
Experiments in Program Synthesis with
Grammatical Evolution: A Focus on Integer Sorting

Michael O’Neill, Miguel Nicolau, Alexandros Agapitos
UCD Complex & Adaptive Systems Laboratory

Natural Computing Research & Applications Group
University College Dublin

Ireland
Email: m.oneill@ucd.ie, miguel.nicolau@ucd.ie, alexagapitos@gmail.com

Abstract—We present the results of a series of investigations
where we apply a form of grammar-based genetic programming
to the problem of program synthesis in an attempt to evolve an
Integer Sorting algorithm. The results confirm earlier research in
the field on the difficulty of the problem given a primitive set of
functions and terminals. The inclusion of a swap(i,j) function
in combination with a nested for loop in the grammar enabled
a successful solution to be found in every run. We suggest some
future research directions to overcome the challenge of evolving
sorting algorithms from primitive functions and terminals.

I. INTRODUCTION

The application of GP to program synthesis has been under-
explored by the community [1], and remains a significant open
issue with many unanswered questions to be addressed [2].
This paper addresses this important research gap by applying
a grammar-based form of Genetic Programming, Grammatical
Evolution [3], [4], to the problem of synthesising a program
to solve an integer sorting problem.

The remainder of the paper contains a summary of the
relevant literature and background on program synthesis with
GP in Section II. A description of the experimental setup and
results in Sections IV and V respectively, and finally closing
with Conclusions and possible directions for Future Work in
Section VI.

II. SORTING PROGRAM SYNTHESIS WITH GP
A literature review on sorting algorithm evolution revealed

a limited repertoire of attempts in this problem domain. Most
evolved algorithms were limited in the class of O(n2) such that
bubble sort and insertion sort being evolved. Notable exception
is the work of Agapitos et al. [5] that managed to evolve an
O(nlog(n)) recursive sorting algorithm.

Kinnear [6], [7] evolved general iterative sorting algorithms,
mainly of bubble sort’s simplicity. He investigated the rel-
ative probability of success and the difficulty resulting from
varying the primitive terminal and non-terminal elements. The
primitive alphabet contained elements that could result in an
exchange-oriented sorting strategy. Two primitive elements
were used: len stored the length of the sequence to be
sorted and index used as an iterator variable within the
iteration control structure. Primitive functions were defined for
swapping adjacent sequence elements, comparing elements on
specified indices, comparing element values, incrementing and

decrementing arithmetic variables. Control functions contained
conditionals and a bounded iteration construct that extended
the work reported in [8]. The fitness function followed the
adjusted and normalized fitness discussed in [8] and was
based on the number of inversions, a measure of sequence
disorder [9]. This disorder was calculated before and after
the evaluation of the evolved algorithm and the fitness was
based on the post-execution remaining disorder. The fitness
measure added a linear parsimony function to discourage the
individuals’ increasing size as well as a disorder penalty, in
the case where the remaining disorder was greater than the
initial disorder. During experimentation, Kinnear discovered a
relation between program size and generality; adding inverse
size to the fitness measure along with the quantification of
its proximity to the target program, not only results in more
parsimonious solutions, but also improves their generalization
to unseen data. The sorting problem has then been used as
a test-bed to evaluate several EA’s control parameters and
variation operators.

O’Reilly and Oppacher [10], [11] also investigated ways of
evolving iterative sorting algorithms. Their first attempt [10]
failed to produce a 100% correct individual. The primitive
constructs and fitness functions used were different than
those used in Kinnear’s experiments. Specifically, primitive
functions and control structures included decrementing a vari-
able, accessing indexed sequence elements, swapping adjacent
sequence elements, bounded looping, and conditional. The
fitness function counted the number of out-of-place elements.
Their second attempt [11] yielded a successful outcome.
It considered different primitive constructs and two fitness
functions; the first was used in [10] and the second was based
on permutation order [9], the count of each element of the
sequence of the smaller elements that follow it. The primitive
setup used the same bounded iteration and element swapping
constructs, and added two functions: First-Wrong and
Next-Lowest that return the index of the first element that
is out of order and the index of the smallest element after a
particular indexed position, respectively.

