessness 
despite all other factors. (Here, high scores are considered 
good, while low scores are considered bad.) This function is 
discussed in further detail in subsection D.*/ 
 
population.SortByFitness() 
 
beliefSpace.Update()  
/*Updates belief space tile parameters with the hunting blind 
score parameters (plus closeness to water) for the tiles  
containing the blinds, plus all tiles within a Moore 
neighborhood of radius 3 of the blinds (representing the 
hunters' ability to speculate about what might have happened 
had they chosen a slightly different location for their blind*/  
 
beliefSpace.Forget() 
/*Belief space tiles are "forgotten" (eliminated) if they 
haven't been updated for 10 generations (because they 
haven't been within a Moore neighborhood of radius 3 of a 
hunting blind-occupied square for that length of time). This 
penalizes "irrelevant" belief space squares by kicking them 
out of the belief space so that the corresponding map squares 
cannot be chosen for hunting blind placement anymore. This 
prevents individuals from becoming confused by very "stale" 
squares  with obsolete beliefs and biases the hunting blind 
location selection process toward areas containing locations 
which have been successful in the recent past. */ 
 
population.genes.Copy(exemplars) 
/*The four chromosomes yielding the belief weights that 
placed their respective hunting blinds in the four most 
advantageous locations  serve as exemplars for the rest of the 
population. Out of the remainder of the chromosomes: 40% 
become copies of the 1st best blind's chromosome, 30% 
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become copies of the 2nd best blind's chromosome, 20% 
become copies of the 3rd best blind's chromosome, and 10% 
become copies of the 4th best blind's chromosome.*/ 
 
population.genes.Mutate() 
/*All chromosomes who are not one of the exemplars must 
now undergo a single point mutation. */ 
 
population.genes.Crossover() 
/*Each chromosome is divided into two parts with a random 
point as the pivot. Each new chromosome is created by a 
random bottom part joining with a random top part. Every 
chromosome is subject to crossover except for the 
best-scoring exemplar, which goes into the next generation 
completely unaltered. It will be retained as exemplar 
(situational) knowledge for the next generation as well unless 
it is bested by another individual*/ 
 
year = year + 1 
generationNum = generationNum +1 
map.Update() //Updates the water level and the rest of the 
environment for the next year. 
until(end sim)  
/*A logical end point is 8350 BP, when Land Bridge is 
permanently split by relentless water rise, but user can end 
sim at earlier points as well if desired.*/ 
 
//End of Pseudocode 

C. Weight Function 
For each new generation, each hunting blind is placed 

within the tile containing the highest value of the "weight 
function", which is applied to each "known" tile in the belief 
space. The value of the weight function W at belief-space tile 
T is calculated as follows: 
W(T) = W1B1 - W2B2 - W3B3 - Log10(W4B4) | (W1, W2, W3, W4 ≥ 0)
 (1) 
 

In the weight function, B1, B2, B3, and B4  are T's value for 
the hunting blind's distance to the closest caribou approach, 
the blind's height above (or below) the closest caribou 
approach, the distance to the closest other blind, and the 
distance to the closest underwater point, respectively. 
Recalling our high-level design, we can see how the weight 
function is crafted so that a tile is deemed less desirable if it is 
far from the closest caribou, but more desirable if it has a high 
vantage point above the closest caribou, is far from the 
nearest other blind, and/or is far from water. Exactly how 
much more or less desirable is determined by W1 through W4, 
which are the weights for each of the B's, respectively. Their 
values are determined by the hunting blind's chromosomes. It 
is through these four W-values that the chromosomes 
determine how important the blind's builders consider each of 
the key factors, which together with their beliefs about the 
values of each key factor (represented by the B-values), 
ultimately determines the choice of blind construction 
location for the given generation. 

Notice how the fourth term of the weight function, the 
"water fear" factor, is logarithmic. This is because if a hunting 

blind is already very close to water, the risk of being 
swamped by rising water is much greater than if the blind is 
quite far away. In other words, the net benefit of moving, say, 
50 feet away from rising water when one is currently only 10 
feet away from the water is much greater than moving 50 feet 
away when one is already miles away. In the former case, the 
benefit is crucial, in the latter, nugatory. 

