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Abstract— Several micro economic models allow to evaluate
consumer’s behavior using a utility function that is able to
measure the success of an individual’s decision. Such a decision
may consist of a tuple of goods an individual would like
to buy and hours of work necessary to pay for them. The
utility of such a decision depends not only on purchase and
consumption of goods, but also on fringe benefits such as
leisure, which additionally increases the utility to the individual.
Utility can be used then as a collective measure for the overall
evaluation of societies. In this paper, we present and compare
three different agent based social simulations in which the
decision finding process of consumers is performed by three
algorithms from swarm intelligence and evolutionary compu-
tation. Although all algorithms appear to be suitable for the
underlying problem as they are based on historical information
and also contain a stochastic part which allows for modeling
the uncertainty and bounded rationality, they differ greatly in
terms of incorporating historical information used for finding
new alternative decisions. Newly created decisions that violate
underlying budget constraints may either be mapped back to
the feasible region, or may be allowed to leave the valid search
space. However, in order to avoid biases that would disrupt the
inner rationale of each meta heuristic, such invalid decisions are
not remembered in the future. Experiments indicate that the
choice of such bounding strategy varies according to the choice
of the optimization algorithm. Moreover, it seems that each
of the techniques could excel in identifying different types of
individual behavior such as risk affine, cautious and balanced.

I. INTRODUCTION

S IMULATING the human decision finding process can
be of great use, not only for neural scientists or psy-

chologists but also for economists. Assumptions like ratio-
nal individuals that maximize their utility rationally while
being provided with perfect information, help economists to
understand and simulate reality. Though, those assumptions
are very restrictive. Human behavior seems not to be fully
rational, but bounded rational. In order to simulate such
bounded rational human behavior, agent based economic
models are becoming increasingly important [1]. Those
micro economic models also assume that individuals try
to rationally maximize their utility and have access to all
necessary information. Since humans have to deal in reality
with imperfect information (e.g uncertainty) and limited
processing capacity, it is desirable, to develop methods that
better resemble human decision making, in order to improve
economic prediction models.
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In this paper, we present a new social simulation in which
the decision of agents is based on Swarm Intelligence (SI)
and evolutionary computation. While SI methods are based
on the collective behavior of inherently decentralized and
self-organized autonomous entities, evolutionary methods are
based on Darwinian principles such as crossover, selection
and mutation [2], [3]. Three different optimization algorithm
are used to simulate the decisions of individuals within
an agent based economic simulation model: the two well
known methods Particle Swarm Optimization (PSO) [2],
[4] and Differential Evolution (DE) [5], and the recently
developed Fish School Search (FSS) [6] algorithm. PSO and
FSS can be classified as SI methods, while DE is usually
classified as an evolutionary method 1. Although all of these
algorithms are population-based meta-heuristics, they differ
greatly in terms of historical information used for finding
new decision. While PSO inherently exploits the information
of the best position/decision found so far, DE computes
new positions/decisions as combination of other current
decisions. In both, PSO and DE, all particles perform solely
independent movements, i.e., there is no collective movement
of the whole swarm into a specific direction. Contrary to
that, FSS is partly based on individual movements but also
includes collective movements that are based on (the quality
of) current positions/decisions of all individuals.

The underlying optimization problem of this work stems
from utility theory [7]. We assume that households are facing
a multi-variant optimization problem with the goal to maxi-
mize their utility by choosing the respective best combination
(tuple) of differently priced and differently preferred goods
(summarized as consumption), and the required number of
working hours needed in order to afford these tuple of goods.
Each additionally bought good and each additional hour of
leisure (i.e., time spent not working) increases the utility.

