
Parallelization of Information Set Monte Carlo Tree
Search

Nick Sephton∗, Peter I. Cowling∗, Edward Powley†, Daniel Whitehouse∗, and Nicholas H. Slaven‡
∗York Centre for Complex Systems Analysis, Department of Computer Science, University of York, United Kingdom

Email: njs523@york.ac.uk, peter.cowling@york.ac.uk, dw830@york.ac.uk
†Orange Helicopter Games, York, United Kingdom.

Email: ed@orangehelicopter.com
‡Stainless Games, Isle of Wight, United Kingdom

Email: nick@stainlessgames.com

Abstract—Process parallelization is more important than ever,
as most modern hardware contains multiple processors and
advanced multi-threading capability. This paper presents an
analysis of the parallel behaviour of Information Set Monte
Carlo Tree Search and the Upper Confidence Bounds for Trees
(UCT) variant of MCTS, and certain parallelization techniques
(specifically Tree Parallelization) have different effects upon ISM-
CTS and Plain UCT. The paper presents a study of the relative
effectiveness of different types of parallelization, including Root,
Tree, Tree with Virtual Loss, and Leaf.

I. INTRODUCTION

Since 2006, Monte Carlo Tree Search (MCTS) [1], [2], [3]
has proven a very strong technique game artificial intelligence.
It has seen success in many games, most notably Go, which
have previously proven significantly challenging for classic
AI techniques. MCTS is a tree building technique which uses
(normally random) simulations of games to estimate the value
of certain decisions in a decision space. Since its creation,
many enhancements have been proposed which modify its
operation [4].

The vast majority of modern computers, games consoles and
even mobile devices have multi-core processors. Algorithms
using multiple parallel threads of execution are required to
use these processors to their full potential. MCTS is readily
adapted to parallel execution, with several methods having
been proposed [5], [6].

MCTS has traditionally been applied to games of perfect
information: that is, games where the full state is observable
to all players at all times and moves are deterministic, non-
simultaneous and visible to all players. More recent work has
applied MCTS to games of imperfect information. Generally
this means games with information asymmetry, i.e. games
where parts of the state are hidden and different parts are hid-
den from different players. The class of imperfect information
games also includes those with chance events, simultaneous
moves or partially observable moves. This paper focusses on
Information Set MCTS (ISMCTS) [7], [8]. ISMCTS works
similarly to regular MCTS, but each simulated playout of
the game uses a different determinization (a state, sampled
at random, which is consistent with the observed game state
and hence could conceivably be the actual state of the game).

Previous work on ISMCTS has focussed solely on the
single-threaded version of the algorithm. This paper adapts
parallelization techniques for standard (perfect information)
MCTS to ISMCTS. Some parallelization techniques involve
multiple threads searching the same tree, in which case
it is necessary to use synchronisation mechanisms such as
locks/mutexes to ensure multiple threads do not update the
same part of the tree simultaneously. If threads spend most of
their time waiting for mutexes to be unlocked, the efficiency of
the algorithm is diminished. Games of imperfect information
tend to have a larger branching factor than games of perfect
information. Furthermore, the determinizations in ISMCTS
restrict each iteration to a different sub-tree of the overall
search tree, reducing the likelihood that two threads will
attempt to take the same branch simultaneously. From this
we hypothesize that threads in parallel ISMCTS will spend
different amounts of time waiting on mutexes than in the
perfect information case, and the relative efficiency of tree
parallelization will be different.

Our results indicate that tree parallelization remains as
efficient across both UCT and ISMCTS, and clearly highlights
root as the technique of choice in terms of efficiency. It also
suggests that adding virtual losses for this particular game
is not an effective technique. Our results also speak clearly
of the inefficiency of leaf parallelization, particularly with
respect to parallelization across a large number of agents. Our
parallelization schemes are explored in section IV.

The work here focuses specifically on the efficiency of the
parallelization techniques (i.e. the number of iterations within
a given time budget), which means that optimality of decision
is not considered here.

The remainder of this paper is organised as follows. In
Section 2, we present related works on MCTS and paralleliza-
tion which are relevant to this study. Section 3 discusses the
game we have chosen to use for this study; Lords of War
by Black Box Games. In Section 4, we outline the solution
methods which were used during this study. Section 5 contains
a discussion of our results. Finally Section 6 presents a few
conclusions, and outlines some possible future work which
may be performed following this study.

