
 
 

 

  

Abstract—Rectangle packing problem exists widely in 
manufacturing processes of modern industry, such as cutting of 
wood, leather, metal and paper, etc. It is also known as a typical 
NP-Complete combinatorial optimization problem with 
geometric nature, which contains two sub-problems, parking 
problem and sequencing problem of rectangles. Considering the 
features of the problem, this paper proposes an optimization 
algorithm based on an improved genetic algorithm (GA), 
combined with a lowest front-line strategy for parking 
rectangles on the sheet. The genetic algorithm is introduced to 
determine packing sequence of rectangles. To avoid premature 
convergence or falling into local optima, the traditional GA is 
improved by changing genetic factors according to quality of 
solutions obtained during evolution. Numerical experiments 
were conducted to take an evaluation for the proposed 
algorithm, along with a comparison with another algorithm. 
The simulation results show that the proposed algorithm has 
better performance in optimization results and can improve 
utilization rate of material effectively. 

I. INTRODUCTION 
ECTANGLE packing problem is the most studied issue 
in the field of two-dimension packing problem. It studies 
how to pack a set of rectangles with various sizes on a 

specified rectangle sheet without overlap. The optimization 
target of packing problem is to minimize the wasted material 
and maximize the utilization rate. Application of rectangle 
packing exists widely in manufacturing processes of cutting, 
blanking and machining of various materials in modern 
industry, such as wood, leather, metal and paper, etc. Thus, it 
is an important means for manufacturing enterprises to 
achieve material savings and cost reduction that using 
advanced theory and technology to realize packing 
optimization. 

According to computational complexity theory, rectangle 
packing problem is a typical NP-Complete combinatorial 
optimization problem. For such problem, computation 
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complexity will grow explosively with increase of scale of 
problem. Therefore, it is hard to obtain the optimal solution of 
the problem in a reasonable time. In the meanwhile, packing 
problem is also a layout problem with geometric nature, 
which makes it different from general combinatorial 
optimization problem. It is the key point that how to design 
and construct effective strategy and algorithm to find a 
satisfactory solution in an acceptable time. 

There were many researches on rectangle packing problem 
in the past years and various algorithms were presented for 
problem solving. In these studies, most researchers 
decomposed the problem into two sub-problems as follows, 

(1) Parking problem of rectangles, i.e. how to find out the 
most suitable position where the rectangles are place on the 
sheet. The sub-problem performs as a geometric layout 
problem. 

(2) Sequencing problem of rectangles, i.e. how to 
determine packing sequence of each rectangle in packing 
process. This sub-problem performs as a combinatorial 
optimization problem.  

Current researches on rectangle packing problem are 
focusing on problem-solving of the above sub-problems. 
Corresponding algorithms were designed to solve the 
sub-problems respectively. For parking problem of 
rectangles, a certain packing algorithms were put forward, 
such as BL algorithm[1], improved BL[2, 3], mate algorithm of 
surplus rectangles[4], skyline algorithm[5] and rectangle 
combination[6]. For sequencing problem of rectangles, 
intelligent optimization algorithms were considered in most 
literatures, such as heuristic algorithm[7], genetic algorithm[8, 

9], simulated annealing algorithm[10], ant-colony algorithm[11] 
and particle swarm algorithm[12]. The solving methods of two 
sub-problems can be combined to solve the whole problem. 

As an evolutionary algorithm, genetic algorithm has many 
advantages for solving sequencing problem of rectangles, 
such as its global search capability and clear structure. But, 
traditional GA also has some disadvantages, such as 
premature convergence. Also, to a large extent, performance 
of GA is influenced by design of evolution mechanism, such 
as selection, crossover and mutation of solutions. In this 
paper, we propose an optimization algorithm based on an 
improved GA, combined with a lowest front-line strategy for 
parking rectangles on the sheet. The genetic algorithm is 
introduced to determine packing sequence of rectangles. To 
avoid premature convergence or falling into local optima, 
idea of varied-factor is introduced in the traditional GA and 
reasonable evolution mechanism is design to improve search 
performance of algorithm.  
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II. PROBLEM DESCRIPTION 
According to different technological requirement in 

