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Abstract— Surrogate models or metamodels are widely used
in the realm of engineering for design optimization to minimize
the number of computationally expensive simulations. Most
practical problems often have conflicting objectives, which lead
to a number of competing solutions which form a Pareto
front. Multi-objective surrogate-based constrained optimization
algorithms have been proposed in literature, but handling
constraints directly is a relatively new research area. Most
algorithms proposed to directly deal with multi-objective op-
timization have been evolutionary algorithms (Multi-Objective
Evolutionary Algorithms - MOEAs). MOEAs can handle large
design spaces but require a large number of simulations, which
might be infeasible in practice, especially if the constraints are
expensive. A multi-objective constrained optimization algorithm
is presented in this paper which makes use of Kriging models,
in conjunction with multi-objective probability of improvement
(PoI) and probability of feasibility (PoF) criteria to drive the
sample selection process economically. The efficacy of the pro-
posed algorithm is demonstrated on an analytical benchmark
function, and the algorithm is then used to solve a microwave
filter design optimization problem.

I. INTRODUCTION

ENGINEERING design optimization of complex systems
such as aircraft, electronic filters, wireless sensors, etc.

often involves expensive simulations. Wang and Shan [1] cite
the example of an automotive crash simulation conducted
by Ford Motor Company which takes anywhere between
36 and 160 hours to complete. A two variable optimization
problem would take 75 days to 11 months to solve using
these estimates, which is unacceptable in practice. This time-
to-completion can be drastically scaled down if a cheaper
replacement is used instead of the expensive simulator.
Specifically, this work is concerned with data-based black-
box approximations, also known as surrogate models or
metamodels.

Surrogate models may be used as full replacements of the
underlying simulators for all intents and purposes (global
surrogate models), or may cover only a region within the
entire design space (local surrogate models). Local surrogate
models are often used in global design optimization frame-
works [2]. The methodology of using surrogate models to aid
the process of design optimization is called surrogate based
optimization (SBO). A SBO problem may be single-objective
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or multi-objective. This paper proposes a novel SBO algo-
rithm for multi-objective optimization problems which may
have additional computationally expensive constraints. The
optimization solution is given in the form of a set of equally
optimal solutions, i.e., the Pareto set.

This paper is organized as follows: Section II describes the
use of surrogate models in design optimization. The proposed
algorithm is presented in Section III and its efficacy is tested
on analytical and real-world problems in Section IV. Finally,
the conclusions are drawn in Section V.

II. MULTI-OBJECTIVE SURROGATE BASED

OPTIMIZATION

A typical surrogate modeling scenario is shown in Fig. 1.
The idea is to evaluate the simulator at a few carefully chosen
points in the design space, so as to maximize information
gain. In the case of global surrogate modeling, the goal is to
mimic the behavior of the simulator as closely as possible,
and the sample selection scheme chooses additional samples
to achieve this objective with a minimal number of expensive
samples.

Initial Design

Build Surrogate Model

Accurate?

Stop

Sample Selection

Yes

No

Fig. 1. Surrogate Modeling Flowchart.

In the case of surrogate-based optimization (SBO) the
aim is to find the global optimum, and the sample selec-
tion scheme selects additional samples to guide the search
towards the optimum. SBO methods have been widely used
in various fields such as aerospace, electromagnetics, metal-
lurgy, etc. [3]

The past decade has seen widespread use of SBO methods
to solve single-objective optimization problems. However,
most problems in the real-world are multi-objective with
the objectives often in conflict with each other, and some
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complex problems have additional constraints (over objec-
tives, or inputs). These constraints in turn may also be
computationally expensive to evaluate and, hence, applying
traditional constrained optimization methods may be too
time-consuming. Multi-objective optimization methods result
in multiple solutions, the Pareto set. Each solution in the
Pareto set can not be improved with respect to a particular
objective without compromising on another objective.

Most methods in literature to solve multi-objective opti-
mization problems directly have been evolutionary in nature.
Examples are the Non-dominated Sorting Genetic Algorithm
- II (NSGA-II) [8], the Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) [9] and the S-Metric Selection Evolutionary
MultiObjective Algorithm (SMS-EMOA) [10].

