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Abstract—In this paper, an adaptive version of Inflationary
Differential Evolution is presented and tested on a set of real
case problems taken from the CEC2011 competition on real-
world applications. Inflationary Differential Evolution extends
standard Differential Evolution with both local and global
restart procedures. The proposed adaptive algorithm utilizes a
probabilistic kernel based approach to automatically adapt the
values of both the crossover and step parameters. In addition
the paper presents a sensitivity analysis on the values of the
parameters controlling the local restart mechanism and their
impact on the solution of one of the hardest problems in the
CEC2011 test set.

I. INTRODUCTION

With the continuous progress of technologies, real world
design and optimization problems are becoming progres-
sively more complex, and there is the clear need to create and
implement more effective and efficient search algorithms.
An approach used to create new algorithms is to hybridize
existing ones by appropriately mixing some of their building
blocks. By following this approach, and based on some
new theoretical results on the convergence of Differential
Evolution (DE)[1], the authors recently proposed Infla-
tionary Differential Evolution Algorithm (IDEA)[2], which
combines DE with the restarting procedure of Monotonic
Basin Hopping (MBH) algorithm [3], [4]. Although IDEA
showed very good results when applied to problems with a
single or multi-funnel landscape, its performance was found
to depend on the parameters parameters controlling both the
convergence of DE and MBH, and the inflationary stopping
criterion used to terminate the DE search.

Despite its simplicity, the standard DE alone shows
good performance on a broad range of problems featuring
multimodal, separable and non-separable structures, but the
performance is strongly influenced by three parameters: the
population size, npop , the crossover probability, CR, and
the differential weight (or step parameter), F . In addition,
it was reckoned that the chosen strategies for mutation and
crossover [5] plays an important role.

The need of self-adapting techniques especially for these
two parameters has been widely recognized in literature.
In [6] the authors introduced a fuzzy adaptive differential
evolution algorithm using fuzzy logic controllers to adapt
the parameters for the mutation and crossover operators. The
Self-Adaptive DE (SADE), described in [7], incorporates a
mechanism that self adapts both the parameters CR and F
and the trial vector generation strategy. In [8] an adaptation
strategy is proposed for parameter F , while CR is kept

constant. In [9] both control parameters are added to each
individual of the population and evolve with it.

In this work, an alternative approach is proposed for the
on-line adaptation of both CR and F parameters and is em-
bedded into the general framework of IDEA. The proposed
approach uses the Parzen kernel method to build a joint
probabilistic representation of the most promising region
of the bi-variate CR − F space. The resulting probability
density function (PDF) is updated during the optimization
process on the basis of obtained results.

The paper starts with a section that introduces the main
characteristics of IDEA and the new adaptive technique.
Then the test cases are described and some comparative
results are presented, including an analysis of the impact of
some key parameters controlling the convergence of IDEA.

II. ADAPTIVE INFLATIONARY DIFFERENTIAL

EVOLUTION ALGORITHM

The new algorithm proposed here is a further devel-
opment of a previously developed algorithm, IDEA[2],
which is based on a synergic hybridization of a standard
DE algorithm and the strategy behind the MBH algorithm
[3], [4]. The resulting algorithm was shown to outperform
both standard DE and MBH on a number of challenging
space trajectory design problems, featuring multiple funnel
structures.

IDEA works as follows: a DE process is run till the
population (xi,k, for i ∈ [1, ..., npop]), contracts below a
predefined threshold. When this contraction condition is
satisfied, a local search is performed from the best individual
in the population. Then, the local minimum is archived and
the population is restarted in a bubble around the local
minimum. This first restart mechanism was called local
restart. Local restart is iterated up to a predefined maximum
value. When this value is reached the population is restarted
at a distance from the cluster of local minima found thus
far. The restarting approach allows the algorithm to escape
local optima, thus strongly mitigating the risks of premature
convergence, a problem affecting standard DE, due to the
use of a strong selection criterion with direct competition
between one parent and the related offspring [10].