practice, rectangle packing problem has different descriptions. 
The generalized description of the problem can be stated as 
follows: For a set of given rectangles with different sizes, to 
find the best packing plan under specific requirements to 
place all the rectangles to rectangular sheet with fixed width 
but unlimited height(or fixed height but unlimited width), and 
maximize utilization of the sheet. Fig. 1 shows a packing 
result of eight rectangles on a sheet with fixed width (the 
shaded parts represent the wasted material). 

Generally, packing of rectangles should satisfy the 
following constraints: 

(1) There is no overlap between two arbitrary rectangles. 
(2) Every rectangle could not exceed the borders of the 

sheet. 
(3) Rotation of rectangles is allowable, but the rotation 

angle can only be 90 degrees, which guarantees the borders of 
angle parallel to the borders of sheet. 

Given a sheet with a width of W, xi and yi denote the 
bottom-left coordinates of  rectangle pi(1≤i≤n) in X direction 
(horizontally) and Y direction (vertically) respectively after it 
was placed on the sheet, li and hi denote the sizes of rectangle 
pi(1≤i≤n) in X direction and Y direction respectively when 
being placed on the sheet, S denotes sum of areas of all the 
rectangles, and H denotes the Y-coordinate of the highest 
horizontal line of outer contour formed by all rectangles after 
a whole packing process. The utilization of sheet is defined as 
ratio of sum of areas of all rectangles to area of used sheet and 
is denoted as U. Under the above definition, the mathematical 
model of rectangle packing problem can be formulated as 
follows: 
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Thus, the optimization objective of rectangle packing 
problem is to search for the best packing scheme to maximize 
the utilization ratio of sheet, i.e. U. Obviously, for a set of 
given rectangles and a rectangular sheet with specific size, the 
packing scheme depends on two factors: one is the way a 
rectangle parks around those rectangles which were already 

placed, and the other is the packing sequence of each 
rectangles. The optimization proposed later in this paper will 
present the solving method for the two problems. 

III. DESCRIPTION OF OPTIMIZATION ALGORITHM 
Considering geometric feature of packing problem, we 

apply a parking algorithm based on lowest front-line strategy 
to place every rectangle; for its combinatorial optimization 
feature, we apply an improved genetic algorithm to solving 
the sequencing problem. A combination algorithm of the two 
algorithms is constructed to solve the rectangle packing 
problem. 

A. Parking algorithm based on lowest front-line strategy 
In the past literatures, BL algorithm or improved BL 

algorithm were often used to park rectangles for its simplicity 
and feasibility. But numerical tests showed that they had 
common disadvantages that “peaks” of rectangles often occur 
while packing rectangles, which made optimization 
performance deteriorate in some cases. To avoid the “peak” 
problem, we apply a parking algorithm based on lowest 
front-line strategy to place every rectangle. The concept 
“front-line” means the outer contour formed by borders of the 
sheet and the rectangles already placed on the sheet, which 
could be expressed by a set of horizontal lines. The lowest 
front-line strategy always gives priority to the lowest lines on 
the front-line to park the next rectangle to be placed. The 
steps of the parking algorithm are: 

Step 1: Initialize the front-line. At the beginning of 
packing, the front-line is just the bottom border of the sheet 
(i.e. the initial front-line contains only one horizontal line). 

Step 2: Place one rectangle on the sheet based on lowest 
front-line strategy. When placing the ith rectangle, named pi, 
we first select a horizontal line with lowest height from the 
front-line, then judge whether the width of the chosen line are 
equal or bigger than the width of pi. If the condition is true, we 
place the rectangle pi on that line and park it to the left side. If 
the condition is false, we raise the height of the lowest line to 
that of the second lowest horizontal line in the front-line and 
repeat the judgement stated previously until a line from the 
front-line wide enough to place the rectangle.  

