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Abstract— Linear ordering problem is a popular NP-hard
combinatorial optimization problem attractive for its com-
plexity, rich library of test data, and variety of real world
applications. It has been solved by a number of heuristic as well
as metaheuristic methods in the past. The implementation of
nature-inspired metaheuristic optimization and search methods
usually depends on streams of integer and floating point num-
bers generated in course of their execution. The pseudo-random
numbers are utilized for an in-silico emulation of probability-
driven natural processes such as arbitrary modification of
genetic information (mutation, crossover), partner selection, and
survival of the fittest (selection, migration) and environmental
effects (small random changes in particle motion direction and
velocity). Deterministic chaos is a well known mathematical
concept that can be used to generate sequences of seemingly
random real numbers within selected interval in a predictable
and well controllable way. In the past, it has been used as
a basis for various pseudo-random number generators with
interesting properties. Recently, it has been shown that it can be
successfully used as a source of stochasticity for nature-inspired
algorithms solving a continuous optimization problem. In this
work we compare effectiveness of the differential evolution
with different pseudo-random number generators and chaotic
systems as sources of stochasticity when solving the linear
ordering problem.

I. INTRODUCTION

Nature-inspired optimization and search methods includ-
ing the differential evolution [1] (DE) operate in a stochastic
(probability-driven) manner. It corresponds to the way real
natural systems that have originally inspired evolutionary and
swarm-like methods work. An example of highly complex
stochastic biological system represent e.g. ant colonies and
the stochastic way tasks are distributed among the ants within
a colony [2].

Computers, however, are deterministic machines and non-
determinism has to be emulated in order to mimic the
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probability-driven decision making observed in the nature.
That is usually achieved by the means of pseudo-random
number generators, less frequently by deterministic chaos,
and only seldom by the means of true (hardware based)
random number generators.

Recently, it has been shown that deterministic chaos can
be successfully used as a source of stochasticity for nature-
inspired algorithms solving a battery of continuous test prob-
lem [3]. This study compares the effect the use of different
sources of stochasticity has on the DE solving a well-known
real-world combinatorial optimization problem – the linear
ordering problem (LOP). The sources of non-determinism
investigated in this work include different pseudo-random
number generators (PRNGs) and generators based on deter-
ministic chaos DCh) [4].

The LOP is a well-known NP-hard combinatorial opti-
mization problem. It has been intensively studied and there
are plenty of exact, heuristic and metaheuristic algorithms for
the LOP. With its large collection of well described testing
data sets, the LOP represents an interesting testbed for meta-
heuristic and soft computing algorithms for combinatorial
optimization [5], [6].

The LOP can be formulated as a graph problem and as a
matrix triangulation problem [5]. It can be seen as a search
for simultaneous permutation of rows and columns of a
matrix C such that the sum of the elements in the upper
diagonal of the modified matrix is as large as possible. In
this work we use the matrix formulation of the LOP.

II. LOP AS A MATRIX TRIANGULATION PROBLEM

The LOP can be defined as a search for optimal column
and row reordering of a weight matrix C [7], [8], [9], [5].
Consider a matrix Cn×n, permutation Π and a cost function
f :

f(Π) =
n∑

i=1

n∑
j=i+1

cΠ(i)Π(j) (1)

Solving the LOP involves a search for permutation Π so
that f(Π) is maximized, i.e. the permutation restructures
the matrix C so that the sum of its elements above main
diagonal is maximized. The LOP is an NP-hard problem
with a number of applications in scheduling (scheduling
with constraints), graph theory, economy, sociology (paired
comparison ranking), tournaments and archaeology among
others.

In economics, LOP algorithms are deployed to trian-
gularize input-output matrices. The resulting permutation
provides an useful information about the stability of the
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investigated economy. In archaeology, LOP algorithms are
used to process the Harris Matrix, a matrix describing
most probable chronological ordering of samples found in
different archaeological sites [8]. Other applications of the
LOP include the equivalent graph problem, related graph
problem, aggregation of individual preferences, ranking in
sport tournaments and e.g. the minimization of crossing [5].

