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Abstract — Differential Evolution (DE) has been successfully 

used to solve various complex optimization problems; however, it 

can suffer depending of the complexity of the problem from slow 

convergence due to its iterative process. The use of the leadership 

concept was efficiently utilized for the acceleration of Particle 

Swarm Optimization (PSO) in a single-objective space. The 

generalization of the leadership concept in multi-objective space 

is not trivial. Furthermore, despite the efficiency of using the 

leadership concept, a limited number of multi-objective 

metaheuristics utilize it. To address these challenges, this paper 

incorporates the concept of leadership in a multi-objective 

variant of DE by introducing it into the mutation scheme. The 

preliminary results are promising as MODEL outperformed the 

parent algorithm GDE3 and showed the highest accuracy when 

compared with seven other algorithms. 

Keywords — Multi-objective optimization, leadership, 

differential evolution, DE, metaheuristics, evolutionary algorithms.  

I. INTRODUCTION 

The DE algorithm is an efficient stochastic method to solve 

complex real-life global real optimization problems which can 

be non-convex, multimodal, non-differentiable, and 

discontinuous to name but a few. DE has been extensively 

studied for single-objective and multi-objective optimization 

problems [1]. However, DE suffers, as most metaheuristics, 

from slow convergence depending of the complexity of the 

problem. 

 Several attempts of accelerating the multi-objective variant 

of DE have been reported since its first invention in 1999 by 

Chang et al. [2]. Later, the Pareto Differential Evolution (PDE) 

has been proposed by Abbas and Sarkar [3] which limited the 

reproduction process among only the non-dominated solutions. 

Then, the first version of the Generalized Differential 

Evolution (GDE) [4] has been proposed by Kukkonen and 

Lampinen where the selection process of GDE was based on 

Pareto dominance, in GDE2 [5] a crowding distance was 

utilized to select best solutions, and in GDE3 [6] a growing 

population size and non-dominance sorting were utilized to 

select best solutions.  Despite its accuracy, GDE3 appeared to 

be slower than MO variants of PSO for certain kinds of 

objectives [7]. 

One reason of PSO being sometimes faster than DE is probably 

the use leadership concept. In this paper, it proposed to further 

enhance GDE3 by incorporating the use of leadership into 

GDE3.The selection of leader is based on the non-dominance  
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sorting but the number of possible leaders, called deputies, to 

be selected is restricted to preserve their well-distribution. The 

proposed contribution consists in modifying the mutation 

scheme as follows: 

- Incorporate leadership into the mutation scheme 

using deputies: GDE3/deputy/1 

- Implementation of the non-dominance sorting in the 

difference vector. 

- Utilization of opposite control of parameter F with a 

certain probability to avoid premature convergence in 

certain cases. 

The reminder of this paper is organized as follows. Section 

II introduces briefly to multi-objective optimization. Section III 

describes the proposed MODEL algorithm. Section IV 

provides details about the parameter settings. Section V 

presents the results of the experiments. Finally, Section VI 

concludes the paper. 

II. MULTI-OBJECTIVE OPTIMIZATION 

A MOO problem consists of multiple objectives to be 

simultaneously minimized or maximized. However, for the 

sake of simplicity and without any loss of generality, in this 

paper is assumed that all the objective functions are to be 

minimized. Also, a MOO problem can be subject to equality 

and inequality constrains and variable boundaries. It is 

formulated as follows:  

���	���� = 
�����, �����, … , ������        (1)  

�. �. 
����� ≥ 0,			� = 1, 2, … ,�                        (2) 

ℎ���� = 0,			� = 1, 2, … , �                         (3) 

where � is a vector of decision variables for the optimization 

problem, ����� are objective functions, ����� are inequality 

constraints, and ℎ���� are equality constraints. The equations 

(2) and (3) determine the feasible region Ω ⊆ ℝ!.  

