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Abstract—Optimisation in multimodal landscapes involves two
distinct tasks: identifying promising regions and location of
the (local) optimum within each region. Progress towards the
second task can interfere with the first by providing a misleading
estimate of a region’s value. Thresheld convergence is a generally
applicable “meta”-heuristic designed to control an algorithm’s
rate of convergence and hence which mode of search it is using
at a given time. Previous applications of thresheld convergence
in differential evolution (DE) have shown considerable promise,
but the question of which threshold values to use for a given
(unknown) function landscape remains open. This work explores
the use of clustering-based method to infer the distances between
local optima in order to set a series of decreasing thresholds in a
multi-start DE algorithm. Results indicate that on those problems
where normal DE converges, the proposed strategy can lead to
sizable improvements.

I. INTRODUCTION

IT is a widely-held and oft-repeated belief that heuristic
optimization algorithms must balance exploration and ex-

ploitation [1]. The role of exploration is to find the region
with the best solutions, while the role of exploitation is to
find the (local) optimum in a given region. However, it is
unknown to what extent is is possible to genuinely balance
these competing search behaviours, and if this balance involves
separating initial exploration from later (exploitative) refine-
ment of solutions, or an ongoing mixing of the two behaviours.
In multimodal search landscapes, which most interesting real-
world problems exhibit, it is clear that some search effort
must be expended finding the most promising regions of the
search space before those regions are explored/exploited in
finer detail. Yet many population-based search heuristics do
not gradually switch from exploration to exploitation but rather
attempt to do both concurrently [2], [3]. Recent work suggests
that this is not possible, and that any exploitation early in the
search process makes exploration more difficult [3], [4].

The transition from global to local search is critical to the
success of differential evolution (DE) [5]. A premature loss
of diversity is a particular problem for the algorithm as its
solution generation mechanism is based on the differences
between solutions in solution space. While this reliance means
the algorithm can be self-scaling—as the population converges
the magnitude of exploratory moves also decreases—such
convergence is typically irreversible, with the algorithm never

again exploring widely. Indeed, DE can suffer from a cascad-
ing collapse in diversity, as when some solutions cluster in a
good but small area they produce very small difference vectors
that may ‘recruit’ other solutions to that same area [6], [7].

A recently proposed metaheuristic (in the sense that it is
a general search principle rather than a specific search mech-
anism) is thresheld convergence (TC). The goal of thresheld
convergence is to separate the processes of exploration and
exploitation. Specifically, exploitation is “held” back by a
threshold function. The allowed moves above the threshold
size are more likely to be explorative (e.g., in new unex-
plored attraction basins), and the disallowed moves below
the threshold size can potentially be exploitative (e.g., within
a previously explored attraction basin). By preventing con-
current exploitation, the chances for the early discovery of
local optima are reduced. With the subsequently decreased
risk of premature convergence, it is expected that thresheld
convergence can improve the performance of heuristic search
techniques on multimodal fitness functions.

The first application of thresheld convergence in DE [3]
was an efficient form of crowding that tested the distance
between each new solution and the population member with
which it would most likely cluster. Moves below a decaying
threshold were disallowed. An improved version of DE with
tresheld convergence (DE+TC) was introduced by Bolufé et
al. [8]. That work introduced an adaptive threshold decay
and ‘pushed’ new solutions outside the threshold boundary
if they were too close, eliminating the wasted effort if a
solution is merely discarded. Despite these improvements, the
algorithm still worked best when the initial threshold was
selected empirically, and the simple mechanism for adapting
the threshold may not always be effective in selecting an
appropriate threshold level. The present work investigates
the use of clustering to estimate the distances between local
optima and to set a sequence of diminishing thresholds for use
by a multi-start version of DE+TC.