A. LOP Data sets

There are several test libraries used for benchmarking LOP
algorithms. They are well preprocessed, thoroughly described
and the optimal (or so far best) solutions are available. Major-
ity of investigated algorithms were tested against the LOLIB
library. The original LOLIB library contains 49 instances
of input-output matrices describing European economies in
the 70s. Although LOLIB features real world data, it is
considered rather simple and easy to solve [10].

Mitchell and Bochers [11] published an artificial LOP
data library and LOP instance generator to evaluate their
algorithm. The data (from now on addressed as MBLB) and
code are available at Rensselaer Polytechnic Institute1.

Schiavinotto and Stützle [7], [8] showed that the LOLIB
and MBLB instances are significantly different, having di-
verse high-level characteristics of the matrix entries such
as sparsity or skewness. The search space analysis revealed
that MBLB instances typically have higher correlation length
and also a generally larger fitness-distance correlation than
LOLIB instances. It suggests that MBLB instances should be
easier to solve than LOLIB instances of the same dimension.
Moreover, a new set of large artificial LOP instances (based
on LOLIB) called XLOLIB was created and published.
Another set of LOP instances is known as the Stanford Graph
Base (SGB). The SGB is composed of larger input-output
matrices describing US economies. In this study we use the
well-known LOLIB and SGB LOP instances.

B. LOP Algorithms

There are several exact and heuristic algorithms for the
linear ordering problem. The exact algorithms are strongly
limited by the fact that LOP is an NP-hard problem (i.e.
there are no exact algorithms that could solve LOP in
polynomial time). Among the exact algorithms, branch &
bound approach based on LP-relaxation of the LOP for
the lower bound, a branch & cut algorithm, and interior
point/cutting plane algorithm attracted attention [8]. Exact
algorithms are able to solve rather small general instances
of the LOP and bigger instances (with the dimension of few
hundred rows and columns) of certain classes of LOP [8].

A number of heuristics and soft computing algorithms
was used for solving LOP instances: greedy algorithms,
local search algorithms, elite tabu search, scattered search
and iterated local search [8], [12], [5].The metaheuristic
algorithms used to solve LOP in the past include genetic
algorithms [13], [14], differential evolution [15], and ant

1http://www.rpi.edu/˜mitchj/generators/linord/

colony based algorithms [16]. The investigation of meta-
heuristics and soft computing algorithms is motivated by
previous success of such methods in real world and industrial
applications [17], [18], [19], [20]. This study investigates
whether the use of deterministic chaos as a source of
stochasticity can contribute to more efficient (faster, more
accurate, more energy efficient) solving of LOP instances.
Differential evolution was selected as a metaheuristic LOP
solver based on its previous good results on LOP [21] as
well as on experiments with deterministic chaos [3].

III. DIFFERENTIAL EVOLUTION

The DE is a versatile and easy to use stochastic evolu-
tionary optimization algorithm [1]. It is a population-based
optimizer that evolves a population of real-encoded vectors
representing the solutions to given problem. The DE was
introduced by Storn and Price in 1995 [22], [23] and it
quickly became a popular alternative to the more traditional
types of evolutionary algorithms. It evolves a population of
candidate solutions by the iterative modification of the can-
didate solutions via the application of differential mutation
and crossover [1].

The DE starts with an initial population of N real-valued
vectors. The vectors are initialized with real values either
randomly or so, that they are evenly spread over the problem
space. The latter initialization leads to better results of the
optimization [1].

During the optimization, the DE generates new vectors
that are scaled perturbations of existing population vectors.
The algorithm perturbs selected base vectors with the scaled
difference of two (or more) other population vectors in order
to produce the trial vectors. The trial vectors compete with
members of the current population with the same index called
the target vectors. If a trial vector represents better solution
than the corresponding target vector, it takes its place in the
population [1].