To facilitate the understanding of the paper, some 

definitions related to multi-objective optimization are 

provided such as Pareto dominance, Pareto weak dominance, 

Pareto optimality, Pareto optimal set, and Pareto optimal front 

described below. 

Definition 1: Weak Pareto dominance 

Given two solutions	x, y	 ∈ 	Ω, it is said x weakly dominates y 

(denoted by x ≼ y ) iff 	∀	� = 1, … , '	����� ≤ ���)�, i.e., a 

solution	� Pareto weakly dominates a solution y, if � is at least 

as good as y in every objective.  

Definition 2: Pareto dominance 

Given two solutions	x, y	 ∈ 	Ω, it is said x dominates y 

(denoted by � ≺ ) ) iff 	∀	� = 1, … , '	����� ≤ ���)� and 

∃	� = 1,… , '	where	����� < ���)�, i.e., a solution	� Pareto 

1131

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



dominates a solution y, if � is at least as good as y in every 

objective and better than y in at least one objective. If x and y 

do not dominate each other, it said they incomparable (x ||		y) 
Definition 3: Pareto optimality 

Given a solution x∗ ∈ Ω, x∗ is said to be Pareto Optimal if ∄ 

y	∈ Ω such that  ) ≺ x∗. 
x∗ is Pareto optimal if it is not dominated by any other 

solution. 

Definition 4: Pareto optimal set 

A Pareto optimal set is defined by 

34 = 5x	 ∈ Ω	|	�	is	a	Pareto	optimal	solution} 
i.e., a Pareto set 34 is a combination of non-dominated 

solutions. 

Definition 5: Pareto optimal front 

A Pareto optimal front is defined by 3�∗ = 5���� =

�����, �����, … , ������	|	�	 ∈ PS} 
i.e., the non-dominated solutions make up a Pareto-optimal 

front when visualized in the objective space. 

 

 

Figure 1: Pareto Front Schematic. Bi-objective minimization 

problem with cost and pollution objectives   

 

As shown in Figure 1, for example, an energy system 

design might involve two objectives, such as cost and 

pollution. One solution might be inexpensive but very 

polluting such as solution f, while another solution can be 

affordable but more polluting such as solutions c, d, or e. A 

last solution can be very expensive but with almost no 

pollution such as solution a. The optimal solutions which are 

non-dominated (a,b,c,d,e,f) represent the Pareto optimal set 

which when viewed together in the objective space form the 

Pareto front. 

III. PROPOSED MUTATION SCHEME IN MODEL 

The general convention used to represent mutation schemes in 

DE is DE/x/y/z, where x stands for the base vector to be 

perturbed, y is the number of difference vectors used for one 

perturbation of x, and z represents the type of crossover being 

used (exp: exponential, bin: binomial) [8]. 

The classical scheme in the single objective version of DE 

is DE/rand/1 [9]. "rand" means the three vectors used for 

mutation are randomly selected from population, "1" means 

there is only one difference vector. So, the mutation is done as 

follows: 

 CDEEEF = GFH + 	� × KGFL − GFNO, (1) 

    

where GFH, GFN, GFL 	are randomly selected vectors from the 

current population and  � ≠ Q ≠ R	 ≠ S, � is the current vector. 

�	 ∈ 
0, 2� is a real constant to determine the amplification of 

the differential variation KGFL − GFNO. 
 

This section presents the three contributions made to the 

classical mutation scheme of GDE3 which are the use of 

GDE3/deputy/1 scheme, the utilization of the non-dominance 

ranking in the difference vector, and the sign change of the 

factor F with a certain probability.  

A. Use of leadership in the mutation (GDE3/best/1) 

In single objective optimization, the DE/best/1 scheme works 

as follows: 

 

 CDEEEF = GFNTUD + 	� × KGFL − GFNO, (2) 

where GFNTUD  is the fittest found solution. 