2290

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Algorithm 1 Basic MCTS Process Summary
function TREE SEARCH(s0)

v0 = new TreeNode(s0)
while ti < tmax do

v1 ← TREE POLICY(v0)
r1 ← DEFAULT POLICY(v1.s)
BACKUP(v1, r1)
return BEST CHILD(v0).a

II. RELATED WORK

A. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search is an adaptation of the standard
tree search methodologies seen in more traditional mini-
max/expectimax AI, and also includes decision sampling to
increase the generality of the tree search and remove the
requirement for heuristic knowledge (although many strong
implementations still employ such knowledge to strengthen
the search). By taking samples of the decision space and using
the results to guide the construction of a search tree, it is
possible to find effective asymptotically optimal decisions for
that decision space.

MCTS was first invented in 2006 [1], [2], [3], and has
sparked a great deal of further research and experimentation
since that time. MCTS has seen much success in the field
of Go [9], which proves challenging for more traditional AI
techniques such as minimax search.

MCTS operates by building a game tree step-by-step, and
running a single playout from a leaf state at each iteration.
From these game playouts, a reward signal is received from
the terminal game state, and the information is propagated
upwards back through each parent node, modifying that node’s
value as it does so. The iterative growth of the tree is non-
symmetrical, and controlled by a tree policy which attempts
to balance exploitation against exploration by selecting poten-
tially high reward nodes.

The basic MCTS algorithm is made up of 4 steps, and works
as follows:

• Selection: The algorithm moves down through the tree
using the tree policy until it reaches a node which has
unexpanded children or a terminal node.

• Expansion: If the selected node has unexpanded child
nodes, then one (or more) of those nodes are added to
the tree.

• Simulation: A simulation is run from each of the new
child nodes using the default policy, normally to a termi-
nal state.

• Back-propagation: The simulation result is backed up
through the parent nodes of the selected node, updating
statistics until it reaches the root node.

B. Upper Confidence Bound applied to Trees (UCT)

Upper Confidence Bound applied to Trees refers to the use
of MCTS with a random default policy, but using a specific
tree policy known as UCB1. UCB1 treats the choice of a child

node as a multi-armed bandit problem [3], [10], and selects the
child node that has the best expected reward as approximated
by Monte Carlo simulations.

During tree policy operation, the UCB1 equation (see equa-
tion 1) is used to evaluate each child node to determine which
node should be selected for expansion and simulation. The
terms used in the equation are as follows: X̄i is the average
reward from child node i (the node currently being evaluated),
C is the Exploration Constant, n is the total number of visits
to the parent node, and ni is the total number of visits to the
child node i.

UCB1 = X̄i + C

√
2 lnn

ni
(1)

The UCB1 equation provides a balance between exploration
and exploitation by scaling the number of visits to a given node
against the rewards from that node’s children. The term UCT
is commonly used to describe using MCTS with the UCB1
algorithm and a default policy of random selection.

Kocsis and Szepesvári [3], [10] showed optimality of UCT
given that when provided with enough budget, UCT allows
MCTS to converge to an optimal decision, even in cases when
the budget is only sufficient to search a portion of the tree.

C. Information Set Monte Carlo Tree Search

Information Set Monte Carlo Tree Search (ISMCTS) [8],
[11] is an enhancement to MCTS for making decisions in
games of imperfect information. ISMCTS effectively negates
an established weakness of MCTS known as Strategy Fu-
sion [12].

An information set is a collection of game states that are
identical to the true state of the game from the perspective of
the observing player. By collecting many similar states into
sets, the game tree is vastly simplified. For example, in a
card game where an opponent has a hidden hand of cards,
the player’s information set would be every game state which
corresponds to all combinations of the opponent’s hidden
cards.

ISMCTS operates in a similar manner to vanilla MCTS. It
uses determinized games during simulation, but does not elim-
inate hidden information. Rather than determinizing the game
state only once, a random determinization is used for each
simulation, effectively creating a search across a large number
of possible combinations of hidden information. ISMCTS is
currently implemented in the successful commercial mobile
game, Spades by AI Factory [13].