As mentioned in Sec. (I), the performance of IDEA
depend on some parameters of the embedded DE, such as the
population size, npop , the crossover probability, CR, and
the differential weight, F . In this work the original IDEA
is modified to let the algorithm understand and learn the
structure of the problem and self-adapt the two parameters
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CR and F . As shown in Algorithm 1, the optimization
procedure starts by setting values of (npop, the maximum
number of local restarts, iunmax, the size of the conver-
gence box, tolconv, ρA,max, and δc) and by initializing the
population. Then the joint PDF for CR and F , CRFp, is
initialised to be a uniform distribution. At this point, the
actual optimization loop starts by sampling the two vectors
CRk and Fk, where k is the current iteration. DE is run
drawing probabilistically a value for F and CR from CRFp

and CRFp is updated on the basis of the improvement of
the individual using the drawn values of F and CR. At
this point, if the population contracts below the predefined
threshold, a local optimizer from current minimum is run,
and at the end of local optimization, if the local optimizer
failed to improve the value of fmin more than iunmax times,
the population is restarted globally and iun is set to 0,
otherwise, the population is restarted within a local bubble
and iun = iun + 1. At this point, if the population is re-
initialized, the loop restarts from the initialization of CRFp,
otherwise just the DE loop restarts. As a terminal criterion,
the algorithms stops if the maximum number of function
evaluations, nfeval,max, has been performed.

First, the initialization of the CRFp to uniform dis-
tribution, step (3) of Alg. (1), is done by building a
regular mesh with (nD + 1) × (nD + 1) points (where
nD is the dimensionality of the problem) in the space
(CR ∈ [0.1, 0.99] × F ∈ [−1, 1]). A Gaussian kernel is
then allocated on each node and the PDF is built by Parzen
approach [11]. A step change value, dd is linked to each
kernel (row of CRFp) and its initial value is set = 0. At step
(4) of Alg. (1) npop values of CR and F are sampled from
the Parzen distribution and each couple of CR and F values
is associated to one element of the population and used to
create the offspring on the basis of the chosen strategy.

The updating procedure is detailed in Alg. 2. During the
optimization, the location of the kernels is updated on the
basis of the obtained results. More in details, to update the
matrix containing the location of kernel centers (CRFp) after
that rows of CRFp are sorted on the basis of the associated
value of dd (step 5 of Alg. 1), if the objective function of
the offspring has a value that is strictly lees then the parents
(it is supposed a minimization problems) then the element
of the sorted CRFp are sequentially evaluated and the first
time that the associated dd value of the row is less than the
difference between the objective function of the parent and
that of the offspring then the F value used to operate on
the individual xi,k substitutes the element CRFp,2,j,k. The
CR value used to operate on the individual xi,k substitutes
the element CRFp,1,j,k only if the difference between parent
and offspring is greater than a predefined threshold CRC.
The different approach for updating the CR coordinate of
the kernels is meant to dump the learning of the crossover
to avoid the too fast convergence toward the extremes of the
allowed range that can occur in some cases. Note that, as for
other self-adaptive schemes, the adaptive version of IDEA
has an additional parameter to be adjusted: the threshold on
the minimum expected improvement of the cost function.
This threshold is used to limit the updating of CR, a failsafe
procedure that has proven to improve the robustness of the
algorithm.

Algorithm 1 Adaptive Inflationary Differential Evolution
Algorithm (AIDEA)

1: Set values for npop, iunmax, tolconv, ρA,max, and δc,
set nfeval = 0 and k = 1

2: Initialize Population (xi,k for all i ∈ [1, ..., npop])
3: A regular mesh with (nD + 1)2 points (where nD is

the dimensionality of the problem) in the space CR ∈
[0.1, 0.99]xF ∈ [−1, 1]; Initialize CRFp with points of
the mesh: CRFp,1,j ← CRjFj for all j ∈ [1, ..., (nD +
1)2]; Associate to each row of CRFp and element ddj =
0 for all j ∈ [1, ..., (nD + 1)2]