The purpose of using the fittest solution is to achieve a 

faster convergence of the population than in PSO. The 

problem is that there is no best (fittest) solution in MOPs. A 

common and logical alternative is the random selection of one 

of the non-dominated solutions as in SMPSO [10]. However, 

it has been shown recently if non-dominated solutions are 

located in the same area in the objective space, then they will 

pull the entire population towards that specific region which 

affects the well-distribution of the Pareto optimal solutions 

[11]. Consequently, the population will end either by a 

premature convergence or a slower convergence.  

As a solution, it is proposed to select more representative 

leaders, called deputy leaders, in a more representative (well-

distributed) manner than in [11]. So, it is proposed to use the 

GDE3/deputy/1 scheme where deputies are selected among 

leaders to better represent the population. This proposed 

scheme is the main cause of GDE3 performance improvement. 

But, the deputy leaders are selected differently than in Leader 

and Speed constraint Multiobjective PSO (LSMPSO) [11] 

which used the Weighted Sum Method for leader selection. 

Actually, p% of deputy leaders are selected using the classical 

non-dominance sorting which uses the non-dominance and 

crowding distance discriminants as follows: 

 

 CDEEEF = GFVTWXDY + 	� × KGFL − GFNO, (3) 

where GFVTWXDY is a p% more representative solutions of the 

population which are selected using the non-dominance 

sorting and crowding as secondary discriminant.  
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Restricting the number of best (non-dominated) to p% 

serves to maintain a good-distribution among deputy leaders 

using the crowding distance mechanism and avoid premature 

convergence or a slowdown in convergence speed due to a 

concentration of leaders in specific region of the objective 

space. In this paper, the parameter p is set to 0.1 (i.e., p = 

10%) similar to [11].  

B. Non-dominance sorting  for the difference vector 

For further acceleration of the convergence speed; it is 

proposed to apply the non-dominance sorting between the 

vectors used to generate the difference vector. Intuitively, the 

difference vector should be, as in PSO, from a better solution 

to a lower quality solution to converge towards an optimum. 

Assume two random candidate solutions c and b from the 

population to form the difference vectors; if c dominates b, 

then the difference vector is GFL − GFN. If both solutions are 

incomparable, then the less crowded solution is selected based 

on the crowding distance using in NSGA-II [12]. The 

proposed mutation scheme is described below. The bold 

sections are the modified portions of the difference vector. 

 

Proposed (in bold) Difference Vector 

If ZK[EEF\ ≺ [EEF]O	^_	 `K[EEF\	||	[EEF]O	abc	�deK[EEF\O f de�[EEF]�gh 
     CDEEEF = GFVTWXDY + 	� × K[EEF\ − [EEF]O 
Else 

    	CDEEEEF = GFVTWXDY + 	� × K[EEF] − [EEF\O  
EndIf 

 

where GFVTWXDY is randomly selected among deputy leaders, 

and GFL and GFN are randomly selected from the population, 

deputy ≠ 	Q ≠ R. 

CD: crowding distance. 

 

C. Opposite of Control Parameter F 

The earlier proposed mutation schemes, namely, the 

utilization of deputies and the non-dominance ranking in 

difference vector served to increase the convergence speed 

while preserving a uniform distribution of the population of 

DE [13]. However, our observations show in specific cases 

these modifications can lead to premature convergence. For 

example, for the problem DTLZ5, premature convergences 

might happen because the search space is very large, i.e. there 

is a large distance between the initial population and the true 

Pareto optimal solutions in the objective space as illustrated in 

Figs 2 and 3. Fig. 2 shows a problem where the initial distance 

between the population and the true PF is reasonable whereas 

the Fig. 3 shows a case where the initial distance between the 

population and the true PF is large enough to cause premature 

convergence due the use of leadership in the mutation scheme 

of GDE3. 