D. Parallelization Techniques

Related work in this area has established four methods of
parallelization, which are often referred to by different names.
Cazenave et al. [5] suggest three different methods; Single-
Run Parallelization, Multiple-Run Parallelization and At-the-
leaves Parallelization. These have been provided with different
names in other literature, but our preferred names come from
Chaslot et al. [6], who named Single-Run Parallelization as
Root Parallelization, reflecting the complete parallelization

2291

of the MCTS from the root, and renaming At-the-leaves
Parallelization as simply Leaf Parallelization. Chaslot et al.
also provides another method named Tree Parallelization.

Root parallelization creates a tree for each thread and
builds those trees independently. When the build process is
completed, the trees are amalgamated and their combined
statistics are used to determine the optimal move from the
current position. Multiple-run parallelization is similar, except
after the tree statistics have been amalgamated, the tree is
copied and sent back out to the others threads for further
independent processing. This cycle can repeat multiple times
until a budget is reached.

In leaf parallelization, a single tree is built by a master
thread, and that thread spawns child threads to run all simu-
lations.

Cazenave et al. indicate that the results of Root Paral-
lelization are comparable to those from Multiple-Run Paral-
lelization, and as the former is far easier to implement, it is
preferable.

Chaslot et al. [6] report from their experimentation on Go
that Leaf Parallelization seems a poor method, taking between
2-4 times less time to reach the same result as unparallelized
MCTS when using 16 processors.

They acknowledged Root Parallelization as the stronger
technique, but also stated that Tree Parallelization with Virtual
Loss performs comparably on smaller Go boards. This is
supported by Bourski et al. [14], however Mehat et al. [15]
later contested this, stating that Tree Parallelization showed
improved results, and that the improvement is related to the
ability to keep all threads consistently busy.

The terms used by Chaslot et al will be used throughout the
remainder of this paper.

III. EXPERIMENTATION GAME

The game chosen for experimentation was Lords Of War
by publisher Black Box Games, a strategic card game that
uses a board for card placement and thus considers the relative
positions of cards. The objective is to eliminate twenty of your
opponent’s cards. In addition, some of the cards are designated
Command Cards, and a victory is also attained if a player
eliminates four of their opponent’s Command Cards.

The game is played on a 7 × 6 square board, where each
square can hold a single card. Each card has a number of
attacks, each of which has an associated value, and are directed
towards adjacent squares. When a card is being attacked with
a total value greater than its defence value, the attacked card
is eliminated and removed from the board. A limited selection
of cards also have ranged attacks with can affect non-adjacent
cards, but only if the card making the ranged attack is not
under direct attack itself.

Players take turns to place a card, evaluate combat between
all cards on the board, then choose either to return a surviving
friendly card from the board to their hand, or to draw a new
card from their deck. The complete rules and a number of
tutorial videos are available on the Lords of War website1.

1http://www.lords-of-war.com/

In the mid-game, it is common for most moves between
average players to result in a capture, so a game with average
human players rarely goes beyond turn 50 (the point where
each player has made 25 moves), and can finish much earlier
if a player is careless with their Command Card placement.
AI games typically took 50-60 turns, as there was no heuristic
knowledge included in this instance to guide the searches
towards optimality.

Experimentation with Lords of War has revealed that it
has rich strategy, with mid-game states commonly having a
branching factor in the range 25 - 50.

IV. SOLUTION METHODS

A. Game Engine

The experimental MCTS engine and Lords of War game
were implemented in C++ and all experiments were run on a
Intel(R) Xeon(R) CPU E5645, with two processes (2.40GHz
& 2.39GHz), each with 6 cores & hyperthreading and 32GB
of RAM.

A total of four different methods of parallelization were
implemented (Root, Tree, Tree with Virtual Loss and Leaf).
When appropriate to the style of parallelization, C++ 11
support for mutex2, future3 and lock guard4 was used to
lock nodes that were being processed. The only nodes that
are locked are those selected by for the Expansion step of the
MCTS process (see section II-A).

B. Root Parallelization

Root Parallelization [5] (also known as slow tree paralleliza-
tion or Single-Run Parallelization) describes the process by
which each system runs a separate MCTS from the same game
state, then the results are amalgamated by a master process.
As each system would have a different random seed, different
results should be generated.