4: Sample CRi,k and Fi,k, for all i ∈ [1, ..., npop], from
CRFp

5: RowSort(CRFp) is terms of dd values
6: for all i ∈ [1, ..., npop] do
7: xi,k+1 ← Apply DE Strategy(xi,k,CRi,k,Fi,k)
8: nfeval = nfeval + 1
9: Update Parzen Distribution (see Alg. (2))

10: end for
11: k = k + 1
12: ρA = max(‖xi,k − xj,k‖) for ∀xi,k, xj,k ∈ Psub ⊆ Pk

13: if ρA < tolconvρA,max then
14: Run a local optimizer al from xbest and let xl be the

local minimum found by al
15: if f(xl) < f(xbest) then fbest ← f(xl)
16: if f(xbest) < fmin then
17: fmin ← f(xbest); iun = 0
18: else
19: iun = iun+ 1
20: end if
21: if iun ≤ iunmax then
22: Define a bubble Dl such that xi,k ∈ Dl for
∀xi,k ∈ Psub and Psub ⊆ Pk

23: Ag = Ag + {xbest} where xbest =
argmini f(xi,k)

24: Initialize Population (xi,k for all ∈ [1, ..., npop])
in the bubble Dl ⊆ D

25: else
26: Define clusters in the archive and compute the

baricenter xc,j of each cluster with j = 1, ..., nc.
27: Initialize Population (xi,k for all i ∈ [1, ..., npop])

in D such that ∀i, j, ||xi,k − xc,j|| > δc.
28: end if
29: Termination Unless nfeval ≥ nfeval,max, goto (3)
30: else
31: Termination Unless nfeval ≥ nfevalmax, goto (4)
32: end if

III. TEST CASES

The test cases considered in this paper were taken from
the technical report describing the CEC 2011 competition
[12]. The collection of all minima obtained during the testing
campaign allowed building a concise graphical representa-
tion of the structure of the problem by using the intra-level
DIL, and trans-level DTL distance graph proposed in [2].
Minima are grouped, according to the value of their objective
function, in levels, and for each level DIL is computed as the
average value of the relative distance of each local minimum
with respect to all other local minima within the same level,
while DTL is the average value of the relative distance of
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Algorithm 2 PDF unptating procedure for AIDEA

1: if f(xi,k+1) < f(xi,k) then
2: for all doj ∈ [1, ..., (nD + 1)2]
3: if ddj < (f(xi,k)− f(xi,k+1)) then
4: if (f(xi,k)− f(xi,k+1)) > CRC then
5: CRFp,1,j,k ← CRi,k

6: end if
7: CRFp,2,j,k ← Fi,k; ddj ← (f(xi,k) −

f(xi,k+1)); Break For Loop
8: end if
9: end for

10: end if

each local minimum with respect to all other local minima in
the lower level. The DTL for the lowest level is computed as
the average distance with respect to the best-known solution.
The values DIL and DTL give an immediate representation
of the diversity of the local minima and the probability of
transition from one level to the lower one. Distances are
computed by considering all variables normalized in [0, 1].
The reader can find more details on the procedure in [2].

First two cases were chosen to demonstrate how the
proposed code works on single funnel multimodal functions,
which are challenging but usually solved by other codes in
literature, but the vast majority of tests were performed on
the third test case which is much harder and there were not
optimal solutions available yet.

1) Tersoff Potential Function Minimization Problem:
It is case 5 in the report [12]. The problem considers 10
silicon atoms, whose relative positions should be optimized
to minimize the Tersoff potential, VTer , governing the inter-
atomic interaction. The dimensionality of the problem is
nD = 30, and bounds are: LB=[ 0, 0, 0, -4, -4, -4, -4.25,
-4.25, -4.25, -4.5, -4.5, -4.5, -4.75, -4.75, -4.75, -5, -5, -5,
-5.25, -5.25, -5.25, -5.5, -5.5, -5.5, -5.75, -5.75, -5.75, -6, -6,
-6]; UB=[4, 4, π, 4, 4, 4, 4.25, 4.25, 4.25, 4.5, 4.5, 4.5, 4.75,
4.75, 4.75, 5, 5, 5, 5.25, 5.25, 5.25, 5.5, 5.5, 5.5, 5.75, 5.75,
5.75, 6, 6, 6]. The best solution found, with f = −36.929,
is xopt=[ 1.5169, 0.048489, 0.85633, -0.38885, -1.0413, -
0.032398, -0.30653, 2.1271, -0.46709, 1.9542, 2.6998, -
0.87986, -0.5422, 0.13309, 2.0235, 0.67688, -1.8953, 1.904,
0.27924, 3.2425, -2.4656, 2.4006, 2.492, -3.1928, 0.91344,
0.98226, -2.1435, -1.6823, -1.9195, 1.7419].