DE+TC is described in more detail in the next section. A
cluster-based approach to inferring the distance between local
optima is introduced in Section II, after which a multi-start
DE+TC strategy with thresholds based on these inferred dis-
tances is described and evaluated in Section III. An improved
version of the approach, whose restarts are less disruptive,
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Fig. 1: Objective value of iteration (i.e., current global) best
solution and its local optimum for 30D Rastrigin.

is examined in Section IV, followed by a discussion of its
performance on difficult instances in Section V.

A. DE with Thresheld Convergence

As a metaheuristic there are many ways in which thresheld
convergence may be integrated into DE. The approach used
here was previously found [8] to be effective on the Black-
box Optimisation Benchmark problems (see [9] for problem
details). In the commonly used DE/rand/1/bin algorithm, a
new candidate solution is generated in two steps: an inter-
mediate solution is created by adding the weighted difference
between two randomly selected population members to a third
randomly selected member, called the base, then uniform
crossover is performed between this intermediate solution and
the target it may replace in the next generation. In DE+TC, if
the distance between the candidate solution new and base is
below the current threshold then the candidate is shifted away
from base in the same direction (see Algorithm 1).

A key weakness of thresheld convergence in many earlier
applications was the use of a scheduled (and problem-specific)
threshold function to control the shift from exploration to
exploitation. The best threshold function for each problem
appears to depend on the size and spacing of the attraction

Algorithm 1 DE+TC solution modification rule

if ||new − base|| < threshold then
direction← Normalize(new − base)
new ← base+ threshold · direction

end if

basins, which is often difficult to determine without specialised
knowledge of a problem or by sampling the problem space.
An innovation used by Bolufé et al. was an adaptive decay
rule based on the following heuristic: if candidate solutions
are being generated that are improvements on their parents
then the threshold is likely set appropriately, whereas if no
improvements are being made then it may be too high. The
adaptive threshold update is defined by

thresholdi =

{
thresholdi−1 if any replacements
β · thresholdi−1 otherwise

(1)
where i is the current generation and β ∈ (0, 1] controls
the threshold decay rate. The use of the adaptive threshold
significantly reduced the algorithm’s sensitivity to the initial
threshold setting. Consequently, in all subsequent experiments
described in this work that use DE+TC with an adaptive
threshold, the initial threshold is set to 10% of the length of
the main space diagonal and β = 0.995, which was found
experimentally to work well.

II. LEARNING INTER-OPTIMA DISTANCES IN A KNOWN
ENVIRONMENT

Previous work has shown that DE’s search behaviour is
characterised by an initial period of exploration followed
by rapid convergence to a local optimum found during that
exploratory phase (see, e.g., [3]) . Although population con-
vergence is a necessary and useful feature of the algorithm,
allowing it to reduce the scale of its exploratory moves, once
the process begins it can lead to a cascading collapse in
diversity. Identifying when the initial exploration phase will
end can assist in implementing algorithm changes to promote
population diversity when it is most needed.

The Rastrigin function [10] is a multimodal function con-
structed from the superposition of a cosine function with
period 1 over the sphere function. It has many local optima
whose positions can be found on integer values in the continu-
ous search space, so it is possible to easily judge the quality of
a solution’s current basin of attraction and its relative quality
within that basin. In this initial study, DE/rand/1/bin with
Cr = 0.9, F = 0.5 and a population of 50 individuals was ap-
plied to Rastrigin in 30D and the quality of the generation best
solution versus that of its local optimum measured over time.1

The algorithm was allowed 10, 000 · D function evaluations

1Although Rastrigin is separable, which would suggest using a low value
of Cr, as most real world problems are not, using a high value simulates
DE’s application to such functions more accurately. The value of F = 0.5
was found through an initial sensitivity analysis to produce good results on
this function in 30D.
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Fig. 2: Overall and average minimum distance between cluster
centroids for k ∈ [2, 50] in 30D Rastrigin. Lines are a visual
guide only.

(FEs), equating to 6000 generations. Fifty-one randomised
trials were performed.