In this step, some special cases should be noticed. First, if 
there are more than one horizontal line with lowest height, we 
choose the line to conduct judgement from low to high 
according to their X coordinates in the sheet. When a line 
satisfies, the placement of the rectangle is conducted and the 
selection is terminated. Second, if the raised horizontal line 
happens to close to the second lowest line, these adjacent 
horizontal lines with same height should be merged into one 
horizontal line to provide a wider space. 

Step 3: Update the front-line. With a new rectangle placed 
on the sheet, the contour of placed rectangles inevitably 
changes. So, the horizontal lines on the front-line should be 
updated. Some old line may be cut into shorter lines, and 
some new line may be added in. Also, like the case mention in 
step 2, some adjacent lines with same height should be 
merged into one line. In this step, we are to obtain a new set of 
horizontal line of the new front-line. 

Step 4: If all rectangles were placed, then terminate the 

 
Fig. 1 Schematic diagram of rectangle packing 
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algorithm; otherwise, choose the next rectangle to be placed, 
go back to step 2 and continue. 

Fig. 2 shows a demonstration of parking algorithm based 
on lowest front-line strategy. Initially, the set of horizontal 
line on the front-line is {A1A5}. Obviously, A1A5 is chosen to 
place rectangle P1, and the new front-line is {E1E2, A2A5} 
after placement of P1. Similarly, the lowest line A2A5 is then 
chosen to place rectangle P2, and the resulted front-line is 
{E1E2, B1B3, A3A5}. In same mode, rectangle P3 is placed on 
the line A3A5 and {E1E2, B1B3, C1C2, A4A5} is obtained. At 
this point, the lowest line in the front-line is A4A5, while its 
width is not enough to place rectangle P4. Thus, A4A5 is 
raised to be aligned with B1B3, the second lowest line in 
front-line. Because there are two lowest line (A4A5 and B1B3), 
search is conducted and line B1B3 is found out to place P4. 
The final front-line is then {E1E2, D1D2, B2B3, C1C2, B4B5} 
after placement of P4. 

B. Improved Genetic Algorithm based on varied factors 
Traditional genetic has disadvantage of premature 

convergence. One of the causes is the roulette method which 
is often used to generate child solutions from parents. For 
example, some chromosomes with good fitness reproduce 
rapidly, which cause premature convergence; randomness of 
roulette may miss some good chromosomes and cause 
population degradation. Rectangle packing problem is a kind 
of discrete optimization problem. In the discrete solution 
space, the optimal solution may not always exist in the 
neighborhood of a sub-optimal solution, while it may close to 
a worse solution. For these reasons, we improve the genetic 
algorithm from two sides: first, we impose different evolution 
method on solutions with different fitness, which guarantees 
diversity of population; second, we apply different set of 
genetic factors based on evolution performance of solutions, 
which introduces self-adjusting capability for the algorithm 
and make the algorithm approach much closer to the optimal 
solution in a limited number of iterations. 

1) Chromosome encoding and fitness function 
In the genetic algorithm, chromosome encoding is to 

transfer possible solutions in original solution space to 
solutions which can be handled by GA. In GA, a chromosome 
is used to represent a possible solution, which can be encoded 
in binary, real or symbol. Here we use decimal encoding 
method: first we number each rectangle with a unique 
decimal number continuously, and then we construct a 
numerical sequence with numbers of all rectangles, in which 
the order of appearance of a numbered rectangle represents its 
packing sequence. If the number of every rectangle is 
regarded as a gene, the numerical sequence is just a 
chromosome (i.e. a solution in solution space). The coding 
way could be described mathematically: for n rectangles {p1, 

p2,..., pn}, where pi(1≤i≤n) is a decimal number corresponding 
to a specific rectangle, the set of possible chromosomes is 
C={( pk1, ... pki,..., pkj,..., pkn)| 1≤ki, kj≤n , ki ≠ kj }. 

