

Abstract—Rectangle packing problem exists widely in
manufacturing processes of modern industry, such as cutting of
wood, leather, metal and paper, etc. It is also known as a typical
NP-Complete combinatorial optimization problem with
geometric nature, which contains two sub-problems, parking
problem and sequencing problem of rectangles. Considering the
features of the problem, this paper proposes an optimization
algorithm based on an improved genetic algorithm (GA),
combined with a lowest front-line strategy for parking
rectangles on the sheet. The genetic algorithm is introduced to
determine packing sequence of rectangles. To avoid premature
convergence or falling into local optima, the traditional GA is
improved by changing genetic factors according to quality of
solutions obtained during evolution. Numerical experiments
were conducted to take an evaluation for the proposed
algorithm, along with a comparison with another algorithm.
The simulation results show that the proposed algorithm has
better performance in optimization results and can improve
utilization rate of material effectively.

I. INTRODUCTION
ECTANGLE packing problem is the most studied issue
in the field of two-dimension packing problem. It studies
how to pack a set of rectangles with various sizes on a

specified rectangle sheet without overlap. The optimization
target of packing problem is to minimize the wasted material
and maximize the utilization rate. Application of rectangle
packing exists widely in manufacturing processes of cutting,
blanking and machining of various materials in modern
industry, such as wood, leather, metal and paper, etc. Thus, it
is an important means for manufacturing enterprises to
achieve material savings and cost reduction that using
advanced theory and technology to realize packing
optimization.

According to computational complexity theory, rectangle
packing problem is a typical NP-Complete combinatorial
optimization problem. For such problem, computation

LIU Haiming is with the College of Automation Science and Engineering,

South China University of Technology, Guangzhou, 510640 PRC (phone:
080-8711-4489; e-mail: hmliu@ scut.edu.cn).

ZHOU Jiong is with the College of Automation Science and Engineering,
South China University of Technology, Guangzhou, 510640 PRC (e-mail:
895531636@ qq.com).

WU Xinsheng is with the College of Automation Science and
Engineering, South China University of Technology, Guangzhou, 510640
PRC (e-mail: auxswu@ scut.edu.cn).

YUAN Peng is with the College of Automation Science and Engineering,
South China University of Technology, Guangzhou, 510640 PRC (e-mail:
pangyuan@ scut.edu.cn).

This work was partly supported by National High Technology Research
and Development Program of China (No. 2012AA041312) and the
Fundamental Research Funds for the Central Universities of SCUT (No.
2014ZZ0033).

complexity will grow explosively with increase of scale of
problem. Therefore, it is hard to obtain the optimal solution of
the problem in a reasonable time. In the meanwhile, packing
problem is also a layout problem with geometric nature,
which makes it different from general combinatorial
optimization problem. It is the key point that how to design
and construct effective strategy and algorithm to find a
satisfactory solution in an acceptable time.

There were many researches on rectangle packing problem
in the past years and various algorithms were presented for
problem solving. In these studies, most researchers
decomposed the problem into two sub-problems as follows,

(1) Parking problem of rectangles, i.e. how to find out the
most suitable position where the rectangles are place on the
sheet. The sub-problem performs as a geometric layout
problem.

(2) Sequencing problem of rectangles, i.e. how to
determine packing sequence of each rectangle in packing
process. This sub-problem performs as a combinatorial
optimization problem.

Current researches on rectangle packing problem are
focusing on problem-solving of the above sub-problems.
Corresponding algorithms were designed to solve the
sub-problems respectively. For parking problem of
rectangles, a certain packing algorithms were put forward,
such as BL algorithm[1], improved BL[2, 3], mate algorithm of
surplus rectangles[4], skyline algorithm[5] and rectangle
combination[6]. For sequencing problem of rectangles,
intelligent optimization algorithms were considered in most
literatures, such as heuristic algorithm[7], genetic algorithm[8,

9], simulated annealing algorithm[10], ant-colony algorithm[11]
and particle swarm algorithm[12]. The solving methods of two
sub-problems can be combined to solve the whole problem.

As an evolutionary algorithm, genetic algorithm has many
advantages for solving sequencing problem of rectangles,
such as its global search capability and clear structure. But,
traditional GA also has some disadvantages, such as
premature convergence. Also, to a large extent, performance
of GA is influenced by design of evolution mechanism, such
as selection, crossover and mutation of solutions. In this
paper, we propose an optimization algorithm based on an
improved GA, combined with a lowest front-line strategy for
parking rectangles on the sheet. The genetic algorithm is
introduced to determine packing sequence of rectangles. To
avoid premature convergence or falling into local optima,
idea of varied-factor is introduced in the traditional GA and
reasonable evolution mechanism is design to improve search
performance of algorithm.