Although the resulting Pareto sets are convenient, multi-
objective evolutionary algorithms usually require a very large
number of simulations, which is a prohibitive factor when
simulations are expensive. Couckuyt et al. [4] presented a
MOSBO algorithm (Efficient Multiobjective Optimization
algorithm) which uses multi-objective formulations of prob-
ability of improvement (PoI) and expected improvement (EI)
criteria [6] with Kriging models. EMO is more efficient in
terms of number of function evaluations as compared to
evolutionary methods.

The algorithm proposed in this work uses the
hypervolume-based PoI criterion described in [4] to
handle multiple objectives and utilizes the Probability
of Feasibility (PoF) criterion to handle computationally
expensive constraints.

III. EFFICIENT CONSTRAINED MULTI-OBJECTIVE

OPTIMIZATION ALGORITHM (ECMO)

The sampling criteria employed by the proposed ECMO
algorithm make use of Kriging models to drive the op-
timization process. Kriging models are very popular and
widely used in surrogate modeling. A thorough mathematical
treatment has been given by Forrester et al. [5]. A basic
introduction is presented below. Multi-objective versions of
the hypervolume-based probability of improvement (PoI) [4]
and the probability of feasibility (PoF) are described in
subsequent sections.

A. Kriging

Given a set of 𝑛 samples 𝑋 , (x1, ...,xn)′ in 𝑑 dimensions
mapped to function values (𝑦1, ..., 𝑦𝑛)′,

𝑋 = (x1, ...,xn)
′ (1)

Kriging is composed of two components. The first com-
ponent is a regressor ℎ(𝑥), while the second component is
a centred Gaussian process 𝑍, which is constructed with
variance 𝜎2 and correlation matrix 𝜓 through the residuals.

𝑌 (x) = ℎ(x) + 𝑍(x). (2)

The regressor is coded in the 𝑛×𝑝 matrix 𝐹 having basis
functions 𝑏𝑖(x) for 𝑖 = 1...𝑝,

𝐹 =

⎛
⎜⎝
𝑏1(x1) 𝑏2(x1) ⋅ ⋅ ⋅ 𝑏𝑝(x1)

...
. . .

...
𝑏1(xn) 𝑏2(xn) ⋅ ⋅ ⋅ 𝑏𝑝(xn)

⎞
⎟⎠ ,

and the 𝑛× 𝑛 correlation matrix 𝜓 is given by,

𝜓 =

⎛
⎜⎝
𝜓(x1,x1) ⋅ ⋅ ⋅ 𝜓(x1,xn)

...
. . .

...
𝜓(xn,x1) ⋅ ⋅ ⋅ 𝜓(xn,xn)

⎞
⎟⎠ ,

where 𝜓(xi,xj) is the correlation function. 𝜓(xi,xj) is
parameterized by a set of hyperparameters 𝜃. Obtaining an
accurate model is highly dependent upon the choice of the
correlation function. In this work, the Matérn correlation
function [11] with 𝜈 = 3

2 is used for the experiments, which
is defined as

𝜓(x,x′)𝑀𝑎𝑡𝑒𝑟𝑛
𝜈= 3

2

= (1 +
√
3𝑙)𝑒𝑥𝑝(−

√
3𝑙), (3)

where

𝑙 =

√√√⎷ 𝑑∑
𝑖=1

𝜃𝑖(𝑥𝑖 − 𝑥′𝑖)
2.

The hyperparameters 𝜃 are identified by Maximum Like-
lihood Estimation (MLE) [4].

B. Hypervolume-based PoI

The single-objective probability of improvement sampling
criterion [5] has been widely used in practice, and discussed
in literature. The idea is to select subsequent samples such
that the current best output value 𝑦𝑚𝑖𝑛 is improved. Let
𝑦(x) be the prediction and 𝑠2(x) be the prediction variance
of the Kriging model, then the probability of having an
improvement is,

𝑃 (𝐼(x)) = Φ(𝑦𝑚𝑖𝑛)

where Φ(𝑡) is the normal cumulative distribution function

Φ(𝑡) = 1
2

(
1 + 𝑒𝑟𝑓

(
𝑡−𝑦(x)
𝑠(x)
√
2

))
with mean 𝑦(x) and variance

𝑠2(x), and 𝑒𝑟𝑓(⋅) is the Gauss error function.
However, in a multi-objective setting there are several

ways to measure the improvement over the current Pareto
set. Couckuyt et. al. [4] proposed to use the hypervolume-
based PoI for its good performance and fast calculation.