Fig. 1 shows the objective value of the generation best
solution and the value of its current local optimum. Part (a) is
from the trial which produced the median quality final result,
while (b) shows the average across all trials, showing their
general trends over time. Although this combination of settings
(with Cr fixed at 0.9 and population size fixed at 50 a priori)
was found earlier to produce the best results compared to
using other values for F—i.e., the final result appears to be
as good as the algorithm can do—the best local optimum is
found after 105 FEs (2000 generations), and the quality of the
current best solution’s local optimum changes little after the
first 25,000 FEs (500 generations). A little beyond half way
through the search the current best solution has been locally
optimised to be at its (suboptimal) local optimum. Thus, the
global search has largely stopped after one third of the total
FEs, and the algorithm has transitioned to a local search phase
for the remaining two thirds of its run. Intuitively such search
behaviour looks suboptimal, as the algorithm does not require
the majority of its function evaluations merely to refine one

or more known good locations.
In multimodal landscapes, DE populations tend to divide

among the various attraction basins present, up until the point
that the population collapses rapidly to a single local optimum.
Given that most of the improvement in the best solution’s
local optimum has been achieved after approximately 10% of
allowed FEs, and given that DE tends to improve solutions
individually within their local basins of attraction until the
population’s cascading collapse, it is plausible that the popu-
lation is scattered across local optima, with solutions of similar
quality relative to their respective local optima. Examining the
distances between clusters of solutions may reveal some of the
search landscape’s structure.
K-means clustering was applied to the DE population after

10% of the total FEs (i.e., 600 generations), with the value of k
varied from 2 to 50 (i.e., each individual as its own ‘cluster’).
For each value of k, the minimum inter-cluster distance was
measured as well as the average over the minimum inter-
cluster distances per cluster. Fig. 2 depicts these values for
(a) the trial that produced the median quality final result and
(b) an average for each value of k over 51 trials (to indicate
general trends).

The change in the minimum inter-cluster distance is indica-
tive of DE’s typical pattern of convergence: the population
has a tendency to contract as the search progresses, especially
in solution spaces with global structure. The variation in the
average over each cluster’s minimum inter-cluster distance
suggests that individuals in the population have found a
number of distinct local optima. Thus this average minimum
distance between clusters (avg-min) may be considered an
approximation of the minimum distance between distinct lo-
cal optima (i.e., the nearest local optima different in every
dimension). If the approximation is sufficiently close to the
true value, then the distance between local optima that differ
in only one dimension may be inferred. Assuming regularly-
spaced optima and a separable problem that is identical in each
dimension, the smallest distance between local optima may be
approximated by avg-min/

√
D. These two assumptions will

not be valid for many real-world problems, but they represent
a starting point before more information about a problem is
learned.

In 30D Rastrigin the true minimum distance between dis-
tinct local optima is

√
30 = 5.48, indicated by the top dashed

line in Fig. 2, while the true minimum distance between local
optima that differ in one dimension is 1. Based on studies
with Rastrigin and other problems, this work elects to take
the median value of the avg-min as an approximation of the
distance between distinct local optima. Although on average
with Rastrigin this measure will underestimate the distance
between distinct optima (the error is approximately 14%), it
provides a straightforward way to select from the varying
values of avg-min as k changes (which are often not as
smooth as the trends in Fig. 2 suggest).

This approach to approximating inter-optima distances was
tested on two variants of Rastrigin, one with each dimension’s
range doubled and another in which each dimensions range
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was doubled but the period of the cosine function halved. In
the first case the technique produced indistinguishable values
to normal Rastrigin (the distances were, indeed, unchanged),
while in the second it produced values twice as large. This
suggests that the use of k-means clustering in conjunction with
normal DE is somewhat robust to changes in scale.

Given this insight into the distances between local optima,
thresheld convergence may be applied with less direct user
control and greater confidence.