Optimization Algorithm for Rectangle Packing Problem Based on
Varied-factor Genetic Algorithm and Lowest Front-Line Strategy

Haiming Liu, Jiong Zhou，Xinsheng Wu, Peng Yuan

R

352

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. PROBLEM DESCRIPTION
According to different technological requirement in

practice, rectangle packing problem has different descriptions.
The generalized description of the problem can be stated as
follows: For a set of given rectangles with different sizes, to
find the best packing plan under specific requirements to
place all the rectangles to rectangular sheet with fixed width
but unlimited height(or fixed height but unlimited width), and
maximize utilization of the sheet. Fig. 1 shows a packing
result of eight rectangles on a sheet with fixed width (the
shaded parts represent the wasted material).

Generally, packing of rectangles should satisfy the
following constraints:

(1) There is no overlap between two arbitrary rectangles.
(2) Every rectangle could not exceed the borders of the

sheet.
(3) Rotation of rectangles is allowable, but the rotation

angle can only be 90 degrees, which guarantees the borders of
angle parallel to the borders of sheet.

Given a sheet with a width of W, xi and yi denote the
bottom-left coordinates of rectangle pi(1≤i≤n) in X direction
(horizontally) and Y direction (vertically) respectively after it
was placed on the sheet, li and hi denote the sizes of rectangle
pi(1≤i≤n) in X direction and Y direction respectively when
being placed on the sheet, S denotes sum of areas of all the
rectangles, and H denotes the Y-coordinate of the highest
horizontal line of outer contour formed by all rectangles after
a whole packing process. The utilization of sheet is defined as
ratio of sum of areas of all rectangles to area of used sheet and
is denoted as U. Under the above definition, the mathematical
model of rectangle packing problem can be formulated as
follows:

ni
y

Wlx
Wx

ts

WH

hl
UMax

i

ii

i

n

i
ii

≤≤
⎪
⎩

⎪
⎨

⎧

≥
≤+≤

≤≤

=
∑

=

1 ,
0

0
0

..

, 1

 (1)

Thus, the optimization objective of rectangle packing
problem is to search for the best packing scheme to maximize
the utilization ratio of sheet, i.e. U. Obviously, for a set of
given rectangles and a rectangular sheet with specific size, the
packing scheme depends on two factors: one is the way a
rectangle parks around those rectangles which were already

placed, and the other is the packing sequence of each
rectangles. The optimization proposed later in this paper will
present the solving method for the two problems.

III. DESCRIPTION OF OPTIMIZATION ALGORITHM
Considering geometric feature of packing problem, we

apply a parking algorithm based on lowest front-line strategy
to place every rectangle; for its combinatorial optimization
feature, we apply an improved genetic algorithm to solving
the sequencing problem. A combination algorithm of the two
algorithms is constructed to solve the rectangle packing
problem.

A. Parking algorithm based on lowest front-line strategy
In the past literatures, BL algorithm or improved BL

algorithm were often used to park rectangles for its simplicity
and feasibility. But numerical tests showed that they had
common disadvantages that “peaks” of rectangles often occur
while packing rectangles, which made optimization
performance deteriorate in some cases. To avoid the “peak”
problem, we apply a parking algorithm based on lowest
front-line strategy to place every rectangle. The concept
“front-line” means the outer contour formed by borders of the
sheet and the rectangles already placed on the sheet, which
could be expressed by a set of horizontal lines. The lowest
front-line strategy always gives priority to the lowest lines on
the front-line to park the next rectangle to be placed. The
steps of the parking algorithm are:

Step 1: Initialize the front-line. At the beginning of
packing, the front-line is just the bottom border of the sheet
(i.e. the initial front-line contains only one horizontal line).

Step 2: Place one rectangle on the sheet based on lowest
front-line strategy. When placing the ith rectangle, named pi,
we first select a horizontal line with lowest height from the
front-line, then judge whether the width of the chosen line are
equal or bigger than the width of pi. If the condition is true, we
place the rectangle pi on that line and park it to the left side. If
the condition is false, we raise the height of the lowest line to
that of the second lowest horizontal line in the front-line and
repeat the judgement stated previously until a line from the
front-line wide enough to place the rectangle.