Abbott [12], [13] used an Object Oriented Genetic Pro-
gramming system to generate an insertion sort of quadratic
complexity. He defined a List class of Integer object as
a subclass of Java’s ArrayList class. His system operated

1504

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

in a bigger program space by providing all methods declared
in ArrayList as primitives for constructing hypotheses.
Besides the standard API methods, two additional methods
were declared: iterate() and insertAsc(). The former
dictates the bounded iteration behavior, while the latter inserts
its argument before the first element of the List that is
greater than or equal to the argument. Using this alphabet,
it was quite straightforward for an insertion sort to emerge.
Although the set of primitive functions is sufficiently capable
of expressing both an exchange- and insertion-oriented sorting
recipe, Abbott does not report whether attempts were made to
generate a sort program of bubble sort’s structure.

Another attempt to the evolution of sorting algorithms
is presented in the work of Spector et al [14] with their
PushGP system. They used primitives along the lines of earlier
investigations: swapping and comparing indexed elements,
getting the list length, accessing list elements. The Push3
programming language offers a variety of explicit iteration
instructions but also allows for the evolution of novel control
manipulation structures. They evolved an O(n2) general sort-
ing algorithm and suggested an efficiency component addition
to the fitness function as a precursor to the evolution of
ingenious O(n× log(n)) algorithms, though they reported no
experiments towards that direction.

The most recent attempts to the evolution of recursive
sorting algorithms are presented in the the work of Agapitos
et al. [5], [15]. In [5] they studied the effects of language
primitives and fitness functions on the success of the evo-
lutionary process. For language primitives, these were the
methods of a simple list processing package, plus the higher-
order function filter. Five different fitness functions based
on sequence disorder were evaluated, and the one by the
name of Mean Sorted Position distance was able to evolve
a sorting algorithm whose time complexity was measured
experimentally in terms of the number of method invocations
made, and was best approximated as O(nlog(n)).

In [15] they investigated the evolution of modular recursive
sorting algorithms. They reported the computational effort
required to evolve sorting solutions and provided a comparison
between crossover and mutation variation operators, and also
undirected random search. They found that the evolutionary
algorithm outperformed undirected random search, and that
mutation performed better than crossover. Modular sorting
algorithms of insertion-sort type and complexity (O(n2)) were
evolved.

III. THE INTEGER SORTING PROBLEM INSTANCE

In this study we explore the evolution of Python code to
sort a list of integers from smallest to largest. The training
cases used in this study are the following:

1) x = [1,0,2,3,4,5,6,7,8,9]
2) x = [9,8,7,6,5,4,3,2,1,0,11,10]
3) x = [1,0,3,2,5,4,7,6,9,8,14,11,10,12,13]
4) x = [1,0,9,8,7,6,5,4,3,2,11,10,19,18,17,16,15,14,13,12]
5) x = [0,7,2,3,5,4,6,1]

Note that we use unsorted input lists of variable sizes (length
10,12, 15, 20 and 8 respectively) and use integer values drawn
from the range of zero to the input list length. The output list
is initialised to be the same as the input list for each training
case. To calculate the fitness of the evolved algorithms, for
each training case we count the number of in-order pairs in
the output list and divide this by the number of possible pairs
in the list. Fitness is then the sum of these values subtracted
from the number of test cases (we are minimising fitness). At
the end of the paper we provide Fig. 12, which lists the Python
code used to execute and calculate the fitness of the evolved
programs.

We explore the use of different grammars starting from a
simple primitive set of functions and terminals. Fig. 1 lists the
first grammar examined which encodes a sequence of one or
more for loops. The for loops are limited to iterate over the
length of the input list, and therefore avoiding non-terminating
programs. For those more familiar with languages like C, in
a “non-Python” manner we explicitly declare and use a loop
counter variable i. The set of language primitives is restricted
to {i, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, for, if, +, -, >, <} and the
input list x and output list guess. Statements within a for
loop are restricted to be either assignments or conditionals,
where an assignment statements sets a value of the output list,
and conditionals allow the comparison of values of the input
and output lists to themselves or each other.

In the initial experiments a second grammar is employed
(see Fig. 2) which is the same as the sequence of loops
grammar in Fig. 1 except that it allows the generation of
nested loops. The set of primitives is extended to include a
loop counter variable (j) for the nested loop.

IV. EXPERIMENTAL SETUP

We wish to determine if Grammatical Evolution can evolve
solutions to the integer sorting problem as defined in Sec-
tion III using either the sequence of loops or nested loops
grammars (Fig.s 1 & 2).