The hypervolume-based PoI is defined as,

𝑃ℎ𝑣(𝐼(x)) = ℋ𝑒𝑥𝑐(x)× 𝑃 (𝐼(x)),

where ℋ𝑒𝑥𝑐(x) is the exclusive hypervolume measuring the
improvement of a new sample x over the Pareto set and
𝑃 (𝐼(x)) is the multi-objective probability of improvement
given by,

𝑃 (𝐼(x)) =

∫
y∈𝐴

𝑚∏
𝑗=1

𝜙𝑗(𝑦𝑗)𝑑𝑦𝑗 ,

3081



with 𝐴 being the non-dominated region (Fig. 2) of the ob-
jective space and 𝑚 being the number of objective functions.
The function 𝜙𝑗 is the probability density function associated
with the Kriging model for the 𝑗

′𝑡ℎ objective denoted as
𝜙𝑗(𝑦𝑗) ≜ 𝜙𝑗(𝑦𝑗 ; 𝑦𝑗(x), 𝑠

2
𝑗 (x)).

y
1

y 2

 

 

Non−dominated region
Exclusive hypervolume

p

f3

f4

f5

f6

fv=7

f1

f2

Fig. 2. Illustration of a Pareto set of two objective functions. The dots
represent the Pareto points 𝑓 𝑖 , for 𝑖 = 1...𝑣. The integration area A
of the hypervolume-based PoI corresponds to the (light and dark) shaded
region which is decomposed into cells by a binary partitioning procedure.
The exclusive hypervolume of a point p relative to the Pareto set can be
computed from existing cells and corresponds to the dark shaded region.

Identifying 𝐴 and, hence, evaluating the criterion is rather
cumbersome. An efficient algorithm is suggested by Couck-
uyt et. al. which is used in this paper. For further information,
the reader is referred to Couckuyt et al. [4].

C. Probability of Feasibility

The probability of feasibility (PoF) criterion [6] is well
suited to handle expensive constraint functions. Intuitively,
the PoF criterion can be seen as a measure of the degree to
which a sample satisfies the constraints. The higher the prob-
ability, the stronger the indication that the sample satisfies
the constraints. Given 𝑘 constraint functions, each modelled
by a Kriging model, the probability of the prediction being
greater than the constraint limit can be computed in a manner
similar to the probability of improvement. Let 𝑔𝑖(x) be the
prediction and 𝑠2𝑖 (x) be the variance of the Kriging model
for the 𝑖𝑡ℎ constraint where 𝑖 = 1, .., 𝑘, then the probability
of feasibility can be defined as

𝑃 (𝐹𝑖(x) > 𝑔𝑖𝑚𝑖𝑛) = Φ

(
𝐹𝑖 − 𝑔𝑖(x)

𝑠𝑖(x)

)
,

where Φ(𝑡) is the standard normal cumulative distribution

function Φ(𝑡) = 1
2

(
1 + 𝑒𝑟𝑓( 𝑡√

2
)
)

, 𝑔𝑖 the constraint func-

tion, 𝑔𝑖𝑚𝑖𝑛 the limiting constraint value, 𝐹𝑖(x) = 𝐺𝑖(x) −
𝑔𝑖𝑚𝑖𝑛 the measure of feasibility and 𝐺𝑖(x) a random variable
for the 𝑖𝑡ℎ constraint. The combined probability of feasibility
of satisfying 𝑘 constraints then becomes

𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(x) =

𝑘∏
𝑖=1

𝑃 (𝐹𝑖(x) > 𝑔𝑖𝑚𝑖𝑛). (4)

The final multi-objective criterion 𝛾 used in this work is
obtained by multiplying the hypervolume-based PoI with the
PoF

𝛾(x) = 𝑃ℎ𝑣(𝐼(x))× 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(x).

Optimizing this criterion will provide an automatic balance
between selecting points which: (i) improve the Pareto set
satisfying all the constraints, (ii) improve the accuracy of
the Kriging models of the objectives and constraints. The
candidates satisfying the constraints will have a high value
of 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, while the candidates which minimize the ob-
jective more will have a high value of 𝑃ℎ𝑣 . Thus, candidates
having a high 𝛾 value will be more desirable in terms of
satisfying the constraints as well as improving the value
of the objective function(s). The flowchart of the ECMO
algorithm can be seen in Fig. 3.