D. Fitness Function 
The fitness score of a hunting blind H for the round is 

computed by the following fitness function: 
F(H) = -C1A1 + C2A2 + C3A3 (if H is above water), OR 
F(H) = -∞ (if H is underwater) (2) 
 

Here, A1 is the distance between H and the closest caribou 
approach point, A2 is H's height above (or below) the closest 
caribou approach point, and A3 is H's distance from the 
nearest hunting blind. Recalling the high-level design, each of 
these A's represents one of the crucial factors which 
determine the success or failure of a hunting party using a 
particular blind. C1, C2, and C3 are constants which reflect 
how important each of the three factors are compared to one 
another (1). The objective is to maximize F(H); the highest 
scores are considered the best whereas the lowest are 
considered the worst. The genes of the highest-scoring blinds 
are  favored in the reproduction process for creating the next 
generation, while those of the lowest-scoring blinds are 
punished by being kept out of the reproduction process. 

V. EXPERIMENTAL FRAMEWORK AND RESULTS 
 In April 2012, we provided 400 component maps which 

together comprise an entire map of Area 1 of the 
Alpena-Amberley Ridge, the portion currently under the most 
intense archaeological study. Each of these component maps 
has 999,995 data points in it (giving a total of 399,998,000 
points in all). We created these using a tool from NOAA 
which generates maps of the region's bathymetry (defined as 
the “’submarine topography,’ or the depths and shapes of 
underwater terrain” [9]), and then interpolating in even more 
points. However, in our experiment, for the purpose of 
reducing memory usage and computation time, we are 
condensing all the map points into a 200 x 200 grid (40,000 
points in total). In the diagram below, the larger rectangle is 
Area 1, the location for our experiment. 

 

 
Fig. 6.  Map of the Alpena-Amberley Ridge Region [1] 
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A. Purpose 
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considers "by far the most complex hunting 
on the Alpena-Amberley Ridge to date." [5]
 1) 11800 BP: The Alpena-Amberley Ridg
crossable corridor. Since this is the first gen
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Fig. 7.  11800 BP 

 2) 11750 BP: Our algorithm learns very q
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blinds tightly track the caribou trail. Howev
learned to keep the blinds at a healthy di
another, and hence many of the blinds are s
points from being too close to one another. 

over all of Area 1 
ts purpose was to 
ons most likely to 
within Area 1. Dr. 
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quickly. After just 
have the hunting 
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istance from one 

still losing a lot of 

Fig. 8.  11750 BP 

3.) 11230 BP: This is the midd
Lowstand period, the time when the 
land bridge is widest, and the best s
hunters. It is during this period tha
found the Funnel Drive Structure an
most likely to have been used by the
 

Fig. 9.  11230 BP 

 4) 9400 BP: This frame show
Mid-Late Stanley, when lake lev
caribou path is now significantly far
Drive Structure's location, so the A
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water level is lowest, the 
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nd other similar spots are 
e prehistoric hunters. 

 

ws typical behavior for 
els are very high. The 
r southwest of the Funnel 
AI blinds now no longer 
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have incentive to go near it again. A new de
emerges on a hill overlooking the last part of
 

Fig. 10.  9400 BP 

C. Heatmap 
 To further explore our results, we made a 
the locations most often used by our AI hun
 

Fig. 11.  Full Experiment Heatmap: Avg Hits for Each 
vs. 690 Generations (3,450 yrs) 

esirable spots now 
f the caribou path. 

 

heatmap showing 
nting teams. 

Square Over 16 Runs 

Fig. 12.  Heatmap Quadrant 1 

 
 Interestingly, our heatmap analy
containing the Funnel Drive Struc
frequently used location on average
runs out of the 40,000 locations
representing Area 1. 
 Dr. O'Shea was very intrigued b
mentioned that he was especially int
our locations which he had not searc
expedition season (in the summer of
that location and found a very large
named the New Crossing Line. He 
chance that this was a caribou "driv
caribou toward where the hunters lay

D. Learning Curve 
 For convenience, we now provide
algorithm.  
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Orange 

5%-10% 
3%-5% 

Yellow 2%-3% 
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ched yet. During his next 
f 2013), he made a stop to 
e line structure which he 
believes there is a good 

ve lane" meant to funnel 
y in wait for them. 

e a learning curve for our 

TMAP KEY 
mber of Generations that this 
Hunting Blind as a Percent of 

or 3,450 Years (i.e., the 
ation Period). 

el Drive Structure found. 
ducing bias, we used neither 

d location as an aid in our 
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d our model, including all 
d in this experiment, for 
valuation and validation.) 
Crossing Line discovered. 
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Fig. 13.  Learning Curve for Our Algorithm (10-Generation Moving Avg. of 
Highest-Scoring Hunting Blind Score vs. Year) 