In this step, some special cases should be noticed. First, if
there are more than one horizontal line with lowest height, we
choose the line to conduct judgement from low to high
according to their X coordinates in the sheet. When a line
satisfies, the placement of the rectangle is conducted and the
selection is terminated. Second, if the raised horizontal line
happens to close to the second lowest line, these adjacent
horizontal lines with same height should be merged into one
horizontal line to provide a wider space.

Step 3: Update the front-line. With a new rectangle placed
on the sheet, the contour of placed rectangles inevitably
changes. So, the horizontal lines on the front-line should be
updated. Some old line may be cut into shorter lines, and
some new line may be added in. Also, like the case mention in
step 2, some adjacent lines with same height should be
merged into one line. In this step, we are to obtain a new set of
horizontal line of the new front-line.

Step 4: If all rectangles were placed, then terminate the

Fig. 1 Schematic diagram of rectangle packing

353

algorithm; otherwise, choose the next rectangle to be placed,
go back to step 2 and continue.

Fig. 2 shows a demonstration of parking algorithm based
on lowest front-line strategy. Initially, the set of horizontal
line on the front-line is {A1A5}. Obviously, A1A5 is chosen to
place rectangle P1, and the new front-line is {E1E2, A2A5}
after placement of P1. Similarly, the lowest line A2A5 is then
chosen to place rectangle P2, and the resulted front-line is
{E1E2, B1B3, A3A5}. In same mode, rectangle P3 is placed on
the line A3A5 and {E1E2, B1B3, C1C2, A4A5} is obtained. At
this point, the lowest line in the front-line is A4A5, while its
width is not enough to place rectangle P4. Thus, A4A5 is
raised to be aligned with B1B3, the second lowest line in
front-line. Because there are two lowest line (A4A5 and B1B3),
search is conducted and line B1B3 is found out to place P4.
The final front-line is then {E1E2, D1D2, B2B3, C1C2, B4B5}
after placement of P4.

B. Improved Genetic Algorithm based on varied factors
Traditional genetic has disadvantage of premature

convergence. One of the causes is the roulette method which
is often used to generate child solutions from parents. For
example, some chromosomes with good fitness reproduce
rapidly, which cause premature convergence; randomness of
roulette may miss some good chromosomes and cause
population degradation. Rectangle packing problem is a kind
of discrete optimization problem. In the discrete solution
space, the optimal solution may not always exist in the
neighborhood of a sub-optimal solution, while it may close to
a worse solution. For these reasons, we improve the genetic
algorithm from two sides: first, we impose different evolution
method on solutions with different fitness, which guarantees
diversity of population; second, we apply different set of
genetic factors based on evolution performance of solutions,
which introduces self-adjusting capability for the algorithm
and make the algorithm approach much closer to the optimal
solution in a limited number of iterations.

1) Chromosome encoding and fitness function
In the genetic algorithm, chromosome encoding is to

transfer possible solutions in original solution space to
solutions which can be handled by GA. In GA, a chromosome
is used to represent a possible solution, which can be encoded
in binary, real or symbol. Here we use decimal encoding
method: first we number each rectangle with a unique
decimal number continuously, and then we construct a
numerical sequence with numbers of all rectangles, in which
the order of appearance of a numbered rectangle represents its
packing sequence. If the number of every rectangle is
regarded as a gene, the numerical sequence is just a
chromosome (i.e. a solution in solution space). The coding
way could be described mathematically: for n rectangles {p1,

p2,..., pn}, where pi(1≤i≤n) is a decimal number corresponding
to a specific rectangle, the set of possible chromosomes is
C={(pk1, ... pki,..., pkj,..., pkn)| 1≤ki, kj≤n , ki ≠ kj }.

According to equation (1), we choose the fitness function
as f(P)=S/SP, where P denotes a packing scheme, S is sum of
all rectangles and SP is area of used sheet, part under the
highest horizontal line on the front-line. obviously， 0<
f(P)≤1.

 2) Operation of selection, crossover and mutation
Selection, crossover and mutation are important method of

solution evolution in GA. To guarantee population diversity,
different from traditional GA, we impose different operations
on solutions with different fitness. First, we sort the solutions
in parent population by fitness of them in descending order.
Then, solutions with better fitness (i.e. solutions in the front
of the sorted sequence) are reserved to be a part of solutions in
children population. Finally, the rest solutions, which have
worse fitness, are used to carry out crossover or mutation to
generate other children solutions.