As can be seen in Fig. 1, the search space is characterized
by a single, multimodal funnel with a flat and broad low
region, f < −36.5, and two distinct basins for solutions
with −36.9 ≤ f ≤ −36.8 (red in Fig. 1), and solutions with
f < −36.9 (blue in Fig. 1). In what follows this problem is
referred as Case 1.

2) Spread Spectrum Radar Polyphase Code Design:
This test case is the number 7 in the CEC2011 report
[12]. It is related to the polyphase pulse compression code
synthesis, and is formulated as a min−max optimization
problem, with nD = 20 design parameter. The objective is
to minimize the module of the biggest among the samples
of the so-called auto-correlation function, ACmax, which is
related to the complex envelope of the compressed radar
pulse at the optimal receiver output, while the variables
represent symmetrized phase differences [13] All variables
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are bounded ∈ [0, 2π], and the best solution found, with
f = 0.5, is xopt=[ 2.5725, 2.6228, 5.5686, 0.73972, 1.0953,
0.83449, 5.5796, 1.2897, 1.4654, 4.4623, 2.9833, 2.7519,
3.6232, 4.6328, 4.6773, 4.0213, 4.7433, 4.5053, 4.0768,
3.8608].

Also in this case the search space is characterized by
a single, multimodal funnel with a flat and broad optimal
region, f < 0.51 (see Fig. 2). In what follows this problem
is referred as Case 2.

3) Messenger mission: The third test case is the op-
timization of a multigravity assist trajectory with deep
space manoeuvres (MGA-DSM)[14]: the multi-gravity assist
transfer to Mercury, similar to the Messenger mission. The
dimensionality of the problem is nD = 26 and bounds and
current known optimal solution are reported into Tab. I. In
the table the solution vector is organized as in the ESA-ACT
formulation [15]. As in the ESA-ACT formulation, the total
∆V of the spacecraft is minimized. Note that the optimal
solution shown in Tab. I has not been published elsewhere
before.

The structure of the search space for the Messenger
mission problem, as shown in Figs. (3) and (4), appears to
be characterized by two main substructures. Solutions with
∆V > 6km/s belong to a macro basin containing a very
high number of local minima, characterized by big intra-
level and trans-level distances, and is a very large multi-
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TABLE I. BOUNDS AND OPTIMAL SOLUTION FOR MESSENGER

MISSION CASE - THE SOLUTION VECTOR IS REARRANGED AS IN THE

ESA-ACT FORMULATION

LB UB Optimal

1900 2300 2038.03929616519

2.5 4.05 4.049996292063

0 1 0.556671418496

0 1 0.634280071715

100 500 451.600564550433

100 500 224.694751687357

100 500 221.839034379715

100 500 263.91480200672

100 500 359.354749401042

100 600 444.599274004631

0.01 0.99 0.607007547348

0.01 0.99 0.272048501594

0.01 0.99 0.692428663742

0.01 0.99 0.638908117493

0.01 0.99 0.829095716093

0.01 0.99 0.873723700599

1.1 6 1.774896822334

1.1 6 1.100004754835

1.05 6 1.050148253516

1.05 6 1.079891515997

1.05 6 1.40370492038

−π π 2.758595938641

−π π 1.575027216724

−π π 2.602608233794

−π π 2.272846047293

−π π 1.579719453208
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case

modal funnel. On the other hand, optimal solutions, with
∆V < 6km/s, are located into a secondary basin, have
smaller intra-level and trans-level distances, and the local
structure is multi-funnel like.