Although the optimization algorithms used in this work
do not guaranty for finding optimal solutions for the given
optimization problem (all of them can be classified as
meta-heuristics), we believe that some properties of meta-
heuristics are well suited for this non trivial task. All three
algorithms are in some sense able to resemble human deci-
sion making since they are based on previous and current
information, and, even more importantly, also contain a
probabilistic part which allows for modeling the uncertainty
usually involved in the human decision making process.
Similar to human choice behavior that has been proven to
be heuristic [8], the swarm allows for parallel reflection and
selection of different alternatives with a mixture of proba-

1For simplicity, we use the term “particle” to refer to population members
in PSO, FSS and DE.
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bilistic and past oriented measures. In every iteration, the
meta-heuristic algorithms attempt to continuously improve
the currently best solution. As a result, meta-heuristics allow
for approximating the simulation process desirably close to
human choices. In contrast to meta-heuristics, conventional
(non-iterative) methods which are able to solve the given
problem exactly (e.g., Lagrangian method) are not that well
suited for simulating such a behavior. The search behavior of
the three examined meta-heuristics is different. Customizing
parameters of the algorithm does not lead to such a sig-
nificant difference in search behavior, but seems to be well
suited for more detailed approximation of search processes.
Therefore, this work focuses on the examination of different
heuristic search approaches.

Related work. Following the categorization of John Hol-
land [3], Agent Based Modeling (ABM) refers to the com-
putational study of social agents as evolving systems of
autonomous interacting agents. ABM is a tool for studying
social systems from a complex adaptive system perspective.
From this perspective, a researcher is interested in how
macro phenomena are emerging from micro level behavior
among a heterogeneous set of interacting agents [3]. ABM
has been applied in various fields, e.g., for observing racial
segregation [9], political opinion building [10], consumer
behavior [11], and various other fields. The research area of
Agent Based Social Simulation (ABSS) can be found in the
intersection of the three disciplines agent based computing,
social sciences and computational simulation [12]. Applica-
tions of ABSS in social sciences are of Serrano Filho,Lima-
Neto et al. in demography [13], Alvaro and Lima-Neto [14]
in econometry and Jordan, Cordeiro, Lima-Neto et. al. in
simulation of taxation systems [15]. One advantage of social
sciences conducted with ABM is that it allows for debugging
and understanding macro phenomena better, hence, allowing
for simulating on an experimental base without being faced to
ethical or numerical problems. A detailed summary of sociol-
ogy in ABSS can be found in [16]. Emerging from this ABM
approach, a particular field of research has been established:
Agent Based Macroeconomics, i.e., studying macroeconomic
contexts with ABM. This type of macroeconomic simulation
avoids problems with other simulation methods and gives
new possibilities of research [17]. A review of this research
field can be found in [18].

The applicability of SI for optimizing business processes in
economics has been discovered over a decade ago, e.g., [19].
Since then, PSO has been used to improve various kinds
of business models. Two recent studies focus on improving
cluster analysis within a decision making model [20], and on
optimizing product-mix models [21]. Another recent study
discusses the applicability of computational intelligence and
ABM for financial forecasting [22]. In terms of social simu-
lation, PSO has been applied for simulating human behavior
in emergency situations [23], and for insurgency warfare
simulation [24]. In [25], an agent-based model for analyzing
human behaviors using PSO is presented. However, this study
does not focus on simulating consumer’s behavior. Prior to

the publication in [25], we have presented first ideas on a new
agent based social simulation which uses PSO to simulate
the decision finding process of consumers [26]. Although
several heuristic methods for optimizing and simulating the
consumer’s decision making process have been proposed,
e.g., [8], we are not aware of any other publication than [26]
that has investigated the application of SI methods to this
task. In [26], the analysis of two different bounding strategies
that map particles violating the underlying budget constraints
to a feasible region has revealed that the “slower” bounding
strategy (which needs significantly more iterations to find
the optimal solution) appears to be more appropriate for
simulating the uncertainty and curiosity involved in the
human decision making process. In this paper we extend
our study in [26] by (i) studying the performance of two
additional optimization approaches based on swarm behavior,
(ii) evaluating specific bounding strategies for each of these
algorithms, and (iii) analyzing the behavior of the swarm for
different numbers of iterations.