III. A SIMPLE RESTART STRATEGY

Previous versions of DE with thresheld convergence (col-
lectively called DE+TC hereafter) operated over the course of
an entire run and attempted to guide the algorithm smoothly
through different granularities of search. Early versions used a
parameterised decaying threshold function, while more recent
advancements introduced auto-adaptation based on the algo-
rithm’s performance. In the present work a restart strategy is
implemented, with each restart having a progressively lower,
but fixed threshold. Given the algorithm’s observed behaviour
on Rastrigin, each run is divided into six stages: an initial
phase of normal DE lasting 10% of total FEs, followed by
cluster analysis to determine threshold values; four stages
of 20% total FEs of DE+TC with successively lower, but
otherwise fixed thresholds; and a final ‘local search’ stage of
normal DE with a reduced population size of 25, lasting 10%
of total FEs. Each of the four middle stages represents an
algorithm restart, although some information about previously
discovered good solutions is maintained between each. At
the first restart, the population best solution is maintained,
while the 10 best solutions are retained on each subsequent
restart. The final stage uses a reduced population to give each
population member a greater number of opportunities to be
updated and to focus the search on the most promising region
found. Reducing DE’s population size as the search progresses
has previously been found to be effective [11].

The four threshold values are derived as follows. K-means
clustering is performed on the population after 600 FEs, for
values of k ∈ [2, 50]. The median value of the average
minimum inter-cluster distance is taken as the initial threshold
value α, while the final threshold value is β = α/

√
D. The

two intermediate threshold values are (α+ β)/2, followed by
2 · α.

A. Initial Results

Hereafter the techniques developed will be demonstrated
with respect to Rastrigin and evaluated on the benchmark
problems from the CEC2013 Single Objective Real Parameter
Optimisation Competition, later referred to simply as the
“CEC2013 benchmarks”. The CEC2013 problems are defined
in [12] and summarised in Table I. Set 2 is of particular
interest, as these problems are multimodal and likely to have
some degree of global structure—it is such problems that
thresheld convergence was designed to suit. For both Rastrigin
and the CEC2013 benchmarks 51 randomised trials were run
for each algorithm tested.

TABLE I: CEC2013 Benchmarks

Category f Name

Unimodal 1 Sphere Function
Functions 2 Rotated High Conditioned Elliptic Function

3 Rotated Bent Cigar Function
4 Rotated Discus Function
5 Different Powers Function

Basic 6 Rotated Rosenbrock’s Function
Multimodal 7 Rotated Schaffers F7 Function
Functions 8 Rotated Ackley’s Function

9 Rotated Weierstrass Function
10 Rotated Griewank’s Function
11 Rastrigin’s Function
12 Rotated Rastrigin’s Function
13 Non-Continuous Rotated Rastrigin’s Function
14 Schwefel’s Function
15 Rotated Schwefel’s Function
16 Rotated Katsuura Function
17 Lunacek bi-Rastrigin Function
18 Rotated Lunacek bi-Rastrigin Function
19 Expanded Griewank’s plus Rosenbrock’s Function
20 Expanded Scaffer’s F6 Function

Composition 21 Composition Function 1 (n=5,Rotated)
Functions 22 Composition Function 2 (n=3,Unrotated)

23 Composition Function 3 (n=3,Rotated)
24 Composition Function 4 (n=3,Rotated)
25 Composition Function 5 (n=3,Rotated)
26 Composition Function 6 (n=5,Rotated)
27 Composition Function 7 (n=5,Rotated)
28 Composition Function 8 (n=5,Rotated)

Fig. 3 shows the average objective values of the generation
best solution (i.e., population best solution) and the value
of its current local optimum each generation for (a) DE+TC
and (b) the restart strategy introduced here. Comparing these
with Fig. 1(b) shows that standard DE+TC does prolong the
period during which the quality of the best solution is not
locally optimised, but the effect is very small, while DE+TC
with restarts and set thresholds further prolongs the period
of exploration. The average quality of the final result for
DE, DE+TC and DE+TC with restarts were 12.82, 12.93 and
11.3, respectively. Comparing the outcomes with t-tests, the
slight difference between DE and DE+TC is not statistically
significant, while the observed improvement when restarts are
added is statistically significant at the 5% level.