IV. TEST RESULTS

In this Section the results of all test cases are pre-
sented and commented. The results on Cases 1 and 2 (see
Sections III-1 and III-2) are described first, and then the
space trajectory problem is used to further analyse the
characteristics and critical aspects of the proposed algorithm.
For all tests, the adopted DE strategy was DE/best/1/bin,
tolconv = 0.2, δc = 0.1, CRC = 3 and all reported statistics
are computed on the results obtained from 100 independent
runs.

A. Results on Cases 1 and 2

Few different settings of AIDEA were used to solve these
problems, and the algorithm performed always very well,
finding the global optima with high reliability within the
limit of 1e5 function evaluations as required for the CEC
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2011 competition. The embedded restart mechanism makes
AIDEA perfectly suitable for solving problems with funnel
like multimodal structures. In Tables (II) and (III) the results
obtained by AIDEA on Case 1 and 2 are shown. AIDEA is
set with npop = 20, iunmax = 10, δb = 0.1, where ±δb is
added to current solution to create the local bubble for local
restart (step 24 in Alg. (1)), and is compared to two of the
best performing algorithms of the CEC 2011 competition,
the Genetic Algorithm with Multi Parent Crossover (GA-
MPC) [16] and the Weed Inspired Differential Evolution
(WI-DE) [17].

TABLE II. RESULTS OF AIDEA ON CASES 1 COMPARED TO WI-DE
AND GA-MPC

Alg. Min Mean Max Str.Dev.

AIDEA -36.9286 -36.8527 -35.5171 0.2442

WI − DE -36.8 -35.6 -34.2 0.904

GA− MPC -36.84537 -35.03883 -34.10760 0.8329

TABLE III. RESULTS OF AIDEA ON CASES 2 COMPARED TO

WI-DE AND GA-MPC

Alg. Min Mean Max Str.Dev.

AIDEA 0.5 0.5159 0.6384 0.0340

WI − DE 0.5 0.656 0.993 0.116

GA− MPC 0.5 0.7484 0.9334 0.1249

A better understanding of the performance obtained on
these test cases can be achieved by looking at Figures (5)
and 6), where the distribution of the best results obtained
over the 100 runs are plotted for Case 1 and 2, respectively.
As it is expected, when the algorithm can find the global
optimum with high reliability, the distribution cannot be
approximated by a Gaussian (dashed red curve in the figures)
and converges to an exponential one. Moreover, due to the
fact that the algorithm can stagnate only into certain basins,
the distribution is in general multimodal and discontinuous,
as it is evident in Fig. (5). In these cases the distribution
can be better approximated by other means, such as the
Parzen kernel approach used here (continuous red curve in
the figures). It should be noted that the global minimum
of case 1, fmin = −36.9286 is not generally reached by
other algorithms [16], [17] which stagnate on the solution
fmin = −36.84 (second peak from left in Fig. (5)).

B. Results on Messenger mission

In order to better evaluate the performance and critical
aspects of the proposed algorithm on a more difficult and
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challenging problem, both AIDEA and IDEA were run on
the Messenger mission test case with different settings. From
the results of the 2011 competition it appeared evident that
none of the algorithms achieved near optimal solutions, since
none of them was able to jump into the secondary structure
of the problem (see Figs. 3 and 4) within the 1.5e5 function
evaluations limit [16], [17]. For this work 5e6 function
evaluations were considered and, again, all reported statistics
were computed on the results obtained from 100 independent
runs.

First a direct comparison between IDEA and AIDEA
with equal values of common parameters was performed.
Here two cases are reported: the first case is set with npop =
40, iunmax = 20, and δb = 0.2, while the second case is
set with npop = 40, iunmax = 10, and δb = 0.3. For each
case, main results for AIDEA and six different instances of
IDEA are summarized in Tables (IV) and (V). As it can
be expected, IDEA can have optimal performance, if DE is
well tuned, (F,CR) = (0.5, 0.9), but performance can get
considerably worse, if F and CR are mis-tuned, (F,CR) =
(0.9, 0.5). On the other hand, performance of AIDEA for

this benchmark are always very close to those obtained by
the best tuned IDEA, or even better, also when different
values of npop, iunmax, and δb are considered.