 

 
 

Fig. 2: Example of a problem where the distance in the 

objective space between the initial population and the PF is 

reasonable 

 

 
 

Fig. 3: Example of a problem where the distance in the 

objective space between the initial population and the PF is 

large 

 

To solve this problem of premature convergence, it is 

proposed to utilize a negative control parameter F with a 

certain probability which is fixed to 0.3 in our experiments 

similar to the jumping rate used in the ODE [14]. Changing 

the sign of F serves to relax the proposed utilization of the 

non-dominance ranking in the difference vector and avoid a 

premature convergence by strengthening the explorative 

properties of MODEL. In other words, sometimes the 

movement of a candidate solution is directed in an opposite 

direction to the optimum to escape from local optima. A 

similar approach has been used in [15] for single objective 

problems. 

D. Multi-Objective Differential Evolution with Leadership 

By integrating the three proposed mutation modifications, 

presented in previous sub-sections, into GDE3, a new MO 

metaheuristic (MOM) is proposed, called Multi-objective 

Differential Evolution with Leadership (MODEL). The details 

of the three proposals to build a new mutation operator of 

GDE3 to accelerate its convergence speed are described in the 

pseudocode provided below. 
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MODEL Algorithm. In bold, the modification added to GDE3. 

1. Evaluate the initial population P of random individuals. 

2. While  stopping criterion not  met,  do: 

2.1. For  each individual Pi  (i = 1, . . ., popSize)  from P  repeat:   

(a)  Generate candidate t  from parent Pi as follows. 

If ZK[EEF\ ≺ [EEF]O	^_ `K[EEF\	||	[EEF]O	jkl	�deK[EEF\O f de�[EEF]�gh 
[EEFm = K[EEF\ − [EEF]O 

}Else{ 

[EEFm = K[EEF] − [EEF\O 
} 

If (rand(0,1) <p){ //change sign of F 

noEEEEF = [EEFmpqros − 	t × [EEFm 

}else{ 

noEEEEF = [EEFmpqros + 	t × [EEFm 

} 

And u ≠ lvwxyz ≠ 	{ ≠ ] 

(b)  Evaluate the candidate solution. 

(c)  If the candidate dominates the parent, the candidate replaces the parent. 

If the parent dominates the candidate, the candidate is discarded. Otherwise, the candidate is 

added in the population. 

2.2. If the population has more than popSize individuals, truncate it using dominance ranking and 

crowding distance. 

 

IV. EXPERIMENTS SETTINGS 

To assess the performance of the proposed MODEL 

algorithm, it is compared to seven state-of-the-art 

metaheuristics using 22 bi-objective benchmark problems. 

This section describes the compared algorithms and their 

respective parameter settings, the utilized benchmark 

problems, and the utilized evaluation measures and stopping 

conditions. 

A. Compared MO Metaheuristics 

The proposed MODEL algorithm is compared with seven 

state-of-the-art MOO metaheuristics which are described in 

this subsection. The implmentation of thse state-of-the-art 

algorithms is available in the jMetal [16] multi-objective 

optimization framework which has been used for conducting 

all the experiments in this paper. 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) 

was proposed by Deb et al. [12] in 2002. This genetic 

algorithm consists of generating new populations from the 

original population by the use of classical genetic operators 

such as selection, crossover, and mutation. The individuals of 

the two populations are sorted according to their ranking. 

Then, the best solutions are recombined for the generation of 

the next population. In the case of having solutions with the 

same rank, a density estimation (crowding distance) is 

calculated with regards to the surrounding solutions for the 

selection of the most promising solutions.  

The Strength Pareto Evolutionary Algorithm (SPEA2) was 

proposed by Zitzler et al. [17] in 2002. In this MOEA, every 

candidate solution has a fitness value which equals the sum of 

its strength raw fitness (solutions that dominates it) plus a 

density estimation. SPEA2 uses the selection, crossover, and 

mutation operators for generating an archive of individuals. 

The non-dominated solutions of both the original population 

and the archive are copied into a new population. In case the 

number of non-dominated solutions is superior to the 

population size, a truncation operator is used by calculating 

the distances among solutions. The most similar solutions are 

removed. 