One hundred independent runs were performed for each
grammar using a population size of 500 for 100 generations.
The same set of pseudo-random number generator seeds were
employed for each setup. The following is a list of the
other evolutionary parameters and their settings: one-point
crossover probability of 0.9 with crossover forced to occur
in expressed regions of the chromosome, an integer codon
mutation rate of 0.1, tournament selection with a tournament
size population ratio of 0.01, generational replacement with
elitism (using population ratio of 0.1 elites), no wrapping,
sensible initialisation (derivation tree minimum depth of 9 and
maximum depth of 15 and adding a tail to the chromosome
of 0.5 times its length).

V. RESULTS

The left-hand side of Fig. 3 compares the mean best fitness
averaged over one hundred runs for the Loops and Nested
Loops grammars. A t-test at significance level 0.05 shows no

1505

<code> ::= <for>
| <for><code>

<for> ::= "\n"i=0"\n"
for a in x :"\n\t"

<for_a_in_x_line>"\n\t"
i+=1

<for_a_in_x_line> ::= <for_a_in_x_setoutput>
| <for_a_in_x_cond>

<for_a_in_x_setoutput> ::=
guess\[<for_a_in_x_index>\] = <for_a_in_x_inputvar>"\n"

<for_a_in_x_index> ::= i
| ((i <biop> <const>)%TOTAL)

<for_a_in_x_inputvar> ::= x\[<for_a_in_x_index>\]

<for_a_in_x_outputvar> ::= guess\[<for_a_in_x_index>\]

<for_a_in_x_cond> ::=
"\n\t"if <for_a_in_x_expr><relop><for_a_in_x_expr> : <for_a_in_x_setoutput>

<for_a_in_x_expr> ::= <for_a_in_x_inputvar>
| <for_a_in_x_outputvar>

<biop> ::= + | -
<relop> ::= < | >
<const> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

i=0
for a in x :

guess[i] = x[i]
i+=1

i=0
for a in x :

if guess[i+1]>x[i]: guess[i] = x[i]
i+=1

Fig. 1. A grammar for a subset of the Python programming language which encodes a sequence of for loops (left) and an example individual generated by
it (right). In the results of the experiments reported later this grammar is referred to as “Loops”.

<code> ::= <for>
| <for><code>

<for> ::= "\n"i=0"\n"
for a in x :"\n\t"

<for_a_in_x_line>"\n\t"
i+=1

<for_a_in_x_line> ::= <for_a_in_x_setoutput>
| <for_a_in_x_cond>
| <for_b_in_x>

<for_a_in_x_setoutput> ::=
guess\[<for_a_in_x_index>\] = <for_a_in_x_inputvar>"\n"

<for_a_in_x_index> ::= i
| ((i <biop> <const>)%TOTAL)

<for_a_in_x_inputvar> ::= x\[<for_a_in_x_index>\]

<for_a_in_x_outputvar> ::= guess\[<for_a_in_x_index>\]

<for_a_in_x_cond> ::=
"\n\t"if <for_a_in_x_expr><relop><for_a_in_x_expr> :

<for_a_in_x_setoutput>

<for_a_in_x_expr> ::= <for_a_in_x_inputvar>
| <for_a_in_x_outputvar>

<biop> ::= + | -
<relop> ::= < | >
<const> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<for_b_in_x> ::= j=0"\n\t"
for b in x :"\n\t\t"

<for_b_in_x_line>"\n\t\t"
j+=1

<for_b_in_x_line> ::= <for_b_in_x_setoutput> | <for_b_in_x_cond>
<for_b_in_x_setoutput> ::=
guess\[<for_b_in_x_index>\] = <for_b_in_x_inputvar> "\n"

<for_b_in_x_index> ::= i
| ((i <biop> <const>)%TOTAL)
| j
| ((j <biop> <const>)%TOTAL)

<for_b_in_x_inputvar> ::= x\[<for_b_in_x_index>\]
<for_b_in_x_outputvar> ::= guess\[<for_b_in_x_index>\]
<for_b_in_x_cond> ::=
"\n\t\t"if <for_b_in_x_expr><relop><for_b_in_x_expr> :

<for_b_in_x_setoutput>
<for_b_in_x_expr> ::= <for_b_in_x_inputvar>

| <for_b_in_x_outputvar>

i=0
for a in x :

j=0
for b in x :

guess[i] = x[j+1]
j+=1

i+=1

i=0
for a in x :

if guess[i+1]>x[i]: guess[i] = x[i]
i+=1

Fig. 2. As per Fig. 1 this grammar encodes a sequence of for loops with the added possibility that nested loops can occur (left and right) and an example
individual generated by it (bottom right). In the results of the experiments reported later this grammar is referred to as “Nested Loops”.