TABLE IV. COMPARISON BETWEEN IDEA (npop = 40,
iunmax = 20, δ

b
= 0.2) AND AIDEA PERFORMANCE ON MESSENGER

CASE OVER 100 RUNS AFTER 5e6 FUNCTION EVALUATIONS - THE FIRST

COLUMN CONTAINS THE VALUES OF F AND CR USED FOR IDEA

F,CR Min Mean Max Str.Dev.

0.1, 0.5 3.1792 5.9029 8.4344 0.9158

0.1, 0.9 3.1774 6.1825 8.1495 0.9254

0.5, 0.5 3.2385 6.2099 13.8993 1.6175

0.5, 0.9 2.7784 5.1268 6.3625 1.1023

0.9, 0.5 6.2466 10.8371 15.6773 3.2088

0.9, 0.9 3.2829 6.1514 7.5227 0.6653

AIDEA 3.1270 5.3790 6.4898 0.9218

TABLE V. COMPARISON BETWEEN IDEA (npop = 40,
iunmax = 10, δ

b
= 0.3) AND AIDEA PERFORMANCE ON MESSENGER

CASE OVER 100 RUNS AFTER 5e6 FUNCTION EVALUATIONS - THE FIRST

COLUMN CONTAINS THE VALUES OF F AND CR USED FOR IDEA

F,CR Min Mean Max Str.Dev.

0.1, 0.5 3.4316 6.3027 7.1882 0.5573

0.1, 0.9 4.3406 6.6483 8.1580 0.7112

0.5, 0.5 3.3753 6.1563 7.3975 0.7978

0.5, 0.9 3.4918 5.7723 7.0575 0.8408

0.9, 0.5 6.0948 11.0393 15.6904 3.3459

0.9, 0.9 5.2788 6.6157 8.0464 0.4521

AIDEA 3.1761 5.9968 6.9093 0.7058

In order to better understand how both the algorithms
work and better compare the results, the distribution of
100 best results obtained by AIDEA set with [npop = 40,
iunmax = 20, δb = 0.2] is shown in Fig. (7), and compared
to the similar distributions of the best and second best
instances of IDEA (set with the same parameters), which
are given in Figures (8) and (9), respectively. Again, it
is immediately clear that for these cases the distributions
are not Gaussian. The shape of the distributions cannot be
described by just mean and standard deviation values, and
the usually also reported values of min, max, and median
can be of little help. The histogram is multimodal, with
peaks revealing the attraction basins, and a kernel based
approach could be better used to approximate the PDF. For
the case in hand, histograms confirm that the performance
of AIDEA are close to the best IDEA, and for both cases
the solutions in the basins with ∆V < 6 are almost equally
distributed.

The evolution of performance with the number of func-
tion evaluations for AIDEA-[npop = 40, iunmax = 20,
δb = 0.2] and the corresponding best IDEA (F = 0.5,
CR = 0.9) is given in Fig. (10). Data are shown from 1.5e5
function evaluations, which is the maximum value for the
CEC 2011 competition, to 5e6.

In both cases, the performance obtained at 1.5e5 function
evaluations are comparable with the best performance ob-
tained by other algorithms during the competition [16], [17],
as reported in Tab. VI, but, differently from what happens
to other algorithms, performance keep improving with the
number of function evaluations, mainly due to the restart
mechanism preventing stagnation.

