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Abstract—Previous research shows that for structured popu-
lations located on a graph, one of the most important attributes
that determines whether a cooperative community is robust is
the topology of the graph. However, even in a graph that is
highly robust with respect to cooperation, “weak points” may
still exist which will allow defection to spread quickly in the
community. Previous work shows that the transitivity and the
average degree are related to the robustness of cooperation in
the entire graph. In addition to considering the cooperation level
across the entire graph, whether an individual in the graph will
allow the spread of defection is an important research question
in its own right. In this work, we are trying to identify both
the “weak” individuals and the “robust” ones. We measure
the centrality in the graph together with the degree, the local
clustering coefficient, the betweenness, the closeness, the degree
eigenvector, and a few newly designed centrality measures such
as “clustering eigenvector centrality”. The results show that for
graphs that have a fixed number of vertices and edges, there are
both robust individuals and weak individuals and that the higher
the transitivity of the graph, the more robust the individuals are
in the graph. However, although some of the graph centrality
measures may indicate whether a vertex is robust or not, the
prediction is still quite unstable.

I. INTRODUCTION

It has been shown that the graph topology plays an im-
portant role in the emergence of cooperation in evolution-
ary games [1]. Many researchers study how specific graph
attributes can influence the emergence of cooperation by
comparing the evolutionary results over graphs with differ-
ent attributes. It is worth mentioning that even in the same
graph, an individual player’s neighbourhood structure can still
influence significantly the behaviour of the evolution. Different
neighbourhoods will perform differently with regards to the
invasion of defection. Due to the high payoff of defection, a
defector usually spreads quickly in graphs with high degree.
Certain structural features of an individual’s neighbourhood
may halt the spread of defection and increase the robustness
of cooperation for the entire graph, which has been considered
as an important feature in some experimental data [2]. Under-
standing the individual’s ability to stop the spread of defection
will help to find the “weak” points of a graph, and it may be
very useful in terms of virus protection, or advertising etc.

It is commonly believed that the hubs and communities
in the graph have an important influence on cooperation [3],
[4], [5], [6], [7]. Most research suggests that heterogeneous
populations and hubs better support cooperation and there

are also experiments that show that hubs and heterogeneous
populations can guarantee to be of benefit to cooperation [8],
[5]. Generally hubs and communities only consider the degree
of one or many individuals; there may also be many other
centrality measures of the individual that may also influence
the emergence of cooperation. To fully understand cooperation
on graphs, other centrality measures, for example, the local
clustering coefficient, closeness, betweenness and eigenvector
centrality, are also worthy of consideration.

In this research, we explore the influence of different
centrality measures on the behaviour of a population playing an
evolutionary prisoner’s dilemma, through identifying both “ro-
bust” and “weak” individuals in the graphs. After exploring a
series of different graphs, we find that the graph transitivity can
actually determine the number of highly robust individuals in
low average degree graphs. We believe that individuals placed
on nodes with a higher local clustering coefficient values
but with lower degree values, lower betweenness scores and
closeness individuals are more unlikely to spread defection.

Considering whether an individual is robust may also
depend on its neighbour’s centrality; in our experiments we
do not fully explore this aspect; future work will explore this
concept and with the aid of machine learning approaches, we
hope to study and find the critical combination of the graph
centralities that can predict the robustness of the individual (or
“game centrality” [2]) in a graph.

Section 2 will introduce the related research, and section 3
will introduce some graph centrality measures, as well as some
discussion on the expected performance of these measures.
Also in section 3, we’ll analyse some simple structures, and
introduce some new measures of centrality that we believe
may be important to the robustness of an individual vertex.
Experimental results are shown in section 4, and section 5
concludes the contribution of this work, and suggests some
future work.