Synopsis. We briefly review the applied optimization algo-
rithms in Section II and give a formal description of the
underlying decision problem in Section III. Modifications of
the meta-heuristic algorithms needed in order to customize
them to the decision problem are summarized in Section IV.
Experimental evaluation is presented in Section V, and
Section VI concludes the paper and discusses ideas for future
research in this context.

II. OPTIMIZATION ALGORITHMS

The three different optimization algorithms used in this
paper are briefly reviewed in this section. The applicability
of these algorithms to the underlying optimization task is
further discussed in Section IV.

Particle Swarm Optimization (PSO, [2], [4], cf. Algo-
rithm 1) is a stochastic global optimization technique inspired
by the social behavior of swarms, where every individual or
particle traces a trajectory in the allowed search space. Each
particle i stores its current location ~li and velocity ~vi, the best
location it has visited so far ~lbi (“personal best”), and the best
location ~gb visited so far by the whole swarm (“global best”).
In each iteration, the particles move through the search space
based on their current weighted velocity ~vi incremented or
decremented by a weighted sum consisting of the differences
of ~lbi and ~li, and ~gb and ~li, respectively. At the end of each
iteration, the new locations are evaluated and ~lbi , and ~gb are
updated.

Differential Evolution (DE, [27], [5], cf. Algorithm 2) is
a simple but effective stochastic function minimizer. In DE,
a particle i is moved around in the search-space by using
simple mathematical formulation. At each iteration, a new
candidate solution for particle i is generated: a population
member p1 is chosen randomly, and for each dimension,
the weighted difference between two randomly selected
population members p2, p3 is added to p1 with a pre-defined
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Algorithm 1 – General structure of PSO

1: Initialize ~li and ~vi, the inertial weight w, and two
acceleration coefficients c1 and c2

2: repeat
3: Update velocity: ~vi = w · ~vi + c1 · rand · (~lbi − ~li) +

c2 · rand · (~gb −~li)
4: Update position: ~li = ~li + ~vi
5: Evaluation of fitness of new position f(~li)
6: Update (~lbi ) if f(~li) < f(~lbi ), and (~gb) if f(~li) < f(~gb)
7: until termination (time, iterations, convergence, . . . )

probability 2. The candidate vector is accepted for the next
generation if and only if it yields a better fitness than i.

Algorithm 2 – General structure of DE

1: Initialize ~li, differential weight F , crossover prob. CR
2: repeat
3: For each particle i do:
4: Random selection of particles p1, p2, p3
5: Create crossover probability vector ~R based on CR
6: Create candidate: ~c = ~lp1 + ~RT · F · (~lp2 −~lp3)
7: Update: if f(~c) < f(~li), then ~li = ~c
8: until termination (time, iterations, convergence, . . . )

The Fish School Search (FSS) algorithm [6], [28] is a
recently developed SI algorithm by Bastos-Filho and Lima-
Neto based on the social behavior of schools of fish. By
living in swarms, the fish improve survivability of the whole
group due to collaboration. Moreover, the fish perform col-
lective tasks in order to achieve synergy (e.g. finding loca-
tions with more food). The location of each fish represents
a possible solution and the individual success of a fish is
measured by its weight — consequently, promising areas can
be inferred from regions where bigger ensembles of fish are
located. FSS is based on feeding and swimming operators:
Feeding represents updating the weight of the fish based on
the successfulness of the current movement. Three different
swimming operators (individual movement, collective instinc-
tive movement, and collective volitive movement) move the
fish according to the feeding operator. For more details about
this algorithm the reader is referred to [6].

III. INDIVIDUAL DECISIONS

In Microeconomics, the accepted theory is that individu-
als, hence households, behave rationally. This implies that
purchases and labor should be in close affinity. Accordingly,
we assume that each household tries to maximize its utility
by either increasing consumption or leisure (i.e., time spent
not working). Consumption and leisure are two interact-
ing goods — under fixed environmental conditions increasing
consumption usually decreases leisure, and vice versa [26].
We define some declaration and notation in the following:

2 cf. the crossover probability vector ~R in Algorithm 2: For each dimen-
sion d, ~Rd is set to 1 if rand() <= CR, and set to 0 if rand() > CR.