The Speed Constrained Particle Swarm Optimization 

(SMPSO) algorithm, which is the parent algorithm of 

LSMPSO, was proposed by Nebro et al. [18] in 2009. It is a 

particle swarm optimization algorithm for solving MOO 

problems. This approach is based on OMOPSO [19], whose 

main features are the use of the crowding distance concept 

adopted by NSGA-II for filtering leader solutions that are 

stored in an archive, the use of mutation operators for swarm 

speed convergence acceleration, and the use of |-Dominace 

when generating new candidate solutions. Its main difference 

with respect to OMOPSO is that SMPSO incorporates a 

mechanism for velocity limitation and introduces a 

polynomial mutation operator. 

The third version of the Generalized Differential Evolution 

algorithm (GDE3) was proposed by Kukkonen and Lampinen 

[6]. GDE3 is an improved version of the GDE algorithm [20], 

which was originally proposed in 2005. It starts with a random 

solution population. In every iteration, a new offspring 

population is generated using the differential evolution 

operator. Both populations are combined; then, the size of the 

population is reduced using non-dominated sorting and a 

pruning algorithm for diversity preservation as in NSGA-II.  

However, the GDE3 pruning algorithm modifies the NSGA-II 
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crowding distance in order to solve some GDE3 drawbacks 

when dealing with problems with more than two objectives. 

The cellular genetic algorithm (MOCell) was introduced by 

Nebro et al. [21] in 2006. Being a genetic algorithm, it uses 

selection, crossover, and mutation operators. Similar to many 

multi-objective metaheuristics, it includes an external archive 

for storing the non-dominated solutions discovered so far. 

This archive is bounded by using NSGA-II’s crowding 

distance in order to maintain diversity in the Pareto front. The 

selection is achieved by selecting a solution from the 

neighborhood of the current solution (called cell in cGAs) and 

another solution selected randomly from the archive. Then, the 

genetic crossover and mutation operators are applied for 

generating a new offspring which is compared to the current 

offspring. If the offspring is better, it replaces the current one. 

Otherwise, if both solutions are non-dominated, then the worst 

solution in the neighborhood is replaced by the current one 

and inserted into the archive. 

AbYSS was introduced by Nebro et al. [22] in 2008; it is a 

multi-objective version of a scatter search. It has an external 

archive similar to MoCell. AbYSS uses evolutionary operators 

such as polynomial mutation, binary crossover and solution 

combination.  

 

Table 1: Utilized bi-objective problems for comparison 
Problem Number 

Variables 
Geometries 

ZDT1 30 Convex 

ZDT2 30 Concave 

ZDT3 30 Convex, disconnected 

ZDT4 10 Convex 

ZDT6 10 Concave, non-uniformly spaced 

DTLZ1 7 Linear 

DTLZ2 12 Concave 

DTLZ3 12 Concave 

DTLZ4 12 Concave 

DTLZ5 12 Concave 

DTLZ6 12 Concave 

DTLZ7 22 Disconnected 

WFG1 6 Mixed Convex-concave  

WFG2 6 Convex, disconnected 

WFG3 6 Linear 

WFG4 6 Concave 

WFG5 6 Concave 

WFG6 6 Concave 

WFG7 6 Concave 

WFG8 6 Concave 

WFG9 6 Concave 

The Multi-objective Evolutionary Algorithm based on 

Decomposition (MOEA/D) [23] was proposed in 2007 and it 

consists of decomposing a MOO problem into scalar sub-

problems which are optimized in parallel. Each sub-problem is 

transformed into a scalar aggregation problem and optimized 

using only neighborhood information. These neighborhood 

relations are determined by the calculation of distances among 

coefficient vectors. 

B. Benchmark Problems 

As shown in Table 1, three well-known families of 

problems are used for comparison purposes: the Zitzler-Deb-

Thiele (ZDT) [24], the Deb-Thiele-Laumanns-Zitzler (DTLZ) 

[25], and the Walking-Fish-Group (WFG) family problems. 