There are two most significant parameters of the DE [1].
The scaling factor F ∈ [0,∞] controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1]
determines the ratio of bits that are transferred to the trial
vector from its opponent. The size of the population and the
choice of operators are another important parameters of the
optimization process.

The basic operations of the classic DE can be summarized
using the following formulas [1]: the random initialization of
the ith vector with N parameters is defined by

xi[j] = rand(bLj , b
U
j ), j ∈ {0, . . . , N − 1} (2)

where bLj is the lower bound of jth parameter, bUj is the
upper bound of jth parameter and rand(a, b) is a function
generating a random number from the range [a, b]. A simple
form of the differential mutation is given by

vti = vr1 + F (vr2 − vr3) (3)

where F is the scaling factor and vr1, vr2 and vr3 are three
random vectors from the population. The vector vr1 is the
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base vector, vr2 and vr3 are the difference vectors, and the
ith vector in the population is the target vector. It is required
that i 6= r1 6= r2 6= r3. The uniform crossover that combines
the target vector with the trial vector is given by

l = rand(0, N − 1) (4)

vti [m] =

{
vti [m] if (rand(0, 1) < C) or m = l

xi[m]
(5)

for each m ∈ {1, . . . , N}. The uniform crossover replaces
with probability 1−C the parameters in vti by the parameters
from the target vector xi.

There are also many other modifications to the classic DE.
Mostly, they differ in the implementation of particular DE
steps such as the initialization strategy, the vector selection,
the type of differential mutation, the recombination operator,
and control parameter selection and usage [1].

IV. RELATED WORK

Stochasticity is an important property of non-deterministic
natural systems that have inspired evolutionary computation
and swarm-intelligent algorithms including the DE. The
effects of various software and hardware based sources of
non-determinism on the performance and results of nature-
inspired algorithms were in the past investigated in several
studies.

A. Random Number Generators and DE

Cárdenas-Montes et al. [24] studied the sensitiveness of
four evolutionary algorithms including the GA and DE to
the change of PRNG (Mersenne Twister and GCC rand).
The study featured a massive experimental evaluation on a
set of test functions and statistical analysis of the results and
the authors concluded that both GA and DE are sensitive to
the choice of RNG. No guidelines for the choice of PRNG
for particular algorithm and problem were found though.

Another study of the influence of PRNG quality on the
DE is due to Tirronen et al. [25]. The authors have used
a battery of test functions and concluded that the quality
of PRNG does not correlate with the performance of the
algorithm (i.e. a lower-quality PRNG can yield a DE with
good performance).

B. Deterministic Chaos and DE

The use of deterministic chaos for selected tasks of GA,
DE, and PSO has been investigated by a number of research
works.

A study by Yang et al. [26] proposed a self-adapting
DE with chaos. Sequence of chaotic numbers generated by
logistic map was used as a part of adaptive mechanism
for self-tuning of DE parameters F and C. Computational
experiments performed with selected test functions have
shown that the adaptive algorithm finds better solutions than
non-adaptive DE.

C. Deterministic Chaos and PRNG

Deterministic chaos has been exploited for general pseudo-
random number generation in several studies. Wagner [27]
proposed in 1993 the use of coupled map lattice for pseudo-
random number generation. The Logistic Lattice algorithm
featured good statistical properties and a long period of
generated numbers. Moreover, the algorithm addressed the
problems caused by finite precision of computer arithmetics
by re-mapping the logistic equation from interval [0, 1]
to interval [-1, 1]. A design of PRNG based on logistic
equation is due to Andrecut [28]. The generator was shown to
outperform linear congruential generator in terms of quality
of generated numbers.

The work of Szczepański and Kotulski [29] proposed
physical model of a chaotic PRNG with good statistical
properties. Shastry et al. [30] proposed a generalization of
Logistic Equation and a new PRNG. The algorithm sampled
its parameters from several chaotic trajectories.