Algorithm 3 – General structure of FSS

1: Initialize ~li, stepsize parameters, weights (wi = 1)
2: repeat
3: Swimming 1: Individual movement for each fish
4: Feeding: update weights for all fish based on new

locations
5: Swimming 2: Collective instinctive movement, i.e.,

movement towards overall direction
6: Swimming 3: Collective volitive movement, i.e., dila-

tion from or contraction towards baricenter
7: until termination (time, iterations, convergence, . . . )

- Goods. We are considering a fixed number of n distinct
goods (for simplicity, we do not distinguish between basic
and luxury goods). Each good does not resemble a single
item but rather a collection or group of similar items, e.g.,
food, transport, housing, communication, education, and so
on. The amount of each of the n goods consumed by an
individual is abbreviated as xi, and all goods are stored in
an n-dimensional item vector ~x = (x1, x2, ..., xn).
- Prices. In order to purchase each of the n goods, an
individual has to pay a different price for each good (i.e.,
for each group of items). The prices pi for each of the
n goods are stored in an n-dimensional price vector ~p =
(p1, p2, ..., pn).
- Work. Work is measured as the number of working hours
per decision unit (day, month, year, ...) and abbreviated as
w. We assume that work is limited by the maximum number
of working hours per decision unit wmax, which is defined
by external authorities (e.g. by a legal framework, medical
reasons, ...). We point out that it is also possible to set wmax
to the number of hours during some relevant period of time.
However, in this case one would assume that sleeping and
all other necessary daily duties count as leisure.
- Leisure time. In most cases, working is a “bad” for
individuals, however, it is possible to measure negative work
as a “good”. Leisure time refers to the time an individual
has available to her/him during some relevant period, i.e.,
the time this individual does not have to work wmax − w.
- Preferences. Each individual has different preferences for
each of the n goods, ~λ = (λ1, λ2, ..., λn). Additionally, each
individual has some preference for leisure time (denoted as
λlt). We note that the sum of all preferences (for leisure time
and all goods) is equal to 1, i.e., λlt +

∑n
i=1 λi = 1.

Utility Function. As underlying value allocation function for
this work serves the one designed by Cobb and Douglas [29].
This function provides the model with “well-behaved” pref-
erences, which are regarded as standard preferences for the
valuation of alternatives in micro economic theory [29]. In
the most-simple form an individual’s utility function u(c, l)
has only two arguments, consumption c and leisure l, and
has at least the following properties: Utility is always strictly
increasing in consumption (i.e., ∂u/∂c > 0), and leisure (i.e.,
∂u/∂l > 0). In the above utility function, consumption is
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the product of all goods to the power of the individual’s
preferences, i.e., c =

∏n
i=1 xi

λi . The second argument,
leisure, is computed as leisure time to the power of the
preference for leisure time, i.e., l = (wmax−w)λlt . Using a
basic Cobb-Douglas utility function in the form u(x1, x2) =
xc1 × xd2, utility can be computed as

u(c, l) = c× l ≡

(
n∏
i=1

xi
λi

)
× (wmax − w)

λlt . (1)

Constraints. The Cobb-Douglas function imposes some im-
plicit minimum consumption constraints for each good, since
the utility will decrease if either one or several of the goods,
and/or leisure are smaller than 1. However, this property of
the utility function should not harm our algorithm, since we
consider any xi as an agglomeration of different types of
goods. A zero consumption would mean to unrealistically
disclaim the consumption of one xi in total. In addition
to this implicit minimum consumption constraint, the above
utility function is subject to two explicit constraints which
cannot be violated:

- Constraint 1: Maximum work time. Work w is limited by the
maximum amount of work hours per relevant period wmax,
such that w ≤ wmax.

- Constraint 2: Limited budget. The expenses e cannot be
higher than the total salary s, such that e ≤ s, where e is
calculated as the sum of the products of the amount of each
good times the price for this good, e =

∑n
i=1 xi pi, and s is

calculated as work w times salary per hour sh 3, s = w×sh.