According to equation (1), we choose the fitness function 
as f(P)=S/SP, where P denotes a packing scheme, S is sum of 
all rectangles and SP is area of used sheet, part under the 
highest horizontal line on the front-line. obviously， 0< 
f(P)≤1. 

 2) Operation of selection, crossover and mutation 
Selection, crossover and mutation are important method of 

solution evolution in GA. To guarantee population diversity, 
different from traditional GA, we impose different operations 
on solutions with different fitness. First, we sort the solutions 
in parent population by fitness of them in descending order. 
Then, solutions with better fitness (i.e. solutions in the front 
of the sorted sequence) are reserved to be a part of solutions in 
children population. Finally, the rest solutions, which have 
worse fitness, are used to carry out crossover or mutation to 
generate other children solutions. 

Provided that the size of population in GA is N and remains 
constant, the operations of selection, crossover and mutation 
are described as follows. 

(1) Selection 
In our GA, selection is used to retain better solutions to 

children population. The method of selection is to retain the 
solutions of top psN fitness in the parent population to the next 
population, where ps (0<ps<1) is a preset selection factor and 
N is size of population. The roulette method is abandoned for 
avoiding possible loss of good solutions. 

(2) Crossover 
Crossover is the most direct and effective method to 

generate new solutions, which plays a central role in GA. In 
our GA, we choose PMX crossover method proposed by 
Goldberg and Lingle[13] to generate new solutions. The main 
point of PMX crossover is choosing randomly two solutions 
in the rest solutions which are not chosen in selection stage to 
generate new solutions by two-point crossover method. For 
two solutions, e.g. S1 and S2, the rules of generating new 
solutions by PMX crossover are described as follows: 

Step 1: generate two crossover points randomly in S1 and 
S2, and define the matching parts, as shown in Fig. 3. 

In Fig. 3, the asterisk(*) is crossover points generated 
randomly, and parts between crossover points are matching 
parts of two solutions, which are labeled with underlines. 
There is a one-to-one correspondence between the genes (i.e. 
numbers) in the matching parts of two solutions in accordance 
with their locations. For example, the number 5, 6 and 1 in S1 
are corresponding to 2, 7 and 8 in S2 respectively. 

Step 2: Exchange the two matching parts and obtain two 
“new solutions” S1’ andS2’, as shown in Fig. 4. The “new 
solutions” may be illegal solution for they may have same 
genes in their own sequence, for example, the genes labeled 
with boxes in Fig. 4. 

 
Fig. 2 Parking algorithm based on lowest front-line strategy 

 
Fig. 3 Generate matching parts 
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Step 3: for “new solutions” obtained in step 2, replace 
relevant genes according to their correspondence and obtain 
two legal new solutions S1’’ and S2’’. For “new solutions” in 
Fig. 4, the illegal genes in S1’, 7, 2 and 8, are replaced 
respectively by corresponding genes, i.e. 6, 5 and 1, which is 
designated in Fig. 3. Then, a new legal solution, S1’’, is 
obtained. The other new solution, S1’’, could be also obtained 
in same way. The result of replacement of genes is shown in 
Fig. 5. 

By the crossover operation mentioned above, every set of 
two solutions selected randomly from parent population can 
generate two new solutions. The quantity of new solutions 
generated is limited to pcN, where pc (0<pc<1) is the preset 
selection factor and N is size of population. 

(3) Mutation 
Mutation is another way to generate new solutions and is a 

effective supplement of crossover. Moreover, it could keep 
diversification of solutions to escape local optima, which will 
improve global search performance of GA. Considering 
features of packing problem, we design two mutations to 
generate new solutions: one is exchange mutation and the 
other is rotation mutation. 

Exchange mutation means exchanging locations of two 
genes selected randomly in one parent solution, by which a 
new solution is generated. 