Root parallelization was implemented as shown in algo-
rithm 2. A separate tree is built by each agent, and then
the node statistics of the first level nodes are combined to
determine the overall most visited node, and thus the decision
to select.

C. Tree Parallelization

Tree Parallelization [6] was implemented as shown in
algorithm 3. A single shared tree is maintained, and each agent
works to add nodes to that tree and update statistics in the tree
nodes. Mutex, future and lock guard are used to ensure
that thread safety is maintained (i.e. no two agents attempted
to write to the same memory at the same time, or read from
memory that was being altered).

Tree Parallelization often uses a technique known as Virtual
Loss in order to discourage selection of the same node by two
different threads. While a node is locked, an additional loss
is reported any time it is evaluated, in order to make that
node appear less valuable for selection, and thus decrease the

2http://en.cppreference.com/w/cpp/thread/mutex
3http://en.cppreference.com/w/cpp/thread/future
4http://en.cppreference.com/w/cpp/thread/lock guard

2292

Algorithm 2 Root Parallelization
function DOROOTPARALLELIZATION(nAgents)

treeList = list(MCTS Tree)
agentList = list(MCTS Agent)
threadList = list(Thread)

for nAgents do
agentList← newAgent
treeList← newTree
newThread(newAgent.Run, newTree)
threadList← newThread

for threadList do
thread.Join()

statistics = list(MCTS Statistics)

for treeList do
statistics← tree.GetStats()

return statistics.GetBestMove()

Algorithm 3 Tree Parallelization
function DOTREEPARALLELIZATION(nAgents)

agentList = list < MCTS Agent > ()
threadList = list < Thread > ()

for nAgents do
agentList← newAgent
threadList← newThread(newAgent.Run(tree))

for threadList do
thread.Join()

return tree.GetBestMove()

amount of time spent waiting for a node to unlock. Chaslot et
al. [6] attributes the use of virtual losses to Coulomb through
a personal communication.

The Virtual Loss modification described by Chaslot et al. [6]
(and attributed to Coloumb [2]) was also implemented in a
separate set of experiments. Before we begin a simulation on
a node, in addition to locking its local mutex, we also add a
loss to that node’s statistics to reduce the chance of the node
being selected by another thread.

D. Leaf Parallelization

Leaf parallelization is implemented as shown in algorithm 4.
A single tree is maintained, a single “parent“ agent is used to
operate on that tree. Whenever a simulation run is required, the
parent agent hands that simulation to a “child” agent which
then runs independently. Child agents are checked to see if
they are clear of an existing simulation before new child agents
are created up to the limit by the number of agents.

Algorithm 4 Leaf Parallelization
function DOLEAFPARALLELIZATION(nAgents)

agentList = list(MCTS Agent)

for nAgents do
agentList← newAgent

primaryAgent.RunLeaf(agentList)
statistics = list(MCTS Statistics)

for treeList do
statistics← tree.GetStats()

return statistics.GetBestMove()

function RUNLEAF(nAgents)
agentList = list < MCTS Agent > ()
for nAgent do

agentList← newAgent

SimStartNode = RunWithoutSim(tree)
while currentAgent.IsBusy() do

currentAgent = GetNextAgent()

currentAgent.RunSim(SimStartNode)

E. Experimentation

As we are interested in the speed of decision-making and not
the optimality of the decision that results, all experiments dealt
with single decisions instead of complete games. The state that
was used for most experimentation is that of the game after
the first two “Issuing the challenge” moves described in the
rulebook (essentially an initial setup for the game). Two cards
are placed during the initial set up, both of which were the
Orc General card (see figure 1). The initial set up position is
displayed in figure 2, and is referred to as S1 for the remainder
of this paper.

During experimentation, the player decks were stacked so
they would draw identical cards, and the order was maintained
between tests, to ensure that all the examined decisions were
identical.