II. BACKGROUND

Previous research has shown that the emergence of co-
operation on different graphs can differ considerably [1]. It
is commonly recognized that scale-free networks are more
beneficial for the emergence of cooperation [9], [10], [11],
[12]. Small-world networks and lattice grids can also provide
reliable cooperation under certain constraints [13], [14], [15],
[16], [17], [18]. Research has shown that the high level of
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cooperation on scale-free networks is actually promoted via
the presence of specific attributes of the scale-free network, for
example, the power-law of the degree distribution. Experiments
show that increasing the heterogeneity of the population can
normally promote the emergence of cooperation [19], [4], [8],
[6], but exceptions also exist—for example when one averages
the payoff garnered through game interactions [6] and also
under weak selection [5]. Poncela et al. found that besides the
power law distribution of the node degree, the node to node
correlation also plays an important role in the performance of
cooperation in a scale-free network [20]. Furthermore, small
community-like clusters are also suitable for cooperation to
survive, as cooperation is more robust in graphs that have high
transitivity (or clustering coefficient) but low average degree
[21].

As heterogeneous graphs (graphs which have both high
and low degree nodes) have shown their ability to maintain
cooperation in comparison to homogeneous graphs in the more
general situation [19], [4], [8], [6], research in the domain
has turned to exploring which graph attributes (both local and
global) influence the emergence of cooperation. Community
structure and even individual behaviour have also been well
researched [22], [23], [24]. One emerging opinion is that
cooperators on hubs and in highly connected communities
are more likely to survive [3], [7]. In order to attempt to
understand how an individual player can influence cooperation
on the entire graph, features such as the initial population,
centrality of the graph etc. have all been considered as potential
features that can contribute to the emergence and robustness
of cooperation. There are even new centrality measures that
have been defined such as Banzhaf, Shapley-Shubik, effort and
satisfaction centrality [24]. The spread of defection from an
individual player has also been considered as a measure of
graph centrality (or called “Game Centrality”) [25], [26], [2],
and this measure has shown it successful on measuring several
real world networks [2].

The notion of game centrality has “proved to be an
important measure to predict the importance of nodes in the
integration and regulation of complex systems” [2]. However,
unlike other graph centrality measures such as the clustering
coefficient and betweenness etc., the game centrality is not a
measure that can be directly related to the topology of the
graph. As the spread of defection in complex graphs has not
been fully understood, currently we can only measure the game
centrality by running the evolutionary social dilemma on the
specific graph. Although Simoko showed some correlations
between the game centrality and degree and betweenness [2],
it is unable to be used to predict the spread of defection from
any individual on a graph. Also, for graphs that have different
structures, the correlation between the graph centrality and
game centrality may vary, which makes predicting the outcome
even more difficult.

The centrality measures that we have used in this paper
include:

• Degree Centrality, or node degree refers to the number
of connections of a node to other nodes in the graph.

• The Clustering Coefficient measures the proportion of
a node’s neighbours connected to each other [27].

• “Closeness” is measured by taking the inverse of the
“farness”, which is the sum of the shortest distance
from a node to all other nodes in the graph [28], [29].

• The betweenness centrality for node vi is the number
of shortest paths between any two nodes vj and vk
(where j, k 6= i) in graph G that have pass node vi.
It is first introduced by Freeman to demonstrate the
importance of a node, in terms of whether it occupied
a position on the shortest path of others [30].

• The eigenvector centrality measure the importance of
a node based on its connections to high-scoring nodes
in the entire graph. It is the eigenvector of the largest
eigenvalue of the adjacency matrix of the graph.

In this paper, we measure the spread of defection from each
individual over graphs with a wide range of average degree
values and transitivity values; we observe several graph cen-
trality measures and try to predict the spread of defection from
an individual in the complex graph. In addition to considering
the degree, clustering coefficient, closeness, betweenness, and
degree eigenvector centrality, we identify potential candidates
for correlation involving the combination of several measures.

III. ROBUSTNESS OF GRAPH AND ROBUSTNESS OF
INDIVIDUAL

A. Cooperation of the graph and the invasion of individuals

If a node has high ability to stop defection, that node is
considered to be a “robust node”, and a “robust graph” refers
to the graph was able to prevent the successful invasion of
defectors. One measure of whether a graph is robust to the
spread of cooperation is to examine the cooperation rate during
an evolutionary run. It is true that different initial populations
have an influence on the final result as a defector in different
positions of the graph will influence the final cooperation rate
of the evolution. The cooperation rate can be examined for a
graph with different randomly initialized populations and the
average calculated over several runs. Alternatively one can use
a set of pre-designed patterns as initial populations.