1506

Fig. 3. Mean best fitness plots (with standard deviations) of the sequential loops and nested loops grammars (left) and their variants using a reduced set of
constants. There is no statistical difference in performance in later generations of the different grammars with the standard set of constants, i.e., 0,..,9, while
with a reduced set of constants, i.e, 0,1, the nested loops grammar is significantly different from the sequential loops setiup.

Fig. 4. A comparison of the mean best fitness (with standard deviations) of the initial two variations (reduced set of constants, and multiple statements in
the for loops) of the sequential loops (left) and nested loops (right) grammars. The reduced set of constants setup clearly outperforms the other variations.

significant difference between the two populations of mean
best values in the final generations.

A. Reduced set of constants

In a second set of experiments we reduced the search space
encoded by the grammars by reducing the number of constants
available from the integers zero to nine, to be restricted to
just zero and one. Fig. 4 compares the mean best fitness
averaged over one hundred runs for the Loops and Nested
Loops grammars against the equivalents using a reduced set
of constants. A t-test at significance level 0.05 shows there is
a significant difference in the mean best fitness values, with
the grammars adopting a reduced set of constants exhibiting
performance gains.

Comparing the loops and nested loops grammars both using
the reduced set of constants (see right-hand side of Fig. 3),
we see a significant difference in performance for the Nested
Loops grammar (t-test at level 0.05), however, a solution to

the problem is not found.

B. Multiple statements within a for loop

In the third set of experiments we enable multiple statements
to occur within the body of the for loops. The sequence of
loops and nested loops grammars are extended as outlined in
Fig. 5.

C. Increased population size

A fourth set of experiments were undertaken using an
increased population size of 10,000 individuals over one
hundred generations. A comparison to the original experiments
(population size 500) is provided in Fig.’s 6 and 7. The larger
population sizes result in a statistically significant difference
in performance (t-test at 0.05), but again a solution to the
problem is not found.

1507

<for_a_in_x_line> ::= <for_a_in_x_setoutput>
| <for_a_in_x_cond>

is replaced with...

<for_a_in_x_line> ::= <for_a_in_x_setoutput>
| <for_a_in_x_cond>
| <for_a_in_x_line><for_a_in_x_line>

<for_b_in_x_line> ::= <for_b_in_x_setoutput>
| <for_b_in_x_cond>

is replaced with...

<for_b_in_x_line> ::= <for_b_in_x_setoutput>
| <for_b_in_x_cond>
| <for_b_in_x_line><for_b_in_x_line>

Fig. 5. The sequential loops grammar (Fig. 1 is modified as illustrated here (left) and the nested loops grammar (Fig. 2) is modified to allow multiple
statements inside each for loop, using both the changes illustrated (left and right).

Fig. 6. Mean best fitness plots (with standard deviations) of the original population size (500) versus an increase to 10,000 using the sequential loops
grammar. The larger population sizes produce significantly better results.

D. Restricted crossover sites

A fifth set of experiments were undertaken using a mod-
ified grammar where crossover sites are specified to re-
strict crossover events to exchanging if statement condi-
tions. An extract from the modified loops grammar is de-
tailed below, which utilises the special non-terminal symbol
<GEXOMarker>.

if <GEXOMarker><for_a_in_x_expr><GEXOMarker>
<relop>
<GEXOMarker><for_a_in_x_expr><GEXOMarker> :

<for_a_in_x_setoutput>

By specifying crossover sites in the grammar, crossover
is only allowed to occur between codons responsible for
generating condition expressions. Results are presented in
Fig. 8. We do not observe performance gains over the nested
loops grammars.

E. Adding swap(i,j)

Earlier research using different forms of Genetic Program-
ming on a similar problem, found that the addition of higher-
level primitives can enable a solution to a sorting problem to
be found. To this end, in a final experiment, to each grammar
we added a swap function which switches the values of the
output list (guess) at indices i, and j. All runs of the Nested
Loop grammar now successfully solve the problem with the
addition of swap(i,j), however, the sequence of loops grammar
still fails to solve the problem.