The following series of experiments were then performed,
each repeated 1000 times on Plain UCT and ISMCTS:

• Root Parallelization (between 1 and 8 threads)
• Tree Parallelization (between 1 and 8 threads)
• Tree Parallelization with Virtual Loss (between 1 and 8

threads)
• Leaf Parallelization (between 1 and 8 threads)
During these experiments, the Plain UCT was running on

the perfect information game (i.e. all hidden information was
made visible), and the ISMCTS agent was playing the im-
perfect information game and determinizing on each iteration.
All experiments were run with 5000 MCTS iterations, and an
exploration constant of 1.4. In cases when parallelization was
used, the MCTS iterations were split across different agents,
with each agent receiving a static 5000/n iterations to perform.

2293

Fig. 1. Orc General - Gonke Longtooth

Fig. 2. Experimentation state S1 with two Orc General cards.

It was expected that Root Parallelization with one agent
would perform identically to UCT with no parallelization, as
only one tree is created and there is no mutex locking during
the process. Tree Parallelization with one agent was included
to determine the effects of the mutex locking & unlocking on
the decision speed, as this should be the only factor that is
different between the two processes.

V. RESULTS

The results of the state S1 experimentation are displayed in
table I and II, and comparative graphs of these results can be
seen in graphs (a) and (b) (please note the difference of scale
between the two graphs).

There is a negligible difference between using Tree and
Tree with VL in both MCTS and ISMCTS. As there is little
overhead to adding or removing the virtual loss, then the main
difference in speed would be seen when a virtual loss causes a
different node to be selected by the selection policy. The fact
that the results for both are nearly identical suggests this is
rarely happening, and thus either the selection choice is very
clear and a single loss is not affecting the choice, or that the
choice is very unclear as the statistics are similar in most nodes
at a given level, and nodes are effectively being chosen at
random. Chaslot et al. [6] reported that Tree with Virtual Loss
performs as well as Root Parallelization on smaller boards in
the game of Go, but this does not seem to be the case with
Lords of War.

Leaf parallelization is clearly a far slower technique than
any other used here. Using more than 3 agents does not result
in a speed increase. We see that agents numbered above 3
are almost never used: the simulations assigned to earlier
agents are already complete by the time a simulation would
be assigned to an agent numbered 3 or higher.

Tree Parallelization shows itself to be a competitive tech-
nique in terms of speed, but still a lot slower than Root
Parallelization in both MCTS and ISMCTS. If we calculate
the difference in speed between Tree and Root in MCTS, then
the difference in speed between Tree and Root in ISMCTS,
it can be seen that the difference is comparatively lessened in
ISMCTS, but that the speed decrease caused by ISMCTS is
still more significant.

As discussed earlier, we can see the effects of using
mutexes to lock nodes by comparing the difference in per-
formance between root and tree parallelization when using
1 agent, however this only accounts for the actual cost of
the locking procedure, not the expense caused by causing any
threads to wait. The average of this difference is very small,
the best estimate being less than 16ms (due to the resolution
of the timer used). This indicates that the time spent locking
mutexes is very low, and almost all of the expense comes
from threads waiting to obtain lock on a mutex. We can see
a similar difference between the ISMCTS runs of root and tree
parallelization.

In order to see the relative effects of different parallelization
techniques on UCT and MCTS, we can compare the relative

2294

TABLE I
UCT PARALLELIZATION RESULTS (MS)

nAgents 1 2 3 4 5 6 7 8
Root 505.74 253.47 191.71 154.77 135.94 113.21 104.41 91.74
Tree 514.09 299.13 207.51 163.61 133.19 109.64 105.74 98.05

Tree (VL) 511.58 297.60 198.75 152.99 131.45 110.64 105.86 98.42
Leaf 1226.18 676.75 615.35 618.23 630.62 619.71 626.06 634.27

TABLE II
ISMCTS PARALLELIZATION RESULTS (MS)

nAgents 1 2 3 4 5 6 7 8
Root 1061.07 533.23 376.74 341.36 273.27 259.20 220.66 194.92
Tree 1057.69 768.74 528.83 432.33 348.83 291.88 282.98 259.58

Tree (VL) 1056.35 751.91 531.36 444.21 344.75 295.64 283.22 264.05
Leaf 1885.77 1087.50 981.75 1019.97 975.29 987.03 1049.48 1005.02

efficiency of individual agents within each technique. Effi-
ciency is calculated as t1

n·tn , where tn is the decision time for n
agents. In particular, the efficiency for n = 1 is t1

1·t1 = 100%.
The efficiency of each technique for n > 1 agents is shown
in table III. In an ideal scheme with 100% efficiency, using n
agents would result in an n-fold increase in speed: adding the
second agent would cause overall speed to double resulting in
a decision time of t2 = t1

2 , and so on.
We can see from graphs (c) and (d) that root spreads the

load between agents most effectively, with one exception of
note - the 2nd agent in leaf parallelization on MCTS.