Initial Design

Evaluate points

Build Kriging model

Stopping 
criteria 

reached?

Stop

Generate random 
candidates

Compute γ for each 
candidate

Add the candidate with highest γ to 
existing samples

Yes

No

Fig. 3. Flowchart of the ECMO algorithm.

Since the uncertainty of the Kriging model will be high
during the start of the optimization process due to the limited
number of samples available, the value of the PoF criterion
for candidate samples will not be very close to 0 or 1. As
the algorithm iterates and more samples are selected, the
uncertainty will decrease and the Kriging model will be more
certain and assign probabilities close to 0 or 1 to candidate
samples.

Since each objective and each constraint is modeled using
a separate Kriging model, the algorithm is prone to slowing
down as the number of objectives and constraints (𝑚 + 𝑘)
increases. However, the increase in number of dimensions
𝑑 has a more severe effect on the modeling speed as the
complexity of building a Kriging model is cubic in the
number of total samples and increases exponentially with
the number of dimensions. Typically, the number of samples
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required to build an accurate model is directly proportional
to the dimensionality of the problem. As the dimensionality
𝑑 of the problem increases, an increasing amount of samples
would be needed to train the Kriging model and the speed of
model construction will become progressively slower. These
limitations can be countered to an extent by using different
approximation methods for Kriging [12].

IV. EXAMPLES

The ECMO algorithm is tested on an analytical, and a
real-world problem. The analytical example is the Nowacki
Beam Problem [13], while the real-world problem is the
design of a microwave filter. The experiments are performed
using the SUrrogate MOdeling MATLAB1 Toolbox (SUMO)
[14], which is freely available for personal non-commercial
use. MATLAB’s fmincon optimizer was used to optimize the
best candidate selected using the 𝛾 criterion. The stopping
criterion used for the experiments was a limit on the number
of samples or function evaluations. Other possible stopping
criteria include stopping when the model reaches a certain
accuracy (e.g. cross-validation error below a specified limit)
and a limit on the time (in seconds/minutes/hours) the
algorithm takes.

A. Nowacki Beam Problem

Nowacki [13] described a tip-loaded encastre cantilever
beam design problem [5] for minimum cross-sectional area
and lowest bending stress subject to specified constraints.
Considering a rectangular beam of length 𝑙 = 1.5 m, subject
to a tip-load 𝐹 = 5 kN, with design variables being height
ℎ and breadth 𝑏 of the beam, the constrained optimization
problem can be formulated as:

Min
𝑏,ℎ

𝐴, 𝜎𝐵

for

20 mm < ℎ < 250 mm,

10 mm < 𝑏 < 50 mm,

s.t.

𝛿 ≤ 5mm,

𝜎𝐵 ≤ 𝜎𝑌 ,

𝜏 ≤ 𝜎𝑌 /2,

ℎ/𝑏 ≤ 10,

𝐹𝐶𝑅𝐼𝑇 ≥ 𝑓 × 𝐹,

where 𝐴 = 𝑏× ℎ is the cross-sectional area of the beam,
𝜎𝐵 = 6𝐹𝑙/(𝑏ℎ2) is the bending stress, 𝛿 = 𝐹𝑙3/(3𝐸𝐼𝑌 )
is the maximum tip deflection, 𝜎𝑌 is the yield stress of the
material, 𝜏 = 3𝐹/(2𝑏ℎ) is the maximum allowable shear
stress, ℎ/𝑏 is the height-to-breadth ratio, and 𝐹𝐶𝑅𝐼𝑇 =
(4/𝑙2)

√
𝐺𝐼𝑇𝐸𝐼𝑍/(1− 𝜈2) is the failure force of buckling.

Here, 𝐼𝑇 = (𝑏3ℎ+ 𝑏ℎ3)/12, 𝐼𝑍 = 𝑏3ℎ/12, and 𝑓 is a safety
factor of two.

1MATLAB, The MathWorks Inc., Natick, MA

The material under consideration is mild steel with yield
stress 𝜎𝑌 = 240 MPa, Young’s modulus 𝐸 = 216.62 GPa,
𝜈 = 0.27 and shear modulus 𝐺 = 86.65 GPa.