In Figure 11 the performance of the Genetic Algorithm
with Multi-Parent Crossover (GA-MPC) [16] with popu-
lation size = 200 are plotted as function of the function
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Fig. 7. Distributions of best results obtained by AIDEA (npop = 40,
iunmax = 20, δ

b
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iunmax = 20, δ

b
= 0.2, F = 0.5, CR = 0.9) on Messenger case
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case

TABLE VI. COMPARISON AMONG AIDEA (npop = 40) WI-DE
AND GA-MPC ON MESSENGER CASE FOR 1.5e5 FUNCTION

EVALUATIONS

Alg. Min Mean Max Str.Dev.

AIDEA 4.3008 11.16029 15.7070 2.9550

WI − DE 6.78 11.5 13.2 2.44

GA − MPC 7.0956 12.818 16.925 3.2413

evaluations up to 1e6 and it can be seen that the algorithm
stagnate after 2e5 evaluations.
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Fig. 11. Evolution of best results obtained by GA-MPC (npop = 200)
on Messenger case

In Tab. VII reported results were obtained by considering
one population size, npop = 40), but different values of
iunmax, and δb. For all values of iunmax, the minimum
achievable value is always affected by the size of the local
bubble, and the smaller the size the better is the minimum
result achieved. This is due to the fact that the algorithm
explores better the local area and if it is close to the
minimum of the function it is more likely that a transition in
the optimal direction occurs. On the other hand, a too small
δb could prevent the transition to lower levels in other cases.
This is particularly evident when the iunmax is high and
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the global restart does not occur often and cannot mitigate
the effect of a too small local bubble, such as in the case
(iunmax, δb) = (20, 0.1). As can be seen in Fig. (12), the
algorithm with this setting can get stuck into zones with high
values (∆V > 7km/s) of the objective function and is not
able to perform the transition to lower levels, or, overall,
to the secondary structure containing the global optimum,
within the allowed number of function evaluations.

TABLE VII. PARAMETRIC ANALYSIS FOR AIDEA PERFORMANCE

(npop = 40) ON MESSENGER CASE - THE FIRST COLUMN CONTAINS

THE USED VALUES OF iunmax AND δ
b

iunmax, δb Min Mean Max Str.Dev.

3, 0.1 3.1679 6.2990 7.8775 0.8931

3, 0.2 3.5990 6.3827 7.5146 0.5812

3, 0.3 3.8868 6.3976 7.9035 0.6764

3, 0.4 4.6436 6.5982 7.6359 0.5496

5, 0.1 2.5010 6.1386 8.9341 1.0020

5, 0.2 3.3372 6.0984 7.2804 0.7345

5, 0.3 3.4961 6.2529 7.6078 0.7241

5, 0.4 4.0272 6.5241 7.7957 0.6375

10, 0.1 2.7254 6.2214 8.1943 0.8281

10, 0.2 3.5191 5.7837 7.1372 0.8263

10, 0.3 3.1761 5.9968 6.9093 0.7058

10, 0.4 4.3288 6.3397 7.3559 0.6389

20, 0.1 2.5350 6.5734 12.1774 1.5011

20, 0.2 3.1270 5.3791 6.4898 0.9218

20, 0.3 3.3930 5.8176 7.0284 0.7492

20, 0.4 4.4610 6.2550 7.3900 0.5257
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Fig. 12. Distributions of best results obtained by AIDEA (npop = 40,
iunmax = 20, δ

b
= 0.1) on Messenger case

The combination iunmax, δb has almost the same influ-
ence on the performance also if different population sizes
are considered, as can be seen in Tables VIII and IX where
the same statistics are reported for tests with npop = 20 and
npop = 10, respectively. The comparison of the statistics in
the three Tables also demonstrates that the AIDEA is robust
against different values of the populations size. It is worth
noting that the population size of the embedded DE should
be much smaller than the size of a standard DE, to allow a
faster convergence and multiple following restarts.

The analysis of the results for this complex test case
confirms the validity of the inflationary approach, which is
made more robust by the technique for the on-line adaptation
of DE control parameters. On the other hand, tests also
make clear that to further enhance the algorithm other

TABLE VIII. PARAMETRIC ANALYSIS FOR AIDEA PERFORMANCE

(npop = 20) ON MESSENGER CASE - THE FIRST COLUMN CONTAINS

THE USED VALUES OF iunmax AND δ
b

iunmax, δb Min Mean Max Str.Dev.