Chen et al. [31] used a nonlinear digitalized modified
logistic map as a basis of novel PRNG. The algorithm was
shown to pass selected randomness tests. A recent analysis
of PRNGs based on Logistic Equation is due to Persohn
and Povinelli [32]. The authors have illustrated some of the
problems caused by finite precision of computer arithmetics
and proposed a new algorithm to test the properties of chaos
based generators.

The studies outlined in this section often used sophis-
ticated approaches to design a chaos-based PRNGs that
would satisfy the requirements usually imposed on traditional
PRNGs that are necessary e.g. for cryptographical applica-
tions. In this work, however, we investigate the ability of
PRNGs and DCh-based generators to drive nature-inspired
stochastic methods. Because of that, also simple DCh-based
methods for generation of sequences of real numbers are
considered.

V. EXPERIMENTS

In order to evaluate the effect different sources of stochas-
ticity have on the DE when solving LOP, a modified DE
with adaptive mutation rate was used to find solutions of
LOLIB and SGB instances. The LOLIB data set contained
49 LOP matrices with dimensions ranging from 50 to 56
and one instance of the dimension 79 (describing the US
economy). The SGB data set contained 25 LOP matrices of
the dimension 75.

The DE as well as a battery of RNGs and DCh-based
generators was implemented in C++. The overview of im-
plemented PRNGs and DCh-based generators is shown in ta-
ble I. All generators were implemented from scratch with the
exception of GCC rand, which was provided by the GNU C
Library (libc). The DE was executed without any type of
local search as a pure metaheuristic search. The algorithm
was executed for 5000 generations with population size 100,
i.e. the search involved 50000 fitness function evaluations.
LOP solutions were represented as real number vectors using
the convenient random keys encoding [33], [34]. The DE was
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TABLE I
IMPLEMENTED SOURCES OF STOCHASTICITY.

Generator Type Note

GCC rand PRNG rand() function from GCC 4.7.2; lin-
ear congruential generator.

Mersenne
Twister

PRNG Mersenne Twister PRNG according
to [35].

Ranlux D1 PRNG Luxury random numbers generator
by Luscher [36]. Adapted from GNU
Scientific library, luxury level 1.

Ranlux D2 PRNG Luxury random numbers, luxury
level 2.

Logistic Equa-
tion

DCh Logistic Equation (Map) xn+1 =
rxn(1−xn), r = 4, x0 = 0.02 [4].

Re-mapped Lo-
gistic Equation

DCh Logistic Equation re-mapped to [-1,
1] according to [27].

Logistic Lattice DCh Full implementation of Logistic Lat-
tice according to [27].

B-exponential
Map

DCh Generalized Logistic Equation ac-
cording to [30].

for each generator and each LOP instance executed 30 times
independently and this work presents average results in order
to evaluate the effect of different sources of stochasticity. The
average accuracy and standard deviation of LOLIB solutions
found with the help of different generators is summarized
in table II and the average accuracy and standard deviation
of SGB solutions found using different generators is shown
in table III. Averages over all LOP instances in both data set
are shown at the bottom of each table.

It can be observed that the DE with all generators achieved
good average accuracy (for a pure metaheuristic solver):
95.22% - 99.93% for LOLIB instances and 97.65% - 99.27%
for SGB instances. The average precision of solutions found
with the help of PRNGs is better than those of LOP solutions
found with DCh. Moreover, the standard deviation of PRNG-
based solutinons is a little lower. Student’s paired t-test [37]
at significance level α = 0.05 showed that the difference be-
tween PRNG-based and DCh-based solutions is statistically
significant. The only exception was the generator based on
logistic lattice which performed on par with the PRNGs.

VI. CONCLUSIONS

This study investigated the effects that the use of different
sources of stochasticity might have on the performance of
a nature-inspired algorithm (namely differential evolution)
when solving a real-world combinatorial optimization prob-
lem (namely the linear ordering problem). Two sets of well-
known LOP instances from the LOLIB and SGB data sets
were solved by the DE utilizing several pseudo-random
number generators and generators based on deterministic
chaos. The results suggest that the use of deterministic chaos
(or at least the generators used in this work) brings no
improvement to LOLIB and SGB solutions. On the contrary,
the DE with generators based on logistic equation, re-mapped
logistic, and b-exponential map yielded significantly worse
solutions than the DE utilizing PRNGs. Only the DCh-based
generator with logistic lattice performed similarly as the
PRNGs.