DE, DE+TC with adaptive threshold reduction, and DE+TC
with restarts were applied to the CEC2013 benchmarks, with
results presented in Table II. The relative difference (%-diff)
is calculated as (a−b)/ argmax{a, b}, where a is the average
final result of DE and b is the average final result of the
comparison algorithm. Hence, positive values indicate that a
new technique performs better than standard DE. Differences
between algorithm’s distributions of final results were, in
general, found to be normal or close to normal, so t-tests were
conducted to compare them.

DE+TC with an adaptive threshold produces statistically
significant improvements on four functions from set 2, with
generally equivalent results to DE on most other functions.
In comparison, the addition of thresholds selected by anal-
ysis of the search space yielded statistically significant and
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TABLE II: Results of DE, DE+TC (with adaptive threshold decay) and the first version of multi-start DE+TC with uniform
restarts applied to the CEC2013 benchmarks. Bold values indicate differences that are statistically significant at the 1% level.

DE DE+TC %-diff t-test
Multi-start DE+TC

%-diff t-testfunc. (uniform restarts)

mean std dev mean std dev mean std dev

1 0.00E+00 0.00E+00 8.08E-07 2.02E-07 -100% 0 0.00E+00 0.00E+00 0% —
2 1.53E+05 6.82E+04 1.87E+05 8.56E+04 -18% 0.017 2.76E+05 1.46E+05 -45% 0.000
3 1.00E+07 1.27E+07 8.88E+04 5.72E+05 99% 0.000 1.87E+06 6.18E+06 81% 0.000
4 4.35E+02 4.03E+02 5.83E+02 4.54E+02 -25% 0.044 4.27E+02 2.44E+02 2% 0.448
5 1.18E+00 8.31E+00 9.48E-07 3.26E-07 100% 0.159 2.63E-05 1.44E-04 100% 0.159

6 2.03E+01 1.55E+01 9.34E+00 6.92E+00 54% 0.000 2.25E+01 2.01E+01 -10% 0.265
7 5.96E+00 5.85E+00 1.10E+00 2.15E+00 82% 0.000 3.07E+00 4.20E+00 49% 0.003
8 2.09E+01 4.85E-02 2.09E+01 5.65E-02 0% 0.397 2.09E+01 4.78E-02 0% 0.269
9 1.60E+01 5.87E+00 1.52E+01 3.87E+00 5% 0.204 1.81E+01 7.03E+00 -12% 0.052

10 1.31E-01 8.82E-02 7.43E-03 7.44E-03 94% 0.000 1.44E-02 1.47E-02 89% 0.000
11 1.55E+01 4.57E+00 1.30E+01 3.87E+00 16% 0.002 1.20E+01 4.99E+00 23% 0.000
12 7.64E+01 6.31E+01 9.47E+01 6.47E+01 -19% 0.077 1.24E+02 5.91E+01 -39% 0.000
13 1.41E+02 4.49E+01 1.47E+02 3.85E+01 -4% 0.256 1.48E+02 4.28E+01 -5% 0.203
14 9.72E+02 3.07E+02 1.05E+03 3.53E+02 -8% 0.110 1.13E+03 3.06E+02 -14% 0.005
15 7.21E+03 3.04E+02 7.21E+03 2.64E+02 0% 0.464 7.18E+03 2.71E+02 0% 0.291
16 2.52E+00 2.86E-01 2.45E+00 2.60E-01 3% 0.110 2.45E+00 3.32E-01 3% 0.128
17 5.54E+01 1.03E+01 5.79E+01 9.09E+00 -4% 0.095 6.13E+01 1.00E+01 -10% 0.002
18 1.93E+02 1.33E+01 1.93E+02 1.00E+01 0% 0.412 1.99E+02 8.81E+00 -3% 0.006
19 3.35E+00 2.11E+00 4.37E+00 3.26E+00 -23% 0.032 3.59E+00 2.34E+00 -7% 0.289
20 1.18E+01 4.20E-01 1.20E+01 3.55E-01 -1% 0.011 1.18E+01 3.47E-01 1% 0.145