These three families are the most commonly used families. 

They are composed of different PF geometries, namely, 

convex, concave, disconnected, linear, non-uniformly spaced, 

mixed, and linear shapes. 

C. Parameters Settings 

The parameter settings are the same for every MO 

metaheuristic. These parameter settings were taken from [7]. 

NSGA-II, SPEA2, MOCell, AbYSS and GDE3 and 

MOEA/D have a population size of 100. In the same manner, 

LSMPSO and SMPSO have a configuration of 100 particles.  

The metaheuristics having an archive such as NSGA-II, 

SPEA2 and others have also a maximum size of 100. 

In regards, to the number of deputies selected for MODEL, 

it is fixed to 0.1. In other words, only 10% of the maximum 

archive size is used as deputes leaders.  

The configuration parameters of the algorithms are shown 

in Table 2.  

Table 2: Parameterization 
NSGA-II 

Population size 

Selection  of parents 

Recombination 
Mutation 

100 Individuals 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 
Polynomial, pm   = 1.0/L 

SPEA2 

Population size 

Selection  of parents 
Recombination 

Mutation 

100 Individuals 

Binary tournament + binary tournament 
Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 

MOCell 

Population size 
Neighborhood 

Selection  of parents 

Recombination 
Mutation 

Archive size 

100 individuals (10 × 10)  
1-hop neighbors (8 surrounding solutions) 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 
Polynomial, pm   = 1.0/L 

100 individuals 

 SMPSO 

Particles 
Mutation 

Leaders size 

100 particles 
Polynomial 

100 individuals 

GDE3 / MODEL 

Population size 
Recombination 

100 individuals 
Differential evolution,  

CR = 0.1, F  = 0.5 

MOEA/D 

Population size 
Recombination 

Mutation 

100 individuals 
Differential evolution,  

Polynomial 

AbYSS 

Population size 
Reference set size 

Recombination               

Mutation  
Archive size  

100 individuals  
10 + 10 

Simulated binary, pc   = 1.0 

Polynomial, pm   = 1.0/L 
100 individuals 

D. Performance Measure and Stopping Condition 

A high quality set of solutions, in a multi-objective 

optimization context, should be accurate and diverse. 

Accuracy means the solutions should be as close as possible to 

the Pareto Front. Diversity means the solution should be well-

distributed to cover all of the Pareto Front. A popular quality 

indicator that takes into consideration both the accuracy of a 
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solution set and its diversity is the inverse generational 

distance (IGD) [26].  IGD consists in measuring the average 

Euclidean distance between the true Pareto front and the 

approximation obtained by a multi-objective algorithm. 

Assume that P is a set of points representing the true Pareto 

front and S is a set of points representing the approximation 

obtained by a MOM. The average Euclidean distance in the 

objective space is calculated as follows: 

 }~��4, 3� = ∑ ���,U��∈�
|�| , (4) 

 

where d�v, �� is the minimum Euclidean distance between a 

point v belonging the true Pareto front and a point � belonging 

to the approximation obtained. |3| is the number of selected 

points used to represent the Pareto front. When the value of 

the IGD is lower, a better approximation is achieved. 

V. RESULTS AND DISSCUSION 

Due to the stochastic nature of metaheuristics, every algorithm 

was run 100 times independently. The IGD results are 

reported in Table 3. Dark grey shows the most accurate 

algorithm, while the lighter grey shows the second most 

accurate algorithm. 
The Wilcoxon statistical procedure is conducted based on 

[27] to present results at a 0.05 significance level. However, 
whenever the statistical test did not pass between the two 
fastest algorithms, both of them were ranked first. For 
example, for the problems ZDT6 and DTLZ6, there was not a 
significant statistical difference between the two most accurate 
algorithms. The two most accurate MOMs were ranked first for 
these specific cases. 

From Table 3, it can be clearly seen that the proposed 

MODEL algorithm outperformed all the other state-of-the-art 

MOMs, followed by its parent algorithm GDE3.  