IV. AGENT-BASED META-HEURISTICS

In this study, we assume that each of the optimization al-
gorithms PSO, DE and FSS works as meta-heuristic decision
system within the mind of a single agent or individual. Math-
ematically, the position/location vector ~l of each heuristic
concatenates the item-vector ~x and work w, the values to be
optimized by the optimization algorithms. In each iteration,
the swarm computes new possible decisions for the agent,
and each particle resembles one considered solution. Similar
to [30], we simplify the comparison between a human choice
and the respective optimization algorithm by dividing the
selection process in two steps, (i) finding, and (ii) evaluating
candidate solutions (i.e., tuple/decision).

(i) The human decision finding process is influenced by in-
ternal and external factors: Internal factors are, e.g., curiosity
and experience of an individual. Historical positions of the
algorithms can be used as means to simulate experience of an
individual. Formerly successful solutions are hereby favored
and new solutions might be in close proximity to remembered
ones. Curiosity, as well as the huge number of external
factors can be simulated by the stochastic part involved in all
three algorithms, as for PSO, DE and FSS each new location

3We are not investigating the influence of any kind of taxes (including
income tax) on consumption or leisure. We assume that sh is the disposable
salary (income) per hour of an individual, i.e. her/his after tax income.

is partly based on some random movement. Algorithm-
specific properties and comparison to the human decision
finding process are discussed in Section IV-B

(ii) When an individual has found a new solution or tuple,
the utility of this solution is evaluated. Since individuals
aim at maximizing their utility, the solution that is expected
to provide the maximum utility is chosen. In case of the
Cobb-Douglas utility function (Eq. 1), the solutions are
evaluated according to the preferences the individual has for
the respective good and the quantities the solution contains.
For our approach, this implies that the fitness of a particles’
(fish’) position ~l is evaluated by computing the utility of
this position (Eq. 1). The best position found so far is then
regarded as the current solution (i.e., decision) of the agent.

A. Coping with unfeasible decisions

Unfeasible decisions either involve negative consumption
of a good or violate the constraints mentioned in Section
III. There are three situations when a consumer decision is
marked as invalid:

1) A valid decision does not allow for consuming negative
amounts of any good nor a negative amount of leisure time.
Hence, all negative values of ~x and leisure time are set to 0.

2) Constraint 1 in Section III cannot be violated. If work w
increases the maximum amount of working hours wmax, w
is reset to wmax.

3) Constraint 2 in Section III cannot be violated, i.e., the
expenses e cannot exceed the salary s.

In case of the first and/or second two situations (negative con-
sumption, exceeded wmax), the invalid decision are handled
automatically by all optimization algorithms. Technically,
this means that a position of a particle that is out-of-bounds,
i.e., outside the allowed search space, is mapped back to the
feasible range. More precisely, in situations (1) and (2) it is
not mapped to a random position within the search space but
rather bounded to the border of the search space (the lower
bound in situation (1) and the upper bound in situation (2)).

Situation (3), i.e., e > s, is handled differently by each
optimization algorithm, i.e., each optimization algorithm uses
a specific strategy which handles such invalid solutions. We
note that bounding is not the only solution to deal with
invalid solutions — sometimes it is possible to allow move-
ments to invalid solutions, however, without remembering
them. In other cases it is preferable to simply discard invalid
solutions. More details are discussed in the next section.

B. Algorithm-specific analysis and customization

In PSO, the personal best and global best position can be
used as means to simulate an individuals’ experience. At the
beginning, PSO involves a global search strategy where new
solutions can be spread across the whole search space. While
this depends to some extent on the size of the parameters and
the initialization of the particle’s velocities, it is a typical
behavior of PSO. This indicates a high level of curiosity
since new locations may be far away from current locations.

2928



PSO bounding. As a result, there is a rather high prob-
ability that newly found positions are out-of-bounds. PSO
deals with such situations using the “let-them-fly” bounding
strategy, which actually does not map a particle to a new
position, but “ignores” its current position for updating.
A solution outside the allowed search space is marked as
invalid and is not used for updating ~lbi nor for updating ~gb,
respectively (cf. Line 6 in Algorithm 1).