21 2.84E+02 7.41E+01 2.83E+02 6.97E+01 0% 0.477 3.11E+02 7.92E+01 -9% 0.036
22 8.11E+02 3.01E+02 8.43E+02 2.63E+02 -4% 0.288 9.12E+02 3.14E+02 -11% 0.052
23 6.96E+03 5.42E+02 7.03E+03 4.00E+02 -1% 0.229 7.14E+03 2.77E+02 -3% 0.016
24 2.32E+02 1.00E+01 2.21E+02 1.49E+01 5% 0.000 2.35E+02 9.05E+00 -1% 0.081
25 2.56E+02 7.76E+00 2.48E+02 7.91E+00 3% 0.000 2.55E+02 7.55E+00 1% 0.183
26 2.53E+02 6.41E+01 2.60E+02 6.41E+01 -3% 0.301 2.37E+02 5.69E+01 7% 0.085
27 6.29E+02 7.60E+01 5.64E+02 9.51E+01 10% 0.000 6.04E+02 7.87E+01 4% 0.052
28 3.00E+02 2.76E-13 3.00E+02 5.38E-03 0% 0.000 3.00E+02 7.17E-04 0% 0.000

large improvements in three functions of set 2 and worked
more poorly than DE+TC with adaptive threshold reduction
on many other problems. However, it is worth noting that
initial experiments (not included here) with higher initial
thresholds produced very poor outcomes, indicating that the
current adaptive rule (i.e., to decrease the threshold if no
improvement in a generation) is not universally effective in
identifying “appropriate” threshold values given an arbitrary
initial threshold; direct observation of the search space can
eliminate the need for selecting an initial threshold manually
and yield better results if a poor choice were made. Moreover,
inspection of the final population spread in a number of trials
of the multi-start DE+TC revealed that the population had not
converged, suggesting that the restart strategy employed was
setting the search back too far. A more targeted restart strategy
is described next.

IV. FOCUSED RESTARTS

A revised version of the multi-start DE+TC was developed
in which the first restart uses uniform random initialisation
of the new population as before, but each subsequent restart
initialises solutions in a manner similar to UMDA [13], [14].
New solutions are initialised dimension-wise using a Gaussian
N (µ, σ) where µ is equal to the previous population’s mean
position and σ is equal to s multiplied by the previous popu-
lation’s standard deviation, where s is a parameter. Empirical

testing (of s ∈ {0.5, 1, 2}) suggested that s = 0.5 produces
the best results across the benchmark set.

Table III shows the average result achieved by the multi-start
DE with UMDA restarts with relative differences compared
to DE. This version of the approach achieves statistically
significant improvements on a number of problems from set 2
of the benchmarks, with more consistent results than DE+TC
with adaptive threshold reduction. However, it achieves largely
equivalent results on the rest of the set (none of the cases
where its average performance is worse were statistically
significant). This suggests that either the approach to deriving
thresholds does not work with these problems or DE is a poor
fit for these problems, issues explored next.