VI. CONCLUSIONS & FUTURE WORK

A. Conclusions

It can be seen that in no combination of tested factors
did ISMCTS outperform UCT in terms of efficiency. It is
important to remember however that ISMCTS (unlike Plain
UCT) is designed to handle games of imperfect information,
which inevitably adds overheads to its operation, but also
makes it suitable in situations where plain UCT is inapplicable
or may struggle.

There does not appear to be a significant difference in the
slow-down caused by tree parallelization between ISMCTS
and UCT, which is contrary to our original hypothesis. This
indicates that the slow-down is unlikely to be caused by
threads awaiting locked resources, but more likely by code
associated with the locking and unlocking process.

One possible explanation is that due to the shape of the
trees, the locking of initial nodes is having a larger effect on
an ISMCTS tree than a UCT tree. As mentioned previously,
the expansion step of the MCTS process locks the node to
be expanded. The UCT tree will only have a relatively small
number of nodes at the first level (approximately 20-30),
meaning that once these nodes are expanded, other agents are
cleared to continue through the root node without locking.
The ISMCTS tree will have a large number of nodes at the
first level (approximately 150), which will cause a significant
initial delay as multiple agents compete to lock the root node.

This effect may continue on other promising nodes during the
early stages of the tree building process.

Of all approaches attempted, root Parallelization across high
numbers of agents was the most time efficient approach,
although the speed increase became mostly negligible when
adding more than 4-5 agents.

It’s also worth noting that tree parallelization is less effective
when applied to ISMCTS, which is somewhat surprising.
Using tree parallelization in an environment where agents
are unlikely to be blocked should increase efficiency, but the
relative decrease in efficiency suggests that more blocking is
occurring.

It’s interesting that adding virtual loss has almost no effect
on the effectiveness of tree parallelization in Lords of War.
This may be due to the positioning of valuable states in the
game tree - if there are few positions of high value in a tree,
then adding a virtual loss is unlikely to dissuade from their
further immediate exploration.

B. Future Work

During the parallelization experimentation, the MCTS iter-
ations were split evenly and statically assigned to the working
threads. If a thread had finished early, it simply ended and did
no further work. If iterations could be assigned dynamically
as threads became available, then the process could be more
efficient.

The branching factor of the game (or state) under examina-
tion may be relevant to the effectiveness of tree parallelization,
as a higher branching factor should result in less thread wait-
ing time. Experimenting with games or states with different
branching factors would be interesting follow up work.

Future work on Lords of War will consider playing strength
directly, rather than via the proxy of number of iterations
performed, although we imagine results will be similar.

C. Acknowledgements

The work displayed here was supported by EPSRC (http:
//www.epsrc.ac.uk/), the LSCITS program at the University

2295

TABLE III
COMPARATIVE EFFICIENCY OF INDIVIDUAL AGENTS

nAgents 2 3 4 5 6 7 8
Root (UCT) 1.00 1.00 0.88 0.82 0.74 0.74 0.69 0.69
Tree (UCT) 1.00 0.86 0.83 0.79 0.77 0.78 0.69 0.66

Tree VL (UCT) 1.00 0.86 0.86 0.84 0.78 0.77 0.69 0.65
Leaf (UCT) 1.00 0.91 0.66 0.50 0.39 0.33 0.28 0.24

Root (ISMCTS) 1.00 0.99 0.94 0.78 0.78 0.68 0.69 0.68
Tree (ISMCTS) 1.00 0.69 0.67 0.61 0.61 0.60 0.53 0.51

Tree VL (ISMCTS) 1.00 0.70 0.66 0.59 0.61 0.60 0.53 0.50
Leaf (ISMCTS) 1.00 0.87 0.64 0.46 0.39 0.32 0.26 0.23