In DE, each newly found location is a mathematical com-
bination of three other locations/decisions. These three his-
torical decisions may simulate the experience of individuals.
Depending on the distribution of decisions, the new positions
may be rather close to the current positions if the swarm is
relatively compact, but may also be far away from the current
location if the swarm is wide-spread across the search space.

DE bounding. Since each candidate solution in DE is a
combination of other solutions, it is not possible to allow
particles to leave the search space, as there is a high proba-
bility that future candidate solutions which are based on this
solution will be invalid as well. Thus, we limit the update of
DE (Line 7 in Algorithm 2) such that only valid candidate
solution are considered. Compared to PSO, this limits the
level of curiosity, since all new locations are restricted to the
feasible search area. In the remainder of this paper we refer
to this bounding strategy as “no-invalid-move”.

In FSS, the quality of the current location and the weight of
each fish can be used to simulate an individual’s experience.
In this regard the weight provides the agent with experience
that a particular solution has already generated good results
in the past and is therefore worth to be considered in more
detail. The individual movement relies solely on the quality
of current locations, while the collective movements are
influenced by the fishs’ weights. These collective movements
are one of the main difference of FSS compared to PSO and
DE. Collective movements help to keep the fish close to each
other. Transcribed to the agents choice, this implicates that
considered solutions are rather small variations of current
decisions of the agent. Contrary to the collective movements,
the individual movement represents the curiosity part and the
search for new, eventually better solutions.

FSS bounding. Due to the operators of FSS, the bounding
strategies of FSS are different compared to those of PSO
and DE. After the individual movement, only valid solutions
are considered (i.e., we apply no-invalid-move strategy from
DE). This implies that invalid individual movements do not
contribute to the collective movements. Contrary to the indi-
vidual movements, the collective instinctive movement oper-
ator and the collective volitive movement operator use the so
called “bound-to-border” strategy, in which invalid solutions
are bound to the border of the search space. Technically,
particles are mapped to the indifference map corresponding
to the current salary. This is done by computing the ratio r
between salary and expenses r = s/e, and multiplying all
elements of ~x element-wise with this ratio, ~x = ~x · r. Since
r < 1, the elements of ~x are diminished, and, as a result, the
expenses are diminished until e equals s.

C. Optimization algorithms parameters vs. human decision

Table I gives an overview of possible interpretations of
the connection between some selected features of the dis-
cussed algorithms and their corresponding interpretation in
the process of human decision making.

TABLE I
POSSIBLE INTERPRETATIONS BETWEEN OPTIMIZATION HEURISTICS AND

HUMAN PERSPECTIVE IN DECISION FINDING

Parameter Possible interpretation

Particle/fish within
allowed range

A possible (i.e., valid and affordable) human
decision that might be taken into account

Update An attempt to find a new decision with better
utility (that is valid and affordable)

Velocity (for PSO)
Stepsize (for FSS)
Diff. weight (DE)

Individuals’ curiosity, i.e., the willingness to
change his/her current decision. However, it
is also connected with experience, since an
“inexperienced” consumer is more likely to
change its current decision than an “experi-
enced” consumer

Fitness evaluation Reflection of a specific decision

~gb and ~lbi (PSO) A remembered solution with rather high utility;
part of the human memory with links to similar
decisions (experience)

Weight (FSS) Quality of current movement; knowledge gained
from past experience

V. EXPERIMENTAL EVALUATION

All experiments were performed for 100 iterations, using
a swarm of 20 particles which resemble a reasonable number
of 20 alternative tuples a human might reflect in parallel. The
number of goods, prices, preferences, salary per hour sh and
preference for leisure time λlt are fixed (cf. Figure 1(a)) but
can be varied easily, although a classification of goods is
necessary due to the tremendous amount of possible goods.
The maximum number of work hours wmax was set to a
rather conservative value of 11 hours per day 4. For PSO
we used the gBest topology, c1 and c2 were set to standard
values of 2.05, while ω decreased linearly with the number
of iterations from 0.9 to 0.4. For DE we set CR to 0.8, while
F decreased linearly with the number of iterations from 1.2
to 0.1. For FSS we used the same parameters as in [6].