Considering running an evolutionary simulation where
players interact via a 2 player game with payoff matrix:(
1 0
β α

)
in a complex graph. A defector who wishes to invade

a group of cooperators, even in a strict learning environment
(where the player will adopt the strategy of the most successful
neighbour for the next generation), will need to gain a payoff
score of more than 1 (which is the reward payoff obtained
among mutual cooperators). As we know, in these 2 player
games, the equilibrium is to defect. Hence, between each
two individuals in the graph, the defector can always win
the game against its direct cooperative neighbour. However,
on a graph, both the defector and the cooperator will also
be playing with other players. Since the defector is more
likely to invade its cooperative neighbours, it may obtain a
smaller overall payoff than cooperators who receive more
rewards for mutual cooperation from interacting with fellow
cooperators. Furthermore, for a mutator (i.e. a cooperator
changed to a defector) in a fully cooperative population, the
mutator will definitely obtain a better payoff due to all of
its adjacent neighbours being cooperators (which means it
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will receive the temptation payoff in every game it plays).
So, in a higher-degree graph, a single defector usually can
invade most individuals due to the high connectivity in the
graph. For this reason, in our research, the experiments are
undertaken on graphs with a low average degree; this increases
the likelihood that there will exist cooperative communities
which can successfully avoid the invasion of defectors.

Previous research [21] showed that graph transitivity is a
key to whether or not the cooperation level of the graph is high.
However, this result is obtained using simulations over multiple
runs over graphs with different transitivity values. In these
simulations, one randomly chosen cooperator is changed to a
defector and the effect is observed. Despite the general trend
showing that graph transitivity is a key feature, there still exists
exceptions where even in a very robust graph, defection may
still invade a huge proportion of the graph. We posit that this
is because those unusual cases involve nodes that exhibit some
particular feature, which causes the outcome to differ from the
majority outcome. In an effort to understand these features and
phenomena, research on the individual node’s robustness (or
lack thereof) is necessary.

B. Invasion of a defector

Before we start discussing the spread of a defector in a
graph, we need to know how a single defector can invade
its neighbourhood. In our research, we adopt the mechanism
whereby each player learns from her best performing neigh-
bour, which means the player will always learn from the
neighbour with the highest payoff. Given a payoff matrix(
1 0
β α

)
, a defector will never invade a cooperator while it

satisfies the following condition: n×β+(N−n)×α
N < m

M , where
N and M are the total number of neighbours of the defector
and the cooperator respectively, n and m are the number
of cooperative neighbours of the defector and cooperator
respectively. To satisfy this condition, n must be much smaller
than N .

In a fully cooperative graph, mutating one player from
cooperation to defection in the initial generation, is equivalent
to mutating all of its neighbours at the same time, as all of its
neighbours will have learned to defect after just one generation.
A high-degree graph is usually very poor at preventing the
invasion of defection. This is the reason we restrict our
experiments to low average-degree graphs.

This feature may in turn also stop the spread of defection
in a highly clustered neighbourhood as a high local clustering
coefficient of the first mutated node will spread defection
causing a community of defectors to exist, which means they
will receive a much lower payoff in the next generation as these
connected defectors will receive the punishment payoff. So,
we hypothesise that individual nodes with a higher clustering
coefficient but a lower degree are more likely to stop the spread
of defection.

C. Centrality measures that may influence the spread of de-
fection

Considering the above analysis, in our experiments, in
addition to the common centrality of the graph, the degree,

the clustering coefficient, the betweenness, the closeness and
the degree eigenvector centrality, we will also consider some
combinations of these measures to see if they directly influence
the ability of an individual to spread defection.

As we proposed earlier, a higher clustering coefficient but
lower degree individual may be more likely to stop the spread
of defection. So, we also consider local clustering coefficient

local degree
in the experiments. Furthermore, as the ability of an indi-
vidual to spread defection may also be influenced by the
individual’s second and even third degree connections, we
consider a measure for the clustering coefficient that takes
this phenomenon into account: we consider the eigenvec-
tor of the degree. To calculate this, we first build a node-
by-node matrix, M , where each cell Mi,j has the value
common neighbours of node i and j
total neighbours of node i and j . The eigenvector of this

matrix can represent the centrality of the clustering of the
corresponding individuals in the graph. We call this centrality
measure the clustering eigenvector centrality.