Rotation mutation is used to determine whether a rectangle 
is rotated by 90 degrees when being placing on the sheet. To 
conduct rotation mutation, we first select a parent solution 
randomly, then generate a random position between [1, n], 
where n is the length of a chromosome. The gene 
(corresponding to a specific rectangle) on the position should 
change its original rotation direction, i.e., 0 changed to 90 or 
90 changed to 0. In order to contain rotation direction in a 
chromosome, we extend encoding method mentioned 
previously by using sign of plus or minus to specify whether a 
rectangle should be rotated. In the simulation test, we use plus 
for no rotation (0 degree) and minus for rotation by 90 
degrees. So, we can just apply sign reversing to a gene 
selected randomly to conduct rotation mutation. 

Both of the mutations could generate a new solution from a 
parent solution. We define the quantities of new solutions 
generated by exchange mutation and rotation mutation are 
pmeN and pmrN respectively, where pme (0<pme<1) and pmr 
(0<pmr<1) denotes a preset exchange mutation factor and a 
preset rotation mutation factor respectively. 

It is noted that, in order to maintain a constant population 
size of each generation, the factors of selection, crossover and 
mutation should satisfy the condition of ps+pc+pme+pmr=1. 

3) GA based on varied-factor 
Researches showed that convergence rate and solution 

quality of GA depends on selection of genetic factors to a 
great extent. Generally, selection factor has a main impact on 
convergence rate of GA, while crossover factor and mutation 
factor play important part in searching for better solutions in 
the solution space. From this point, we consider apply 
different factor settings at different stages of algorithm, by 
which the algorithm could be self-adjusting and have better 
performance than fixed factor setting. The idea of 
varied-factor GA is described as follows: 

At the initial stage of algorithm, selection factor ps is set to 
a bigger value（0.6≤ps<1），the other three factors, pc, pmc and 
pmr, are set to smaller values。A bigger selection factor will 
make algorithm converge in a short time and approach to a 
sub-optimal solution. When the algorithm is searching 
repeatedly in a subspace and the best solution found has not 
been improved in consecutive generations, it means the 
algorithm has fallen into local optimal and can not extend the 
search to much wider space. In this case, it needs to adjust the 
genetic factors to prevent the algorithm from premature 
convergence. Adjustment of genetic factors is somewhat 
opposite to the initial stage, that is to set ps to a smaller 
value(0<ps≤0.4), and pc, pmc and pmr are set to bigger values. 
The purpose of that is to let more parent solutions join the 
operations of crossover and mutation, which could not only 
generate more new solutions but also extend search space. 

It is noted that the stages of algorithm vary with changes of 
the best solution found and settings of the judgement 
conditions. In practical execution of algorithm, these two 
stages execute alternately, which prevents the algorithm from 
being subject to fixed factors. 

C. Optimization algorithm for rectangle packing problem 

 
Fig. 4  “new solutions” obtained by exchanging matching parts 

 
Fig. 5 Legal new solutions after gene replacement 

 
Fig. 6 Optimization algorithm for rectangle packing problem 

355



 
 

 

    Combined with the lowest front-line parking algorithm, the 
varied-factor GA is constructed to solve the rectangle packing 
problem. The flow chart of the combined algorithm is shown 
in Fig. 6. In the flow chart, every chromosome generated in 
each generation of population by varied-factor GA will be 
interpreted as a packing sequence of rectangles. Then, the 
parking algorithm based on lowest front-line will be applied 
to these packing sequences to place rectangles one by one. 
Fitness of each chromosome will be computed and evaluated 
by the cost function mentioned previously for each layout 
result.  

IV. SIMULATION RESULTS 
To evaluate the performance of optimization algorithm 

proposed in this paper, we programmed under Visual C++ 
2008 to implement this algorithm.  

First, we made a comparison with the algorithm proposed 
in literature [8], which applied traditional GA to solve the 
problem, under the simulation example. In the example, 20 
kinds of rectangles with different sizes are given (the quantity 
of rectangles is 59), and the width of the sheet is 400. Details 
of rectangles of the example are shown in Table I. 