F. Examples of Evolved Programs

Examples of evolved sorting programs are presented in
Fig. 10 and Fig. 11.

VI. CONCLUSIONS & FUTURE WORK

The results presented here demonstrate the difficulty a
Genetic Programming algorithm has in solving an integer
sorting problem using a primitive set of functions and ter-
minals. Following examination of a number of variants of the
grammars and different population sizes we discovered that
the inclusion of a swap function with nested loops successfully
solved the problem easily using standard population sizes for
toy GP problems (i.e., 500).

These results using Grammatical Evolution, confirm the
findings of earlier studies on variations of the sorting problem
using other forms of Genetic Programming, which found it
challenging to evolve a general sort algorithm using low-
level primitives. This suggests further research is required on
this benchmark problem to determine what is missing from
GP in order to allow it to successfully evolve solutions from
low-level primitives. One approach we will explore, and are
optimistic on its success is to employ the use of semantic
methods. For example, search operators which compare the
semantics of the parents may be beneficial in a more effective
exploration of the space of programs allowing us to manage
semantic locality and diversity [16].

1508

Fig. 7. Mean best fitness plots (with standard deviations) of the original population size (500) versus an increase to 10,000 using the nested loops grammar.
The larger population sizes produce significantly better results.

Fig. 8. Mean best fitness plots (with standard deviations) of the restricted crossover grammars with the small and large population (left) versus the restricted
crossover grammar combined with a reduced set of constants (right). The variant which uses a reduced set of constants exhibits the best performance. As per
Fig. 7 the larger population sizes produce significantly better results.

(a) Loops and Nested Loops grammars with the addition of swap(i,j). (b) Reduced Constants versions of the Loops & Nested Loops grammars.

Fig. 9. Adding swap(i,j) to the set of primitives allows the Nested Loop grammars to solve the sorting problem in each of the 100 runs.

1509

i=0
for a in x :

j=0
for b in x :

if guess[j]>guess[i] : swap(((j - 0)%TOTAL),i)

j+=1
i+=1

Fig. 10. A successfully evolved sort algorithm using the Nested Loops grammar including the swap(i,j) function. This solution was found in generation 10
(population size 500).

i=0
for a in x :

j=0
for b in x :

if guess[j]>guess[((i + 0)%TOTAL)] : swap(i,j)

j+=1
i+=1

Fig. 11. A successfully evolved sort algorithm using the Nested Loops grammar with the reduced set of constants including the swap(i,j) function. This
solution was also found in generation 10 (population size 500).

REFERENCES

[1] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaskowski, U.-M. O’Reilly, and S. Luke, “Better
GP benchmarks: community survey results and proposals,” Genetic
Programming and Evolvable Machines, vol. 14, no. 1, pp. 3–29, Mar.
2013.

[2] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open
issues in genetic programming,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3/4, pp. 339–363, Sep. 2010, tenth Anniversary
Issue: Progress in Genetic Programming and Evolvable Machines.

[3] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Language, ser. Genetic
programming. Kluwer Academic Publishers, 2003. [Online]. Available:
http://www.wkap.nl/prod/b/1-4020-7444-1

[4] I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in Grammatical
Evolution for Dynamic Environments, ser. Studies in Computational
Intelligence. Springer, 2009. [Online]. Available: http://www.springer.
com/engineering/book/978-3-642-00313-4

[5] A. Agapitos and S. M. Lucas, “Evolving efficient recursive
sorting algorithms,” in Proceedings of the 2006 IEEE Congress
on Evolutionary Computation. Vancouver: IEEE Press, 6-21 Jul.
2006, pp. 9227–9234. [Online]. Available: http://privatewww.essex.ac.
uk/∼aagapi/papers/AgapitosLucasEvolvingSort.pdf

[6] K. E. Kinnear, Jr., “Generality and difficulty in genetic programming:
Evolving a sort,” in Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93, S. Forrest, Ed. University of Illinois at
Urbana-Champaign: Morgan Kaufmann, 17-21 Jul. 1993, pp. 287–294.

[7] ——, “Evolving a sort: Lessons in genetic programming,” in Proceed-
ings of the 1993 International Conference on Neural Networks, vol. 2.
San Francisco, USA: IEEE Press, 28 Mar.-1 Apr. 1993, pp. 881–888.