3, 0.1 3.0618 6.2296 7.4400 0.7907

3, 0.2 4.4258 6.4749 7.4035 0.5033

3, 0.3 3.5811 6.3763 8.1853 0.6909

3, 0.4 4.9969 6.7633 9.2208 0.6720

5, 0.1 2.8336 6.2347 7.5139 0.8904

5, 0.2 3.6415 6.2126 7.6438 0.7790

5, 0.3 3.6754 6.4785 7.6099 0.5969

5, 0.4 4.9621 6.6339 7.8255 0.5207

10, 0.1 3.1494 6.2401 10.8552 1.1323

10, 0.2 3.0285 6.0034 7.0366 0.8189

10, 0.3 3.8668 6.2699 7.4899 0.5861

10, 0.4 5.0080 6.5426 7.7897 0.4925

20, 0.1 3.0627 6.2828 10.9439 1.4119

20, 0.2 3.3786 5.8209 7.1450 0.6697

20, 0.3 3.5840 5.9849 7.3529 0.7348

20, 0.4 4.8674 6.2601 7.3455 0.4910

TABLE IX. PARAMETRIC ANALYSIS FOR AIDEA PERFORMANCE

(npop = 10) ON MESSENGER CASE - THE FIRST COLUMN CONTAINS

THE USED VALUES OF iunmax AND δ
b

iunmax, δb Min Mean Max Str.Dev.

3, 0.1 3.0607 6.4858 8.6385 0.8691

3, 0.2 3.9232 6.4844 9.2189 0.8424

3, 0.3 3.3621 6.7159 9.5182 0.7731

3, 0.4 5.4851 6.9356 8.1869 0.5747

5, 0.1 4.0149 6.3407 8.7837 0.8755

5, 0.2 3.1930 6.3255 8.3996 0.7947

5, 0.3 4.0601 6.6772 8.2935 0.7209

5, 0.4 4.1606 6.7243 8.2624 0.7036

10, 0.1 2.6851 6.0550 7.8807 1.0203

10, 0.2 3.4241 6.0912 7.4743 0.7217

10, 0.3 4.3824 6.4754 8.1999 0.6169

10, 0.4 4.7132 6.7901 7.8223 0.5189

20, 0.1 2.5044 6.1944 9.6058 1.4632

20, 0.2 3.1834 5.8817 7.0045 0.7866

20, 0.3 3.9548 6.1134 7.4883 0.6643

20, 0.4 3.7572 6.4462 8.0238 0.6797

critical parameters should be automatically set during the
optimization process. The population size is for sure one of
them, but a correct combination of number of local restarts
and dimension of local bubble is even more critical for a
system much relying on restart both to exploit (local restart)
and explore (global restart) the search space.

Another feature that should be embedded into future ver-
sions of the code is the on-line learning of the currently best
DE strategy. Preliminary tests show that if the algorithm is
exploring a near optimal region, strategy DE/rand/1/bin
could be beneficial to escape local structures and converge to
the optimal point. But, again, if strategy DE/rand/1/bin is
used when the AIDEA is exploring the big basin with high
∆V ’s, many function evaluations are spent to converge into
the non optimal basin.

V. CONCLUSIONS

This paper has introduced an adaptive version of IDEA.
Some preliminary tests on real-world problems proposed for
the CEC 2011 competition, have shown that the adaptive ver-
sion of IDEA achieves results comparable to the best settings
of the non-adaptive version. Furthermore, the combination
of adaptivity and restart strategies brings the algorithm to
consistently perform better than the best algorithms tested
on the CEC2011 competition.
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The sensitivity analysis on the most difficult problem, the
Messenger mission, has shown that the on-line adaptation of
the parameters regulating the local restart procedure is a cru-
cial aspect. Furthermore, a clever adaptation of DE strategy
could better balance convergence and exploration especially
in cases, like the Messenger problem, where the structure
of the landscape changes radically when approaching lower
values of the cost function.
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