 In our simulation test, the parameters involved in our 

algorithm are listed in Table II. The condition of switching to 
the other search stage (corresponding to different set of 
genetic factors) is whether the best solution found has not 
been improved in 5 generations. The condition of termination 
is that the times of iterations reach the preset maximum 
iteration. 

The optimization results of the two algorithms are shown 
in Table III. In the table, Average means the average 
utilization rate of 50 times of computation results. Best means 
the best results that the algorithms obtained in 50 
computations. AverageTime means average time for 
computation.  

For further evaluation of the algorithms, we took 
simulation tests on 10 groups of examples generated 
randomly under the same parameters. The test data are shown 
in Table IV. 

The comparison results shown in Table IV demonstrate 
that the algorithm proposed in this paper obtains higher 
average and best utilization rates of sheet than algorithm in [8] 
for almost every tested example. The simulation test indicates 
that varied genetic factors in different stages of genetic 
algorithm would help improve local or global search ability 
and have more chance to reach optimal solution during the 

optimization process. Furthermore, under the maximum 
iteration of 300 with 100 solutions in each population, the 
average computation times needed are not so long for all the 
examples, which means the algorithm used here would have 
satisfactory response time in practice.  

V. CONCLUSION 
This paper presents an effective optimization algorithm 

based on lowest front-line strategy and varied-factor GA for 
solving rectangle packing problem. The method of varying 
genetic factors in different stages of algorithm can improve 
search performance in the solution space and prevent 
premature convergence. The evaluation data show that the 
proposed algorithm can obtain better results than traditional 

TABLE II 
PARAMETERS INVOLVED IN ALGORITHM 

Size 
of 

popul 
-ation 

Maxi 
-mum 
itera 
-tion 

First Stage Second Stage 

ps pc pme pmr ps pc pme pmr 

100 300 0.8 0.1 0.05 0.05 0.2 0.4 0.2 0.2 

 
TABLE III 

OPTIMIZATION RESULTS(I) 

Algorithm in [8] Algorithm in this paper 

Average Best Average Best AverageTime(s) 

84.59% 85.92% 85.51% 87.75% 26.3 

 

TABLE IV 
OPTIMIZATION RESULTS(II) 

Group 
No. 

Rectangle Algorithm in [8] Algorithm in this paper 
Kinds Quantity Average Best Average Best AverageTime(s) 

1 13 80 84.97% 86.04% 85.36% 86.99% 37.5 
2 14 78 85.54% 86.46% 85.59% 87.57% 36.3 
3 15 79 84.33% 85.98% 84.94% 85.76% 38.6 
4 15 98 85.11% 85.46% 85.54% 87.71% 45.9 
5 16 76 83.75% 85.47% 84.94% 87.11% 35.7 
6 16 92 83.79% 84.78% 84.44% 85.72% 42.1 
7 18 113 82.05% 82.33% 83.08% 84.12% 53.4 
8 20 112 83.52% 84.72% 84.19% 84.96% 51.4 
9 21 99 84.77% 85.75% 85.29% 86.70% 42.5 

10 29 142 85.49% 86.34% 85.82% 88.01% 62.7 

TABLE I 
DETAILS OF RETANGLES OF SIMULATION EXAMPLE IN [8] 

No. of 
Rectangle types 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Length 25 18 79 121 29 64 36 48 11 46 55 87 39 31 41 78 19 63 10 50 
Height 36 24 84 30 48 98 21 59 17 121 22 41 72 25 65 24 11 36 30 61 

Quantity 4 5 3 4 11 2 2 3 2 2 1 2 2 2 2 3 2 2 3 2 
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GA. It should be mentioned that combinations of genetic 
factors used in our algorithm are relatively fixed, which 
makes the algorithm has different performance when dealing 
with different examples. In the future work, we will make 
in-depth analysis to the influence of different combinations of 
genetic factors on performance of the algorithm and seek a 
way to making the algorithm have the ability of self-adaptive.  
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