[8] J. Koza, Genetic Programming: on the programming of computers by
means of natural selection. Cambridge, MA: MIT Press, (1992).

[9] D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Redwood City, USA: Addison Wesley Longman
Publishing, 1998.

[10] U.-M. O’Reilly and F. Oppacher, “An experimental perspective on
genetic programming,” in Parallel Problem Solving from Nature 2,
R. Manner and B. Manderick, Eds. Brussels, Belgium: Elsevier
Science, Sep. 28 - 30 1992, pp. 331–340. [Online]. Available:
http://www.ai.mit.edu/people/unamay/papers//ppsn92.ps

[11] ——, “A comparative analysis of GP,” in Advances in Genetic Program-
ming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. Cambridge, MA,
USA: MIT Press, 1996, ch. 2, pp. 23–44.

[12] R. Abbott, J. Guo, and B. Parviz, “Guided genetic programming,”
in The 2003 International Conference on Machine Learning; Models,

Technologies and Applications (MLMTA’03). las Vegas: CSREA Press,
23-26 Jun. 2003.

[13] R. Abbott, B. Parviz, and C. Sun, “Genetic programming reconsidered,”
in Proceedings of the International Conference on Artificial Intelligence,
IC-AI ’04, Volume 2 & Proceedings of the International Conference
on Machine Learning; Models, Technologies & Applications, MLMTA
’04, H. R. Arabnia and Y. Mun, Eds., vol. 2. Las Vegas,
Nevada, USA: CSREA Press, Jun. 21-24 2004, pp. 1113–
1116. [Online]. Available: http://abbott.calstatela.edu/PapersAndTalks/
GeneticProgrammingReconsidered.pdf

[14] L. Spector, J. Klein, and M. Keijzer, “The push3 execution stack and
the evolution of control,” in GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation, New York, NY,
USA, 2005, pp. 1689–1696.

[15] A. Agapitos and S. M. Lucas, “Evolving modular recursive sorting
algorithms,” in Proceedings of the 10th European Conference on Genetic
Programming, ser. Lecture Notes in Computer Science, M. Ebner,
M. O’Neill, A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar, Eds.,
vol. 4445. Valencia, Spain: Springer, 11 - 13 Apr. 2007, pp. 301–310.

[16] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and D. N.
Phong, “On the roles of semantic locality of crossover in genetic
programming,” Information Sciences, vol. 235, pp. 195–213, 20 Jun.
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020025513001175

1510

import math
import sys

TOTAL = 10 #global variable containg the input list length
guess = [(TOTAL-ii-1) for ii in range(0, TOTAL)] #output list
x = [0.0 for ii in range(0, TOTAL)] #input list (to be sorted)

def swap(r,s): #swap(i,j) function
global guess #not so elegant implementation
t0 = guess[r]
t1 = guess[s]
guess[r] = t1
guess[s] = t0

def loadTestCase1(): #test case 1
global TOTAL
global x
x = [1,0,2,3,4,5,6,7,8,9]
TOTAL = len(x)

def loadTestCase2(): #test case 2
global TOTAL
global x
x = [9,8,7,6,5,4,3,2,1,0]+[11,10]
TOTAL = len(x)

def loadTestCase3(): #test case 3
global TOTAL
global x
x = [1,0,3,2,5,4,7,6,9,8,14,11,10,12,13]
TOTAL = len(x)

def loadTestCase4(): #test case 4
global TOTAL
global x
x = [1,0,9,8,7,6,5,4,3,2,11,10,19,18,17,16,15,14,13,12]
TOTAL = len(x)

def loadTestCase5(): #test case 5
global TOTAL
global x
x = [0,7,2,3,5,4,6,1]
TOTAL = len(x)

def calculateSortDifferenceInOrderPairs(cmd): #count the number of ‘‘in-order’’ pairs
global guess
guess = [x[ii] for ii in range(0, TOTAL)] #initialise the output list to the input list values
exec cmd
inOrderPairCount = 0.0
pairs = TOTAL-1
for ii in range(1, TOTAL):

if (guess[ii] > guess[ii-1]):
inOrderPairCount += 1

return (inOrderPairCount / pairs)

Fig. 12. The Python code used to execute the evolved code and calculate fitness.

1511