Provided that the size of population in GA is N and remains
constant, the operations of selection, crossover and mutation
are described as follows.

(1) Selection
In our GA, selection is used to retain better solutions to

children population. The method of selection is to retain the
solutions of top psN fitness in the parent population to the next
population, where ps (0<ps<1) is a preset selection factor and
N is size of population. The roulette method is abandoned for
avoiding possible loss of good solutions.

(2) Crossover
Crossover is the most direct and effective method to

generate new solutions, which plays a central role in GA. In
our GA, we choose PMX crossover method proposed by
Goldberg and Lingle[13] to generate new solutions. The main
point of PMX crossover is choosing randomly two solutions
in the rest solutions which are not chosen in selection stage to
generate new solutions by two-point crossover method. For
two solutions, e.g. S1 and S2, the rules of generating new
solutions by PMX crossover are described as follows:

Step 1: generate two crossover points randomly in S1 and
S2, and define the matching parts, as shown in Fig. 3.

In Fig. 3, the asterisk(*) is crossover points generated
randomly, and parts between crossover points are matching
parts of two solutions, which are labeled with underlines.
There is a one-to-one correspondence between the genes (i.e.
numbers) in the matching parts of two solutions in accordance
with their locations. For example, the number 5, 6 and 1 in S1
are corresponding to 2, 7 and 8 in S2 respectively.

Step 2: Exchange the two matching parts and obtain two
“new solutions” S1’ andS2’, as shown in Fig. 4. The “new
solutions” may be illegal solution for they may have same
genes in their own sequence, for example, the genes labeled
with boxes in Fig. 4.

Fig. 2 Parking algorithm based on lowest front-line strategy

Fig. 3 Generate matching parts

354

Step 3: for “new solutions” obtained in step 2, replace
relevant genes according to their correspondence and obtain
two legal new solutions S1’’ and S2’’. For “new solutions” in
Fig. 4, the illegal genes in S1’, 7, 2 and 8, are replaced
respectively by corresponding genes, i.e. 6, 5 and 1, which is
designated in Fig. 3. Then, a new legal solution, S1’’, is
obtained. The other new solution, S1’’, could be also obtained
in same way. The result of replacement of genes is shown in
Fig. 5.

By the crossover operation mentioned above, every set of
two solutions selected randomly from parent population can
generate two new solutions. The quantity of new solutions
generated is limited to pcN, where pc (0<pc<1) is the preset
selection factor and N is size of population.

(3) Mutation
Mutation is another way to generate new solutions and is a

effective supplement of crossover. Moreover, it could keep
diversification of solutions to escape local optima, which will
improve global search performance of GA. Considering
features of packing problem, we design two mutations to
generate new solutions: one is exchange mutation and the
other is rotation mutation.

Exchange mutation means exchanging locations of two
genes selected randomly in one parent solution, by which a
new solution is generated.

Rotation mutation is used to determine whether a rectangle
is rotated by 90 degrees when being placing on the sheet. To
conduct rotation mutation, we first select a parent solution
randomly, then generate a random position between [1, n],
where n is the length of a chromosome. The gene
(corresponding to a specific rectangle) on the position should
change its original rotation direction, i.e., 0 changed to 90 or
90 changed to 0. In order to contain rotation direction in a
chromosome, we extend encoding method mentioned
previously by using sign of plus or minus to specify whether a
rectangle should be rotated. In the simulation test, we use plus
for no rotation (0 degree) and minus for rotation by 90
degrees. So, we can just apply sign reversing to a gene
selected randomly to conduct rotation mutation.

Both of the mutations could generate a new solution from a
parent solution. We define the quantities of new solutions
generated by exchange mutation and rotation mutation are
pmeN and pmrN respectively, where pme (0<pme<1) and pmr
(0<pmr<1) denotes a preset exchange mutation factor and a
preset rotation mutation factor respectively.

It is noted that, in order to maintain a constant population
size of each generation, the factors of selection, crossover and
mutation should satisfy the condition of ps+pc+pme+pmr=1.