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

D
e

ci
si

o
n

 C
o

m
p

le
ti

o
n

 T
im

e
 (

m
s)

Number of Agents (Threads)

LEAF (UCT)

TREE (UCT)

TREE VL (UCT)

ROOT (UCT)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8

D
e

ci
si

o
n

 C
o

m
p

le
ti

o
n

 T
im

e
 (

m
s)

Number of Agents (Threads)

LEAF (ISMCTS)

TREE (ISMCTS)

TREE VL (ISMCTS)

ROOT (ISMCTS)

(a) UCT on state S1 (b) ISMCTS on state S1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

In
d

iv
id

u
al

 A
ge

n
t

Ef
fi

ci
e

n
cy

Number of Agents (Threads)

ROOT (UCT)

TREE (UCT)

TREE VL (UCT)

LEAF (UCT)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

In
d

iv
id

u
al

 A
ge

n
t

Ef
fi

ci
e

n
cy

Number of Agents (Threads)

ROOT (ISMCTS)

TREE (ISMCTS)

TREE VL (ISMCTS)

LEAF (ISMCTS)

(c) MCTS Parallelization efficiency by agent (d) ISMCTS Parallelization efficiency by agent

of York (http://lscits.cs.bris.ac.uk/), and Stainless Games Ltd
(http://www.stainlessgames.com/).

We thank Black Box Games for their support in working
with their game Lords of War.

REFERENCES

[1] G. M. J.-B. Chaslot, J.-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and
H. J. van den Herik, “Monte-Carlo Strategies for Computer Go,” in Proc.
BeNeLux Conf. Artif. Intell., Namur, Belgium, 2006, pp. 83–91.

[2] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Proc. 5th Int. Conf. Comput. and Games, LNCS 4630,
Turin, Italy, 2007, pp. 72–83.

[3] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Plan-
ning,” in Euro. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Germany: Springer, 2006, pp. 282–293.

[4] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comp.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[5] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,” in
Proc. Comput. Games Workshop, Amsterdam, Netherlands, 2007, pp.
93–101.

[6] G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel Monte-Carlo Tree Search,” in Proc. Comput. and Games, LNCS
5131, Beijing, China, 2008, pp. 60–71.

[7] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and

2296

Information Set Monte Carlo Tree Search for the Card Game Dou Di
Zhu,” in Proc. IEEE Conf. Comput. Intell. Games, Seoul, South Korea,
2011, pp. 87–94.

[8] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Trans. Comp. Intell. AI Games, vol. 4, no. 2,
pp. 120–143, 2012.

[9] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for
Monte-Carlo Go,” in Proc. Adv. Neur. Inform. Process. Syst., Vancouver,
Canada, 2006.

[10] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
Search,” Univ. Tartu, Estonia, Tech. Rep. 1, 2006.

[11] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Bandits all the way
down: UCB1 as a simulation policy in Monte Carlo Tree Search,”
in Proc. IEEE Conf. Comput. Intell. Games, Niagara Falls, Ontario,
Canada, 2013, pp. 81–88.

[12] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search,” in Proc. Assoc. Adv. Artif. Intell., Atlanta, Georgia, 2010, pp.
134–140.

[13] D. Whitehouse, P. I. Cowling, E. J. Powley, and J. Rollason, “Integrating
Monte Carlo Tree Search with Knowledge-Based Methods to Create
Engaging Play in a Commercial Mobile Game,” in Proc. Artif. Intell.
Interact. Digital Entert. Conf., Boston, Massachusetts, 2013.

[14] A. Bourki, G. M. J.-B. Chaslot, M. Coulm, V. Danjean, H. Doghmen, J.-
B. Hoock, T. Hérault, A. Rimmel, F. Teytaud, O. Teytaud, P. Vayssière,
and Z. Yu, “Scalability and Parallelization of Monte-Carlo Tree Search,”
in Proc. Int. Conf. Comput. and Games, LNCS 6515, Kanazawa, Japan,
2010, pp. 48–58.

[15] J. Méhat and T. Cazenave, “Tree Parallelization of Ary on a Cluster,” in
Proc. Int. Joint Conf. Artif. Intell., Barcelona, Spain, 2011, pp. 39–43.

2297