Initialization. In [26] we compared two different initial-
ization strategies to simulate the starting situation of a single
agent. The results in [26] indicate that these initialization
strategies do not have a significant influence on the simu-
lation process for PSO. We found that this holds also for
DE and FSS. Hence, due to space limitations we present
the results only for the initialization at low work, i.e., we
consider that agents start their search at a low work position.
All initial particles/fish reflect consumer decisions with only
a small amount of working hours and therefore only low
consumption — since expenses cannot extend the salary.

4Preferences, prices and wmax are fictive values, since a realistic setting
for those parameters is not required in order to evaluate the performance
and general applicability of the algorithms for the given optimization task.

2929



Preferences

Prices / Salary per hour

(a) Prices goods 1-6 (px) / salary per hour (sh) vs.
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(b) PSO
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(c) DE
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(d) FSS

Fig. 1. Iterative results of the best decision found so far by the whole population by each of the tested optimization algorithms.

Quantitative evaluation. The results for PSO, DE and FSS
and the corresponding bounding strategies are presented in
Figures 1(b) to 1(d), which show the following information
as average result over 30 independent runs: (i) The first graph
shows the quantity or amount of each of the six goods (cf.
vector ~x in Section III) per iteration, as well as the number
of working hours. Note the two different scales on the y-axis
which are separated by the solid black line. (ii) The second
graph shows the expenses in monetary units for each of the
six goods (i.e., ~x × ~p). The limits of the y-axis are set to
the maximum possible salary, i.e., wmax× sh = 110. Recall
that a decision at maximum possible salary corresponds to a
leisure time of 0. (iii) The third graph shows the utility per
iteration for all single runs, as well as the average utility and
the standard deviation over all 30 runs. Overall parameters
for prices and preferences are given in Figure 1(a).

Figures 1(b) to 1(d) indicate that all algorithms reach
almost similar levels of utility, but differ in the path of
reaching that level. In order to achieve a utility larger than
5 [6], FSS needs on average 8 [28] iterations, DE needs 12
[35] iterations, and PSO needs 14 [35] iterations. During the
first 3 iterations, PSO is not able to improve its initial best
decision, while DE and FSS improve already during the very
first iterations. Until iteration 15, PSO is able to significantly
improve its best decision, which is indicated by the steep
convergence plot and fast change in consumption / work deci-
sion. DE shows similar improvements, although the changes
are not as steep as for PSO. It is very interesting to notice that
such abrupt changes are not present in FSS, which steadily
increases its best decision without a significant alteration
between iterations but with continuous improvements. The
behavior of DE can be seen as an intermediate between
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Fig. 2. Results after given number of iterations

PSO and FSS, since convergence and decisions change more
slightly compared to PSO, building less sharp edges in
amount of goods and expenses diagrams. Another interesting
fact that is revealed refers to the amount of monetary units
that are not spent. While for DE, a relatively large amount
of monetary units is not spent during the first 30 to 40
iterations, this amount is significantly smaller for PSO and
almost negligible for FSS. The main reason for this behavior
is the no-invalid-move bounding strategy of DE. In order to
investigate the behavior of the three optimization algorithms
in more detail we evaluate the distribution of the swarm
during different iterations in the next section.

Swarm distribution. The distribution of particles of each
algorithm after different numbers of iterations is shown in
Figure 2. The search space for the agents decision consists
of infinite combinations of consumption of different goods
and offered hours of work. Gray and black points outline
randomly created valid solutions for the given setting of
salary and prices, black points present those valid solutions
that incorporate combinations of work and consumption
with a full spending of available salary, every point beyond
that border is an invalid solution. The optimum is marked
as yellow square with black border. Figures 2(a)-2(c) give
deeper insight in how the algorithms move through the search
space, which can be used to better understand the algorithms’
behavior and allows for analyzing the suitability of each
algorithm for simulating the human decision making process.