3) GA based on varied-factor
Researches showed that convergence rate and solution

quality of GA depends on selection of genetic factors to a
great extent. Generally, selection factor has a main impact on
convergence rate of GA, while crossover factor and mutation
factor play important part in searching for better solutions in
the solution space. From this point, we consider apply
different factor settings at different stages of algorithm, by
which the algorithm could be self-adjusting and have better
performance than fixed factor setting. The idea of
varied-factor GA is described as follows:

At the initial stage of algorithm, selection factor ps is set to
a bigger value（0.6≤ps<1），the other three factors, pc, pmc and
pmr, are set to smaller values。A bigger selection factor will
make algorithm converge in a short time and approach to a
sub-optimal solution. When the algorithm is searching
repeatedly in a subspace and the best solution found has not
been improved in consecutive generations, it means the
algorithm has fallen into local optimal and can not extend the
search to much wider space. In this case, it needs to adjust the
genetic factors to prevent the algorithm from premature
convergence. Adjustment of genetic factors is somewhat
opposite to the initial stage, that is to set ps to a smaller
value(0<ps≤0.4), and pc, pmc and pmr are set to bigger values.
The purpose of that is to let more parent solutions join the
operations of crossover and mutation, which could not only
generate more new solutions but also extend search space.

It is noted that the stages of algorithm vary with changes of
the best solution found and settings of the judgement
conditions. In practical execution of algorithm, these two
stages execute alternately, which prevents the algorithm from
being subject to fixed factors.

C. Optimization algorithm for rectangle packing problem

Fig. 4 “new solutions” obtained by exchanging matching parts

Fig. 5 Legal new solutions after gene replacement

Fig. 6 Optimization algorithm for rectangle packing problem

355

 Combined with the lowest front-line parking algorithm, the
varied-factor GA is constructed to solve the rectangle packing
problem. The flow chart of the combined algorithm is shown
in Fig. 6. In the flow chart, every chromosome generated in
each generation of population by varied-factor GA will be
interpreted as a packing sequence of rectangles. Then, the
parking algorithm based on lowest front-line will be applied
to these packing sequences to place rectangles one by one.
Fitness of each chromosome will be computed and evaluated
by the cost function mentioned previously for each layout
result.

IV. SIMULATION RESULTS
To evaluate the performance of optimization algorithm

proposed in this paper, we programmed under Visual C++
2008 to implement this algorithm.

First, we made a comparison with the algorithm proposed
in literature [8], which applied traditional GA to solve the
problem, under the simulation example. In the example, 20
kinds of rectangles with different sizes are given (the quantity
of rectangles is 59), and the width of the sheet is 400. Details
of rectangles of the example are shown in Table I.

 In our simulation test, the parameters involved in our

algorithm are listed in Table II. The condition of switching to
the other search stage (corresponding to different set of
genetic factors) is whether the best solution found has not
been improved in 5 generations. The condition of termination
is that the times of iterations reach the preset maximum
iteration.

The optimization results of the two algorithms are shown
in Table III. In the table, Average means the average
utilization rate of 50 times of computation results. Best means
the best results that the algorithms obtained in 50
computations. AverageTime means average time for
computation.

For further evaluation of the algorithms, we took
simulation tests on 10 groups of examples generated
randomly under the same parameters. The test data are shown
in Table IV.

The comparison results shown in Table IV demonstrate
that the algorithm proposed in this paper obtains higher
average and best utilization rates of sheet than algorithm in [8]
for almost every tested example. The simulation test indicates
that varied genetic factors in different stages of genetic
algorithm would help improve local or global search ability
and have more chance to reach optimal solution during the

optimization process. Furthermore, under the maximum
iteration of 300 with 100 solutions in each population, the
average computation times needed are not so long for all the
examples, which means the algorithm used here would have
satisfactory response time in practice.

V. CONCLUSION
This paper presents an effective optimization algorithm

based on lowest front-line strategy and varied-factor GA for
solving rectangle packing problem. The method of varying
genetic factors in different stages of algorithm can improve
search performance in the solution space and prevent
premature convergence. The evaluation data show that the
proposed algorithm can obtain better results than traditional

TABLE II
PARAMETERS INVOLVED IN ALGORITHM

Size
of

popul
-ation

Maxi
-mum
itera
-tion

First Stage Second Stage

ps pc pme pmr ps pc pme pmr

100 300 0.8 0.1 0.05 0.05 0.2 0.4 0.2 0.2

TABLE III

OPTIMIZATION RESULTS(I)

Algorithm in [8] Algorithm in this paper

Average Best Average Best AverageTime(s)

84.59% 85.92% 85.51% 87.75% 26.3

TABLE IV
OPTIMIZATION RESULTS(II)

Group
No.