Fig. 4. Non-dominated solutions of the Nowacki beam problem found
using ECMO.

Fig. 5. The selected samples for the Nowacki beam problem.

The ECMO algorithm was allowed to run for a total of
50 sample points, beginning with a Latin Hypercube of 11
points in addition to the 4 corner points. The result of the
proposed algorithm for the Nowacki beam problem can be
seen in Fig. 4. The sample points can be seen in Fig. 5. The
Pareto front clearly describes the trade-off between the two
objectives - at the extreme value of one objective, the other
has its least value. It should be noted that there are points
which satisfy all the constraints, but are not included in the
Pareto set as they are dominated by other solutions.

For the purpose of comparison, the NSGA-II algorithm
was used to solve the problem. The population size was set
to 10, and the algorithm was allowed to run for 4 generations
to match the limit of 50 total function evaluations imposed

3083



Fig. 6. Non-dominated solutions of the Nowacki beam problem found
using NSGA-II.

on ECMO. The resulting Pareto front can be seen in Fig. 6.
The ECMO algorithm was able to find 27 non-dominated

solutions, as compared to 9 non-dominated solutions found
by Forrester et. al. [5] (using multi-objective constrained
expected improvement) and 10 found by NSGA-II using the
same number of total samples.

Although it can be argued that initializing NSGA-II with a
larger population may yield more solutions, that would come
at the cost of sacrificing the number of generations.

B. Double Folded Stub Microwave Filter

The ECMO algorithm is used to model a Double Folded
Stub (DFS) microwave filter with constraints on its scattering
parameters and design parameters. The filter is similar to the
one described in Chemmangat et. al. [15].

Fig. 7. Layout of the DFS microwave filter.

The design variables are the spacing 𝑆 between a folded
stub and the main line, the length 𝐿 of each folded stub,
and the width 𝑊 of each conductor. The scattering matrix
S(𝑓, 𝑆, 𝐿,𝑊 ) is computed using the ADS Momentum EM
simulator2. The frequency 𝑓 is sampled over the range [5-20]
GHz using 91 uniformly distributed samples. The substrate
is 0.254 mm thick with relative permittivity 𝜖𝑟 equal to 9.9.
The scattering matrix S(𝑓, 𝑆, 𝐿,𝑊 ) can be written as

2Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.

S(𝑓, 𝑆, 𝐿,𝑊 ) =

[
𝑆11(𝑓, 𝑆, 𝐿,𝑊 ) 𝑆12(𝑓, 𝑆, 𝐿,𝑊 )
𝑆21(𝑓, 𝑆, 𝐿,𝑊 ) 𝑆22(𝑓, 𝑆, 𝐿,𝑊 )

]
,

(5)
and is a complex-valued matrix composed of a real and
imaginary part.

TABLE I

DESIGN PARAMETERS OF THE DFS MICROWAVE FILTER

Parameter Min Max
Spacing 0.15 mm 1.5 mm
Length 0.5 mm 5.0 mm
Width 0.1 mm 0.5 mm

The design specifications are formulated in terms of objec-
tives and constraints on the scattering parameters and design
variables. The constrained optimization problem is defined
as

Min
𝑆,𝑊,𝐿

−∣𝑆21∣dB,

∣𝑆21∣dB

for

(5 GHz ≤ 𝑓 ≤ 8 GHz, 18 GHz ≤ 𝑓 ≤ 20 GHz),

(12 GHz ≤ 𝑓 ≤ 14 GHz),

respectively

s.t.

3𝑊 + 2𝑆 ≤ 2 mm

∣𝑆11∣dB ≥ -3 dB for 12 GHz ≤ 𝑓 ≤ 14 GHz

∣𝑆21∣dB ≤ -30 dB for 12 GHz ≤ 𝑓 ≤ 14 GHz

∣𝑆11∣dB ≤ -10 dB for 5 GHz ≤ 𝑓 ≤ 8 GHz

and 18 GHz ≤ 𝑓 ≤ 20 GHz

∣𝑆21∣dB ≥ -3 dB for 5 GHz ≤ 𝑓 ≤ 8 GHz

and 18 GHz ≤ 𝑓 ≤ 20 GHz

where ∣.∣dB = 20 𝑙𝑜𝑔10∣.∣ and ∣.∣ indicates the absolute value
operator. It should be noted that the objective −∣𝑆21∣dB

corresponds to the frequency range 𝑓1 = (5 ≤ 𝑓 ≤ 8, 18 ≤
𝑓 ≤ 20) GHz and objective ∣𝑆21∣dB corresponds to the
frequency range 𝑓2 = (12 ≤ 𝑓 ≤ 14) GHz.