Our future work on this topic will include a large-scale
evaluation of other nature-inspired algorithms utilizing dif-
ferent sources of stochasticity for different well-known LOP
instances, other combinatorial optimization problems and
other real-world problems.
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[7] T. Schiavinotto and T. Stützle, “Search space analysis for the lin-
ear ordering problem,” in Applications of Evolutionary Computing,
ser. Lecture Notes in Computer Science, G. R. Raidl, J.-A. Meyer,
M. Middendorf, S. Cagnoni, J. J. R. Cardalda, D. Corne, J. Gottlieb,
A. Guillot, E. Hart, C. G. Johnson, and E. Marchiori, Eds., vol. 2611.
Berlin, Germany: Springer-Verlag, 2003, pp. 322–333.

[8] ——, “The linear ordering problem: Instances, search space analysis
and algorithms,” Journal of Mathematical Modelling and Algorithms,
vol. 3, no. 4, pp. 367–402, 2004.

[9] V. Campos, F. Glover, M. Laguna, and R. Martı́, “An experimental
evaluation of a scatter search for the linear ordering problem,” J. of
Global Optimization, vol. 21, no. 4, pp. 397–414, 2001.

[10] G. Reinelt, The Linear Ordering Problem : Algorithms and Appli-
cations, ser. Research and Exposition in Mathematics. Heldermann
Verlag Berlin, 1985, vol. 8.

[11] J. E. Mitchell and B. Borchers, “Solving linear ordering problems
with a combined interior point/simplex cutting plane algorithm,”
Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY
12180–3590, Tech. Rep., September 1997, accepted for publication
in Proceedings of HPOPT97, Rotterdam, The Netherlands. [Online].
Available: http://www.math.rpi.edu/∼mitchj/papers/combined.ps

[12] G. Huang and A. Lim, “Designing a hybrid genetic algorithm for the
linear ordering problem,” in GECCO, 2003, pp. 1053–1064.
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TABLE II
AVERAGE PRECISION AND STD. DEVIATION OF LOLIB SOLUTIONS FOUND BY DE WITH DIFFERENT SOURCES OF STOCHASTICITY (IN PERCENT).

LOP GCC rand Mersenne Ranlux D1 Ranlux D2 Logistic Re-mapped Logistic B-exponential
Instance Twister Equation Log. Eq. Lattice Map

N-be75eec 98.61 (1.03) 98.69 (0.84) 98.71 (0.64) 98.67 (0.32) 98.10 (0.97) 97.97 (1.08) 98.57 (0.71) 98.31 (0.84)
N-stabu74 98.76 (0.56) 98.68 (0.70) 98.65 (0.60) 98.73 (0.38) 97.80 (0.84) 97.70 (0.84) 98.50 (0.74) 97.68 (0.95)

N-t59i11xx 99.25 (0.61) 99.18 (0.64) 99.49 (0.39) 99.29 (0.59) 97.43 (1.43) 97.50 (1.24) 99.19 (0.88) 97.30 (1.44)
N-t65i11xx 99.02 (1.01) 99.00 (0.83) 99.51 (0.25) 99.00 (0.87) 96.91 (1.72) 97.15 (1.61) 99.19 (0.56) 96.43 (1.74)
N-t70b11xx 98.64 (1.03) 98.72 (0.89) 99.20 (0.73) 98.70 (1.28) 96.57 (1.74) 96.44 (1.78) 98.86 (0.89) 96.91 (1.85)
N-t70k11xx 98.89 (0.79) 98.96 (0.51) 99.01 (0.61) 98.84 (0.82) 96.90 (2.02) 96.72 (1.85) 98.86 (0.63) 97.19 (2.13)
N-t70x11xx 98.49 (1.06) 98.73 (1.12) 98.31 (1.33) 98.50 (0.96) 96.47 (1.70) 96.32 (1.43) 98.59 (0.85) 96.34 (2.20)
N-t75k11xx 99.31 (0.47) 99.11 (0.68) 99.16 (0.65) 98.99 (0.72) 96.83 (2.40) 96.82 (2.13) 99.29 (0.59) 97.18 (2.29)
N-tiw56n62 98.13 (1.34) 98.09 (1.41) 98.86 (0.67) 97.88 (1.30) 96.89 (1.67) 96.84 (1.57) 98.16 (1.52) 96.94 (1.52)
N-tiw56r58 98.27 (1.32) 98.50 (1.00) 98.44 (0.78) 98.90 (0.57) 96.98 (1.41) 97.13 (1.43) 98.28 (0.92) 96.95 (1.40)