Rectangle Algorithm in [8] Algorithm in this paper
Kinds Quantity Average Best Average Best AverageTime(s)

1 13 80 84.97% 86.04% 85.36% 86.99% 37.5
2 14 78 85.54% 86.46% 85.59% 87.57% 36.3
3 15 79 84.33% 85.98% 84.94% 85.76% 38.6
4 15 98 85.11% 85.46% 85.54% 87.71% 45.9
5 16 76 83.75% 85.47% 84.94% 87.11% 35.7
6 16 92 83.79% 84.78% 84.44% 85.72% 42.1
7 18 113 82.05% 82.33% 83.08% 84.12% 53.4
8 20 112 83.52% 84.72% 84.19% 84.96% 51.4
9 21 99 84.77% 85.75% 85.29% 86.70% 42.5

10 29 142 85.49% 86.34% 85.82% 88.01% 62.7

TABLE I
DETAILS OF RETANGLES OF SIMULATION EXAMPLE IN [8]

No. of
Rectangle types 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Length 25 18 79 121 29 64 36 48 11 46 55 87 39 31 41 78 19 63 10 50
Height 36 24 84 30 48 98 21 59 17 121 22 41 72 25 65 24 11 36 30 61

Quantity 4 5 3 4 11 2 2 3 2 2 1 2 2 2 2 3 2 2 3 2

356

GA. It should be mentioned that combinations of genetic
factors used in our algorithm are relatively fixed, which
makes the algorithm has different performance when dealing
with different examples. In the future work, we will make
in-depth analysis to the influence of different combinations of
genetic factors on performance of the algorithm and seek a
way to making the algorithm have the ability of self-adaptive.

REFERENCES
[1] Jakobs S. “On the genetic algorithms for the packing of polygons,”

European Journal of Operational Research, 1996, 88: 165- 181.
[2] Leo Ho Wai Yeung, K S Wallace Tange. “A hybrid genetic approach

for garment cutting in the clothing industry,” IEEE Transactions on
Industrial Electronics, 2003, 50(3): 449- 455.

[3] Tang Kwok-wah, Tang Wallace Kit-sang. “Metal cutting with hybrid
genetic algorithm,” 3rd IEEE International Conference Industrial
Informatics, 2005: 735- 739.

[4] LIANG Lidong, YE Jiawei, WEI dong. “Mate Algorithm of Surplus
Rectangle on Layout of the Parts of Ships,” Ship & Ocean Engineering,
2008, vol. 37, no. 4, pp. 7-9.

[5] Lijun Wei, Wee-Chong Oon, Wenbin Zhu, Andrew Lim. “A skyline
heuristic for the 2D rectangular packing and strip packing problems,”
European Journal of Operational Research, 2011, 215: 337-346.

[6] Christoforos Charalambous,Krzysztof Fleszar. “A constructive
bin_oriented heuristic for the two-dimensionalbin packing problem
with guillotine cuts,” Computers & Operations Research,. 2011, 38:
1443-1451.

[7] Hopper E, Turton B C H. “An empirical investigation of
meta-heuristics and heuristics algorithms for a 2D packing problem,”
European Journal of Operational Research, 2001, 128: 34- 57.

[8] Gong Zhihui, Huang Xingmei. “Study on Improvement of
Optimization Algorithm for Two-dimensional Rectangle Pakcing,”
Journal of Hunan University(Natural Sciences), 2003, 30(3): 47-49.

[9] Chaouiya C. “Petri net modelling of biological networks,” Brief
Bioinform, 2007, 30(11): 1889-1900.

[10] Dereli T, Das G S. “A hybrid simulated-annealing algorithm for
two-dimensional strip packing problem,” Adaptive and Natural
Computing Algorithms, 2007: 508-516.

[11] Salto C, Leguizamón G, Alba E, et al. “Evolutionary and Ant Colony
Optimization Based Approaches for a Two-Dimensional Strip Packing
Problem,” Natural Intelligence for Scheduling, Planning and Packing
Problems, 2009: 245-266.

[12] WANG Shan-shan. “Application of Chaotic Discrete Particle Swarm
Algorithm in Rectangle Packing,” Computer Engineering, 2010,
36(23): 174-176.

[13] Goldberg DE, Lingle R. “Alleles, loci, and the traveling salesman
problem,” In: Grefenstette JJ (ed) Proceedings of an International
Conference on Genetic Algorithms and Their Applications. 1985:
154-159.

357