The algorithm was allowed to run with a total simulation
budget of 150 samples. The initial design was a Latin
Hypercube of 50 samples, in addition to 8 corner points. One
sample per iteration was added till the sampling budget was
exhausted. Each simulation takes approximately a minute on
an Intel Core i5 machine with 8 GB RAM. It is desirable to
perform as few simulations as possible while searching for
possible solutions.

The result of the algorithm can be seen in Fig. 8 and Fig. 9.
It can be observed that the hypervolume-based probability of
improvement and probability of feasibility sampling criteria
drive the sampling towards the region with a high likelihood
of having design points which minimize the objectives and
satisfy constraints. This leads to a dense clustering which
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Fig. 8. Pareto set for the DFS microwave filter.

Fig. 9. Selected sampling locations for the DFS microwave filter. The region
containing the Pareto-optimal solutions is very small and the solutions can
be seen in a magnified view.

can be seen in Fig. 9. Since the algorithm is able to zoom in
on the interesting region quickly, the approach minimizes the
number of expensive simulations required by concentrating
on the regions having a high likelihood of containing possible
solutions.

The layouts and frequency responses (∣𝑆11∣dB, ∣𝑆21∣dB) of
three of the filter designs from the Pareto set are depicted in
Figs. 10 - 18. Although each of the solutions in the Pareto
set are non-dominated, the designer may prefer one over the
other based on different criteria like selecting the solution
with the values of the design parameters 𝑆, 𝐿, or 𝑊 which
are most suitable for the robustness of the design considering
fabrication tolerances.

The stopping criteria also depend on the designer. A de-
signer might want to obtain Pareto-optimal solutions rapidly
in case there is a need to get the product in the market
quickly, or when the designer wants to check possible so-

Fig. 10. Layout of one of the Pareto-optimal DFS filter designs with design
variables (𝑆,𝐿,𝑊 ) = (0.7168, 1.7449, 0.1887) mm.

Fig. 11. ∣𝑆11∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7168, 1.7449, 0.1887) mm.

Fig. 12. ∣𝑆21∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7168, 1.7449, 0.1887) mm.
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Fig. 13. Layout of one of the Pareto-optimal DFS filter designs with design
variables (𝑆,𝐿,𝑊 ) = (0.7236, 1.7536, 0.1824) mm.

Fig. 14. ∣𝑆11∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7236, 1.7536, 0.1824) mm.

Fig. 15. ∣𝑆21∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7236, 1.7536, 0.1824) mm.

Fig. 16. Layout of one of the Pareto-optimal DFS filter designs with design
variables (𝑆,𝐿,𝑊 ) = (0.7292, 1.7159, 0.1805) mm.

Fig. 17. ∣𝑆11∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7292, 1.7159, 0.1805) mm.

Fig. 18. ∣𝑆21∣ response of one of the Pareto-optimal DFS filter designs
with design variables (𝑆,𝐿,𝑊 ) = (0.7292, 1.7159, 0.1805) mm.
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lutions for different values of constraints/objectives. In such
cases the sampling budget will be small. On the other hand,
a designer might also want the freedom to obtain a large
number of competing Pareto-optimal solutions so that they
can later be evaluated based on other parameters.

V. CONCLUSIONS

We have presented the ECMO algorithm to solve compu-
tationally expensive constrained multi-objective optimization
problems which uses Kriging models in conjunction with
probability of improvement (PoI) and probability of feasi-
bility (PoF). The ECMO algorithm performed as expected
on test problems and has the ability to solve multi-objective
constrained optimization problems. The algorithm however
suffers from the well-known limitations of surrogate mod-
eling methods with respect to the limited input dimension-
ality of the problems which can be handled. However, the
ECMO algorithm can be applied to problems having up to 7
objectives, which is sufficient for most real-world problems.
Future work will compare the ECMO algorithm with existing
methods to solve constrained multi-objective optimization
problems.
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