As can be seen in Figure 2(a), all three algorithms start
with very similar, valid decisions which are randomly dis-
tributed in an area of low work supply. Figure 2(b) shows the
distribution of the swarm after three iterations. PSO is still
mainly spread in a low-work and low-utility region, while all
particles (fish) in FSS already increased their decision and
are collectively located at decisions close to the validity limit
with significantly higher utility level compared to the initial
solutions. DE particles feature a spreading and localization
of particles in between PSO and FSS. After 10 iterations
(Figure 2(c)) the PSO particles are widely spread across
the search space, including particles in invalid areas. FSS
appears extremely concentrated on a intermediary utility level
and remains close to a position where the entire income
is spend for consumption. In comparison, DE solutions are

more concentrated than PSO solutions but more widespread
than FSS, occupying the lowest utility level of the three
algorithms. After 50 iterations (not shown) all swarms are
more concentrated and close to the optimum. However, FSS
still has the most compact swarm, while PSO continues the
search also in low utility areas and in areas without valid
decisions.

VI. DISCUSSION AND CONCLUSION

In this paper we have adopted three different optimiza-
tion methods for simulating the decision finding process
of consumers, namely Particle Swarm Optimization (PSO),
Differential Evolution (DE) and Fish School Search (FSS).
Implemented with slightly different bounding strategies to
cater for feasibility of decisions, all three algorithms ap-
peared to be suitable for the underlying problem. It became
clear that the different searching behavior and distribution
of swarm particles throughout the search space of the three
algorithms predestine them for simulating different types
of individuals. The primary goal of this paper is neither
fast convergence of the optimization algorithms nor the
optimality of the found solution, but rather the evaluation
of adequacy for simulating human decision making.

- In this regard, PSO seems to be suited for simulating risk
affine, visionary characters, indicated by the broad distribu-
tion of particles throughout the search space. This behavior,
that can be observed especially during the first iterations,
can be understood as an individual that considers very dif-
ferent consumption-work possibilities at the same time. This
behavior implies that the agent also considers combinations
of consumption-work that are similar to solutions that were
unfeasible for him in the past.

- On the contrary, FSS appears more appropriate for cau-
tious, systematic individuals, as the variation in considered
solutions as well as the change in decisions from one iteration
to the other is relatively small.

- DE arises as a solution for simulating intermediate behavior,
as the behavior of DE appears to be in between PSO and
FSS. In the case of DE, agents are equipped with an average
risk affinity, as they are neither very flexible nor very close-
minded to a single decision.
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As pointed out before, the three algorithms also differ in
terms of finding solutions that incorporate less consumption
spending than income. Since this approach does not include
inter-temporal utility, these savings cause a decrease of utility
for the respective solutions. However, models dealing with
savings might consider this characteristics of the algorithms

Scope of the presented study. This work has covered solely
the performance of the swarm techniques for a single agent
– the performance in an environment with interacting agents
has not been examined yet. A more detailed adjustment of
parameters and operators of the algorithms to individual
decision behavior and the calibration with statistical data
may contribute to a more accurate simulation. Another open
question is the inter temporal impact of savings. Furthermore,
the examined algorithms use heuristics for the search, but
not for the evaluation of solutions. Though, in a situation
of scarcity of time or processing capacity, humans may
use heuristics also for the latter [30] and even for choice
of applied heuristics [31]. Several interesting questions are
raised for future studies: the influence of more elaborated
bounding strategies that include the importance of distinct
items (e.g., basic vs. luxury goods), the influence of different
settings for the swarm and their contributions to a desired
search behavior, the influence of different topologies, and the
investigation of differently formulated fitness functions that
could simulate heuristics, e.g., in accordance with research
on consumer decision making in [8] or bounded rational-
ity [30]. Moreover, the simulation of societies with social
dynamics or changing parameters, the sharing of experiences
of group leaders, and the application of the algorithms to real
data in order to verify the reality of the obtained simulation
results are further interesting research direction.
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