As shown in Table 4, MODEL is the most accurate for 12 

problems (ZDT1-ZDT3, ZDT6, DTLZ6-DTLZ7, WFG1-

WFG2, WFG4, WFG6 and WFG9) and second most accurate 

for 3 problems (DTLZ1, DTLZ3 and WFG7). Overall, 

MODEL is in top two positions for 15 out of 21 problems, i.e., 

71.5%. The second position is occupied by GDE3 which is the 

most accurate for four problems (ZDT6, DTLZ1, DTLZ6, and 

WFG4) and the second most accurate for nine problems 

(ZDT1, ZDT3, DTLZ4, WFG1-WFG2, WFG5-WFG7, and 

WFG9). In addition, MODEL was more accurate or 

equivalently accurate to its parent algorithm GDE3 for 20 out 

21 problems with the exception of the DTLZ1 problem, which 

is a linear problem. Therefore, MODEL proves to be 

consistently outperforming GDE3 in various complex 

problems. It can be seen from Table 3 that MODEL was not 

among the top two MOMs for the WFG3 which is also a linear 

problem; however, its performance was similar to GDE3. The 

performance of MODEL with linear problems needs to be 

further investigated.  

The third most robust MOM is AbYSS. It is the most 

accurate for five problems; which were all concave problems, 

although there are also several other problems characterized 

by concavity where AbYSS was not accurate. In brief, AbYSS 

seems to be advantageous when dealing with certain types of 

MO optimization concave problems. 

As shown in Figs. 4, 5, and 6, the MODEL algorithm is 

very consistent across various problems in terms of accuracy 

using limited number of function evaluations. In addition, it 

can be seen that MODEL accuracy was significantly better 

than all other MOMs with the WFG problems which are 

known to a more complex family of MOPs. 

 

 

Table 3: IGD, mean and standard deviation for bi-objective problems. Dark grey is the algorithm having the best IGD results 

followed by light grey in the second position. 

 
 

Table 4: Scores for comparison (3 points for the 1
st 

position, and 1 point for the 2
nd

 position, Occ.=Number Occurances, 

Pnts=Number of points allocated) 
 MODEL NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

 Occ. Pnts Occ. Pnts Occ. Pnts Occ. Pnts Occ. Pnts Occ. Pnts Occ. Pnts Occ. Pnts 

1st 12 36 0 0 0 0 4 12 3 9 5 15 0 0 1 3 

2nd 3 3 1 1 2 6 9 9 1 1 1 1 1 5 0 0 

Total 39 1 6 21 10 16 5 3 
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Figure 4: IGD boxplots for ZDT bi-objective problems 
 

VI. CONCLUSIONS 

This paper proposed a new MOM named MODEL based on a 

MO version of DE. MODEL incorporated the leadership 

concept into DE’s mutation operator. The leadership served to 

accelerate GDE3 MOM using the GDE3/deputy/1 mutation 

scheme. In addition, the non-dominance concept was utilized 

to determine the leader among the two vectors in the 

difference vector to generate the mutant vectors. Finally, the 

negation of the control factor F with a probability was used to 

avoid premature convergence in specific cases where the 

distance between the initial population and the true PF was 

very large. 

The proposed MODEL has been compared to seven state-

of-the-art metaheuristics using 21 bi-objective problems taken 

from ZDT, DTLZ, and WFG. MODEL was in average the 

most accurate MOM. MODEL outperformed its parent 

algorithms GDE3 almost all the time. Also, Abyss showed 

good accuracy for certain concave problems.  

In future, we would like to test the proposed method on 

many-objective problems. It is also important to examine the 

performance of MODEL by varying the configuration 

parameters.  
 To demonstrate the performance of the proposed MODEL 
MOM, it would be useful to apply the MODEL algorithm to 
real case studies.  

 

Figure 5: IGD boxplots for DTLZ bi-objective problems 
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