As we consider local clustering coefficient
local degree , we similarly

considered the value of degree eigenvector
clustering eigenvector as a potential

measure.

Since the spread of defection is very complex and may con-
trolled by more than two node centrality measures, we do not
expect any of the measures to fully provide a perfect indication
as to whether defection will spread or not. However, it may
be give us a hint of how the graph centrality can influence an
individual node’s robustness with respect to cooperation. We
hope this could provide a step towards developing a suitable
prediction algorithm.

IV. EXPERIMENT RESULTS

The experiments have been undertaken on a series of
graphs with 1000 vertices and an average degree of 5. The
graphs that have been generated for the experiment can be
guaranteed to provide an even distribution of transitivity val-
ues. The experiments start with a fully cooperative population,
and the player strategy updates are synchronized. At the
beginning of each experiment, one individual is mutated to be
a defector, and we then record the cooperation rate after 100
generations. For each graph we run the experiment 1000 times
so that every individual is mutated once for an independent run
in order to find which node will allow defection spread more
widely.

We use 10 different graphs for each transitivity value from
0.1 to 0.8 and these have been generated by the algorithm
introduced in the paper [21]. We have also tested the graph
with higher average degree values (6, 7, 8, 9 and 10) with
each transitivity value from 0.1 to 0.8 as well. Although
the payoff matrix of the game is important to the invasion,
however, a node in a robust community is always being robust
against invasion in compare with nodes that are in the position
which are easy to be invaded, so we decide to use a 2 player

prisoner’s dilemma game with a payoff matrix
(
1 0
0 1.61

)
.

The temptation payoff is set to 1.61, in order to prevent
has a cooperator that has the same payoff as a defector (for
example, a defector with 5 cooperate neighbours will have
payoff 8.05, that is slightly higher than a cooperator which
having 8 cooperate neighbours).
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We run each evolutionary simulation on each graph. The
evolution converged very quickly and the cooperation rate
reaches a relatively stable state usually within 50 generations.
We recorded the cooperation rate of each independent run after
100 generations and used this as a measure of the robustness
of cooperation for the corresponding individual.

We ranked the cooperation rate after 100 generations for
each individual as a defector in each graph, and then we plotted
several centrality measures of the individual, and attempted to
identify if one (or a combination of a few) graph centrality
measure can capture whether the individual will spread de-
fection widely into the graph. We also explore for different
graphs whether the graph’s attributes can affect the overall
performance of the individual in the graph.

A sample plot of the cooperation rate for a graph with
transitivity 0.5 (Graph 5.1) is shown below (Fig. 1):

Fig. 1. The cooperation rate of each individual in graph with transitivity
value 0.5

It is interesting to see that there are both “robust” and
“weak” individuals in the same graph, with a quite clear
separation (we can see that there is a quick transition from
0.52 to 0.98). We can see there is a transition that identifies the
number of “robust” individuals and “weak” individuals with
705 individuals that will spread defection to more than half of
the graph while others almost didn’t spread defection at all.

This proportion varies in relation to the overall transitivity
of the graph. The average rate of highly robust individuals
averaged over 10 randomly generated graphs with transitivity
values ranging from 0.1 to 0.6 (Fig. 2) shows that, for graphs
which has 1000 vertices and 2500 edges, the higher the
transitivity of the graph, the more robust individuals present
in the graph. However, in the graphs with transitivity 0.7 and
0.8, there are hardly any individuals that allowed defection to
spread very quickly; in other words, almost all individuals in
such graphs are very robust. The overall comparison of graphs
with different transitivity scores is shown in Figure 3.

From Figures 2 and 3, we can see that both the transitivity
and the number of edges can determine the number of highly
robust individuals in the graph. This supports previous results
[21]. The individuals have quite different performance in each
graph. Some of them spread defection over almost the entire
graph, while others did not spread defection at all. In the
graphs with high levels of transitivity, some individuals even
reverted back to cooperation subsequent to their mutation to

Fig. 2. The average number of individuals that can not spread defection in
the graph with specific values of transitivity.