V. DISCUSSION

Figs. 4 and 5 show the population spread for DE (blue)
and multi-start DE+TC with UMDA initialisation (orange) for
selected functions from set 2 where the multi-start DE+TC
worked well (in 4) or poorly (in 5). Considering the cases
where the proposed technique worked well, for those functions
where DE normally converges the addition of TC extended the
period of exploration, while the final phase allowed population
convergence and hence, refinement of the final solution’s qual-
ity. In the case of function 20, where the algorithm normally
does not converge completely, the proposed approach, using
UMDA reinitialisation, was able to focus its local search
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Fig. 3: Objective value of iteration (i.e., current global) best
solution and its local optimum for 30D Rastrigin.

in the final generations. Of note is that using σ = 0.5 ·
sample std dev actually reduces population spread at each
restart, which is followed by a rapid period of expansion due
to the thresheld convergence mechanism. Previously, Ali [15]
found that during its earliest iterations, normal DE generates a
large number of moves outside the search bounds, which are
essentially wasted. Conceivably this can also occur when the
population has contracted to a good region, as outward looking
moves cannot find improved positions and are discarded. Since
the rapid expansion observed here can only occur if new
solutions at the threshold are improvements on the randomly
reinitialised ones, it is plausible that the contraction imposed
by the UMDA reinitialisation allows these outward looking
moves to be successful again.

Fig. 5 shows convergence plots for functions where the new
technique was ineffective. Notably, for functions 8, 15 and
16, normal DE does not converge, and the proposed approach
performs largely equivalently. These functions exhibit a range
of landscapes with some similarities: function 8 (rotated
Ackley’s) consists of a bumpy plain with a very small globally
optimal region, while 15 (rotated Schwefel’s) is deliberately
deceptive, and 16 (rotated Katsuura) also has a very large num-

TABLE III: Results of multi-start DE+TC with UMDA-based
restarts applied to the CEC2013 benchmarks. Bold values
indicate differences that are statistically significant at the 1%
level.

Multi-start DE+TC
%-diff t-testfunc. (UMDA restarts)

mean std dev

1 0.00E+00 0.00E+00 0% —
2 2.45E+05 1.09E+05 -38% 0.000
3 2.28E+06 5.13E+06 77% 0.000
4 3.66E+02 2.15E+02 16% 0.059
5 4.75E-06 2.26E-05 100% 0.159

6 1.49E+01 1.26E+01 27% 0.127
7 1.16E+00 1.71E+00 81% 0.000
8 2.10E+01 3.53E-02 0% 0.115
9 1.17E+01 3.57E+00 27% 0.006
10 1.35E-02 1.25E-02 90% 0.000
11 9.43E+00 2.37E+00 39% 0.000
12 4.12E+01 3.56E+01 46% 0.005
13 1.09E+02 5.94E+01 23% 0.003
14 1.06E+03 3.29E+02 -8% 0.048
15 7.14E+03 3.48E+02 1% 0.102
16 2.56E+00 2.55E-01 -2% 0.164
17 6.05E+01 1.19E+01 -8% 0.034
18 1.90E+02 9.21E+00 1% 0.099
19 4.06E+00 2.60E+00 -18% 0.138
20 1.16E+01 4.63E-01 2% 0.002

21 2.79E+02 6.65E+01 1% 0.500
22 9.24E+02 2.28E+02 -12% 0.031
23 6.89E+03 2.98E+02 1% 0.481
24 2.31E+02 1.10E+01 1% 0.034
25 2.52E+02 7.49E+00 2% 0.017
26 2.15E+02 4.13E+01 15% 0.000
27 5.81E+02 7.44E+01 8% 0.001
28 3.00E+02 4.74E-04 0% 0.000

ber of local optima. The lack of convergence in DE on these
problems may be in part because the functions are rotated (the
DE/rand/1/bin variant used here is not rotationally-invariant),
but it also suggests that the algorithm itself is ill-suited to
these landscapes. DE’s behaviour on function 8 is particularly
illustrative: after a short time each population member has
been improved within one of the many small local optima
that litter the landscape, but thereafter the search flounders,
unable to move any solution because no improving move
can be generated. Not only does this mislead the clustering
mechanism’s estimate of the distance between local optima,
but the thresholds have little to no impact on such a scattered
population in any case. As thresheld convergence is designed
to combat “premature convergence”, which really means a
loss in a population-based heuristic’s ability to discover new
regions to be locally optimised before its function evaluation
limit is reached, if the population does not exhibit convergence
then TC will not impact its behaviour.