N-be75np 98.60 (1.09) 98.49 (1.10) 98.18 (1.37) 98.27 (1.23) 97.32 (1.79) 97.50 (1.69) 98.47 (1.15) 97.12 (2.29)
N-stabu75 98.63 (0.53) 98.67 (0.42) 98.73 (0.51) 98.87 (0.58) 97.67 (0.75) 97.79 (0.73) 98.61 (0.54) 97.46 (0.92)

N-t59n11xx 98.51 (0.75) 98.69 (0.64) 98.39 (0.94) 98.36 (0.74) 97.10 (1.67) 97.20 (1.60) 98.60 (0.86) 97.26 (1.67)
N-t65l11xx 99.82 (0.21) 99.86 (0.11) 99.93 (0.11) 99.78 (0.24) 99.40 (0.84) 99.42 (0.85) 99.87 (0.15) 99.34 (0.89)
N-t70d11xx 98.35 (0.92) 97.94 (1.49) 98.00 (1.32) 97.65 (1.38) 96.25 (1.79) 96.07 (1.64) 97.79 (1.30) 96.12 (1.88)
N-t70l11xx 99.59 (0.29) 99.73 (0.24) 99.77 (0.18) 99.63 (0.32) 99.08 (0.59) 99.12 (0.57) 99.39 (0.47) 99.10 (0.55)
N-t74d11xx 98.40 (1.06) 98.36 (1.07) 97.98 (2.10) 98.34 (1.48) 96.81 (1.69) 96.62 (1.68) 98.15 (0.99) 97.03 (1.84)
N-t75n11xx 98.82 (0.54) 98.77 (0.72) 99.14 (0.53) 99.34 (0.53) 97.35 (1.45) 97.47 (1.31) 98.53 (0.68) 96.77 (1.69)
N-tiw56n66 98.27 (1.37) 98.25 (1.04) 98.26 (0.65) 98.63 (0.66) 96.78 (1.46) 96.64 (1.59) 98.20 (1.12) 96.77 (1.46)
N-tiw56r66 98.41 (1.00) 98.67 (0.88) 98.29 (1.02) 98.55 (0.89) 96.89 (1.29) 96.93 (1.31) 98.15 (1.04) 96.95 (1.47)

N-be75oi 99.41 (0.33) 99.38 (0.34) 99.43 (0.40) 99.26 (0.41) 98.85 (0.84) 98.77 (0.87) 99.31 (0.47) 98.89 (0.74)
N-t59b11xx 98.70 (1.27) 98.59 (1.54) 99.25 (0.38) 99.31 (0.45) 96.45 (2.28) 96.88 (2.03) 99.22 (0.49) 96.90 (2.20)
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TABLE III
AVERAGE PRECISION AND STD. DEVIATION OF SGB SOLUTIONS FOUND BY DE WITH DIFFERENT SOURCES OF STOCHASTICITY (IN PERCENT).

LOP GCC rand Mersenne Ranlux D1 Ranlux D2 Logistic Re-mapped Logistic B-exponential
Instance Twister Equation Log. Eq. Lattice Map
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