The CA learning curve seen here is unlike most other CA 
learning curves, however there are important reasons for that, 
the biggest being that our objectives are not static. Caribou 
paths, and most importantly water levels, are subject to 
sudden and unpredictable change. What had been a great 
hunting spot for a few or even many generations may not be 
so good, or may be completely unavailable, the next 
generation. Also, the four major catastrophic water rises 
which befall the land bridge are major hampers on learning 
because they create significant periods in which the caribou 
do not even attempt to cross the land bridge, creating a major 
disruption for the hunters. Nevertheless, we can see that the 
algorithm is indeed learning. Notice how the 10-generation 
moving average reaches its overall peak during Mid Stanley, 
even though the water level is lower (and hence more hunting 
spots are available) during Early Stanley. Notice how even 
the Late Stanley peak for the 10-generation moving average is 
higher than for the Early Stanley period, even though the 
water level is significantly higher in Late Stanley than Early 
Stanley. It is only during Mid-Late Stanley, when the water 
level is extremely high and there are many fewer good 
hunting spots available than in the other periods, that the peak 
fails to exceed that of the Early Stanley period. 

VI. INTELLIGENT CARIBOU 
Despite the success of our algorithm's ability to predict 

hunting blind locations, Dr. O’Shea was able to identify some  
locations bearing artifacts that were not among the most 
highly recommended positions by this system. He suggested 
that accounting for multiple paths to the south and west of the 
original experiments could solve this problem. 

While work on the hunting blind prediction algorithm was 
taking place, another researcher with the Land Bridge Group, 
Jin Jin, was developing a CA based path planning algorithm 
for the caribou herds [5]. 

We took O’Shea’s advice and adjusted the simulation to 
allow for multiple simultaneous paths. Also, in order to make 
our model's caribou paths more accurate, we also replaced our 
AI caribou (which contain the A* path-planning algorithm) 
with Jin's AI caribou (which contain his CA path-planning 
algorithm) [5]. Also, because Dr. O'Shea's expedition team 
was especially interested in artifacts the period of 9398 BCE 
to 9237 BCE, we also decided to perform our new batch of 
experiments using that year range, Because the interval is 
much smaller we made our time step to be 1 year instead of 5. 
These experiments required more processing power because 
it was running two CA’s and, for the same reasons mentioned 

in section V, the data had to be scaled down even further so 
that the map contained 80 X 80 data points, 6400 total. 

We ran preliminary experiments, and immediately saw 
interesting results. The three caribou herds achieved a 
confluence in their migration pattern as seen in figure 12. We 
also saw a large concentration of predicted locations in this 
confluence area. These results were presented to Dr. O’Shea 
who was then able to discover artifacts and debitage in this 
area of confluence. 

 

 
Fig. 14.  Hunting Blind Simulation using CA Path Planning for Caribou Herd 
Migration. 

 For convenience, we also provide a heatmap displaying the 
overall results of our experiment. 
 

 
Fig. 15.  Heatmap for Hunting Blind Simulation using CA Path Planning for 
Caribou Herd Migration. 
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Fig. 16.  Heatmap Key for Hunting Blind Simulation using CA Path Planning 
for Caribou Herd Migration. 

 Our heatmap in Figure 15 seems somewhat sparse, likely 
because in the region before the herd paths converged, the 
hunting blinds were dividing themselves amongst the three 
separate herds in order to hunt all of them (as was proper). 
Nonetheless, there is a key overall pattern here. In order to 
better display it, we have created a 40x40 heatmap by 
consolidating the locations in Figure 15. 
 

Fig. 17.  Heatmap for Hunting Blind Simulation using CA Path Planning for 
Caribou Herd Migration. 

 Here one can easily see the distinctive arc pattern created 
by blinds trying to track the caribou herds as they enter from 
various points in the west, converge toward a narrow 
confluence region, and then exit Area 1 by heading south. 
Looking at these results, the narrowest part of the confluence 
point would seem the next logical place for archaeologists to 
explore. 

VII. CONCLUSION 
 Again, our core method is by no means limited to just 
prehistoric hunting blinds and other objects directly related to 
them such as caribou drive lanes and spear debitage. Given a 
set of rules about where any type of artifact can generally be 

found with respect to various conditions and features within 
its environment, our CA system can incorporate those rules, 
our time engine can simulate the changing environment 
during the relevant period, and heatmaps of object locations 
over the time period according to the simulation can be 
produced, just as was the case in the hunting blind experiment 
featured in this paper. The next step in our research will be to 
run our system over the entire Alpena-Amberley Land Bridge 
in order to produce a heatmaps encompassing the entire land 
bridge that archaeologists can use to decide which areas they 
should spend their time in searching for hunting blinds and 
other related artifacts, and which to ignore. 
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