Fig. 5(d) is for function 17 (rotated Lunacek bi-Rastrigin)
where the multi-start DE+TC appeared to actively hinder
the search (the equivalent plot for function 19 (expanded
Griewank’s plus Rosenbrock’s function) shows a similar pat-
tern). In both functions 17 and 19 diversity is maintained above
the normal low level of DE, suggesting that the thresholds
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(f) Function 20

Fig. 4: Mean distance between individuals and population centroid for selected CEC2013 benchmarks where multi-start DE+TC
outperformed normal DE.

should have been lower than those selected by the clustering
technique. Further work is required to (1) explore alternative
mechanisms to identify the distances between optima, which
may not use the underlying algorithm to sample points in the
search space, and (2) determine suitable algorithmic changes
to allow DE to continue exploration in landscapes where its
search stalls without converging.

A. Multi-start TC in other algorithms

As in previous studies with thresheld convergence, its
demonstration as a general technique has involved parallel
studies in both differential evolution and particle swarm op-
timization (PSO). While previous studies have found roughly
similar (performance-based) effects of thresheld convergence
on both DE and PSO (see, e.g. [4], [8]), the current parallel
study [16] has lead to highly divergent results. The most
noticeable difference is in the effectiveness of clustering to
measure the distance among local optima in the search space.
Due to its use of attraction vectors, communicating particles in
PSO are quickly and directly drawn towards the best positions
of their neighbours. This leads to clear and distinct clusters,
and these clusters can then lead to quite accurate estimates

on the distances among attraction basins in the search space.
Conversely, the population in DE appears to converge in a
more homogeneous fashion, so the resulting information from
clustering appears to be less useful.

Another interesting divergence is that the best relative
performance of adding the current implementation of thresheld
convergence to DE occurs on function 10 where a relative
improvement of 90% is achieved. Conversely, in the PSO
study [16], function 10 led to some of the worst performances
for the current implementation of thresheld convergence with
negative effects of up to 90%. Going forward, we hope to use
deeper analysis of this anomaly to better understand the search
processes of DE and PSO in multimodal fitness landscapes and
to perhaps build a hybrid method that leverages the advantages
of each method (e.g., using the clustering effects of PSO to
identify the scale of the search space, and then using the
homogeneous search properties of DE to exploit this scale).

VI. CONCLUDING REMARKS

Thresheld convergence is a generally applicable technique
for directly influencing the rate at which population-based
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(b) Function 15
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(c) Function 16
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Fig. 5: Mean distance between individuals and population centroid for selected CEC2013 benchmarks where multi-start DE+TC
performed (a–c) equavilently to DE or (d) more poorly than DE.

heuristics such as DE converge. Previous work has demon-
strated its efficacy across a range of algorithms and problem
benchmarks. This paper examined the use of a clustering-
based approach to estimate the distances between optima and
set thresholds appropriately in a multi-start DE+TC algorithm,
with improvements over normal DE and a variant of DE+TC
with adaptive threshold reduction on a number of multimodal
problems. Future work will investigate alternative ways of
estimating inter-optima distances and in identifying cases
where the underlying DE algorithm is failing to converge (and
hence when an alternative to TC is required to drive the search
forward).
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[13] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña, “Optimization
by learning and simulation of bayesian and gaussian networks,” Univer-
sity of the Basque Country, Spain, Technical Report EHU-KZAA-IK-
4/99, 1999.

[14] H. Mühlenbein, “The equation for response to selection and its use for
prediction,” vol. 5, no. 3, pp. 303–346, 1997.

[15] M. M. Ali, “Differential evolution with preferential crossover,” Eur. J.
Oper. Res., vol. 181, no. 3, pp. 1137–1147, 2007.

[16] Y. Gonzalez-Fernandez and S. Chen, “Identifying and exploiting the
scale of a search space in particle swarm optimization,” in press.

1434