Fig. 3. Cooperation rates after 100 generations for the graphs with different
transitivity and average degree. The number of edges is specified above the
graphs; the colour of the lines defines the transitivity; the x-axis plots the
index of the node that have been set to defect; the cooperation rate is plotted
on the y-axis.

defection. To understand this phenomenon, we need to explore
the centrality of each individual.

In order to observe whether there are any graph centrality
measures that can identify the robustness of cooperation (or the
spread of defectors) for each individual in the graph, we con-
sider the following measures: the local clustering coefficient,
local degree, betweenness centrality, closeness centrality and
eigenvector centrality.

We plot the cooperation rate for each individual in each
graph based on the rank for each different graph centrality
measures. We include some sample plots in Figure 4. These
correspond to the graph illustrated in Figure 1. Other graphs
demonstrate similar features.

From the experiments, we can see that there is a clear
distinction for each centrality measure between the individuals
leading to a low cooperation rate and those leading to a high
cooperation rate. Although the results are quite noisy, there is
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Fig. 4. Individual centrality by the order of each individual’s spread of defection in graph 5.1

a clear trend that a high clustering coefficient and high degree
nodes are more robust to the spread of defection. Also, the
betweenness and closeness scores are, on average, much lower
for those robust nodes. Surprisingly, the influence of all of
the eigenvector measures is quite small with little correlation
between these values and the outcomes. This is probably due to
the average degree of the graph being too small in comparison
to the size of the graph, so the eigenvector’s absolute value is
too small. Having said this, there is some correlation present
with highly robust individuals having a higher probability
of having a higher value of clustering eigenvector / degree
eigenvector.

It is interesting to note that for individuals having a similar
ability to spread defection, the variance on each centrality
measure is high. There is an intermediate value of the centrality
that may perform both behaviour on spread defection or not.

However, the extreme values of some centrality measures,
will still make a good prediction for the robustness of indi-
viduals. For example, a node with clustering coefficient 1, and
betweenness 0, will definitely not spread defection at all.

The current findings are not strong enough to make a
definite prediction on the individual robustness present in a
graph as it is obvious that none of the graph centrality measures
exactly predicts the spread of defection of the corresponding
individual perfectly on its own. However, the result gives us
an indication of the effects of graph centrality on the spread
of defection, as the extreme value only appears for either high
or low cooperation.

V. DISCUSSION AND FUTURE WORK

By analysing each individual on a wide range of graphs,
we attempt to make a connection between the graph topology
and the cooperation levels present in social dilemma games
from the “macro” level (the graph level) to “micro” level (the
individual view). The higher transitivity levels can decrease
the number of nodes with a higher game centrality [2] (the
nodes that have higher ability to spread defection), which
extends the research in [21]. Increasing the average degree can
increase the average game centrality since it actually increases
the size of the community while retaining the actual graph size.
Ignoring the size of the graph, we believe that cooperation on
the graph can be represented as the spread of defection on
each individual. The degree to which defection spreads from
the individual decides the number of individuals that a defector
can invade, which will directly influence the cooperation rate
for graphs that have a finite number of vertices.

On the other hand, for an individual, the likelihood of
defection spreading from the node can be roughly predicted
by its centrality. Despite the presence of the high level of
fluctuation in the intermediate values, the extreme values of
the node centrality measure always appear with extreme values
of the cooperation rate. So we can guarantee that a node with
clustering coefficient 1 and betweenness 0, will never spread
defection, even if that node itself changes to defection either
through initial mutation or invasion.

Although the experiment results show some noise, the re-
sults are quite promising. Considering that the game centrality
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is a useful measure in many real world data settings [2], it
cannot currently be predicted on given graphs without running
the evolutionary social dilemma game on that particular graph.
The measurable graph centrality is more easily obtained from
the graph. Future work will involve learning the relationship
between potential combinations of these centrality measures
and the spread of defection. This hopefully will lead to a
mechanism for predicting the spread of defection.
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