


Abstract—This  paper  reports  the  effects  that  different 
coding schemes at  the genetic  level  have on the evolution of  
neural  network  multi-agent  systems  that  operate  under 
dynamic  (changing)  environments.  Types  of  NN  encoding 
include  direct  encoding  of  weights  and  three  different  L-
Systems. Empirical results show that even variations within the 
same type of coding scheme can have considerable effects on 
evolution.  Several  different  analysis  of  both  genotypes  and 
phenotypes are used in order to explain the differences caused 
by the coding schemes. 

I. INTRODUCTION

Multi-agent systems in competitive environments need to 
be able to adapt to varying competition, while at the same 
time  maintaining  some  basic  approaches  in  the  face  of 
changing  opponents.  For  example,  under  the  RoboCup 
competition, which is commonly used as a testbed for multi-
agent  systems  ([1]),  virtual  players  controlled  by  an 
intelligent computer program should know how to perform 
basic tasks like kicking/passing the ball to a teammate or to 
a  goal,  or  intercepting  a pass  or  a  shot,  regardless  of  the 
particular strategy being used by their opponent. At the same 
time, a good system should be able to modify details of how 
to  best  attack  or  defend  an  opponent  based  on  that 
opponent's  particular style of play. Stone and Veloso have 
discussed ways to learn basic, low-level skills like the ones 
mentioned above, while leaving open the question of how to 
learn high level strategies ([2]) 

A  good  machine  learning  system  for  a  competitive 
environment should be able to learn general strategies that 
apply to all opponents while being able to quickly modify its 
behavior when needed. In cases where learning is performed 
via  evolutionary  computation,  learning  should  balance 
exploration of new alternatives with exploiting solutions that 
have  proven  successful  in  the  past.  When  looking  at  a 
complete evolutionary computation system, partial solutions 
to different variations of a common problem could be found 
in  different  segments  of  population  elements,  in  the 
information coded in specific  genes,  or in the diversity of 
elements  in  the  current  population.  Previous  research  in 
evolutionary  computation  has  looked  at  the  effect  of 
maintaining  population  diversity  when  operating  under 
dynamically changing environments ([3]). This is based on 
the premise that having diversity in the population will help 
in  finding  good solutions  when  variations  in  the  problem 
space take place, avoiding the well known problem of early 
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convergence  to  sub-optimal  solutions.  Oliveto  and 
Sarges([4]) have looked at the effect of looking at different 
types of diversity,  such as genotype and fitness value,  for 
this type of problem. For static environments, while Kitano 
found L-Systems to outperform direct encoding of weights 
for  evolution  of  neural  networks  ([5]),  Siddiqi  and  Lucas 
have  found  conflicting  results  ([6]).  Also  for  static 
environments,  Bornhofen  and  Lattaud  have  looked  at  the 
effect of different mappings from genotypes to phenotypes 
in  evolved  L-systems,  and  their  ability  to  store  useful 
information in dormant  production rules ([7]). 

In  the research  discussed  in  this  paper,  I  have  evolved 
neural  networks  (NN) multi-agent  systems (MAS) to play 
the team-based game of capture the flag (CTF), testing the 
effect  that  genetic  coding  scheme  and  genotype  to 
phenotype  translation  have  on  the  ability  to  deal  with 
changes  in their opponents.  Empirical  results  indicate that 
different coding schemata provide the systems with differing 
ability to both adapt to change and to store solutions to past  
environmental conditions for later use.

The rest of this paper is organized as follows: Section II 
describes  the  game  of  CTF  as  implemented  for  these 
experiments; Section III describes the evolutionary process 
being used to evolve neural network agents, as well as the 
parameters being controlled in the experiments; Section IV 
describes  and analyzes  the the results obtained; Section V 
mentions future research suggested by the results presented 
here;  Section  VI  summarizes  results  and  conclusions; 
section VII acknowledges important people that have proven 
essential  in  the  development  and  maintenance  of  the 
computing platform used to run these experiments.

II.THE CAPTURE THE FLAG (CTF) CHALLENGE

In  this version  of  CTF,  two teams of  five players  each 
start the game in opposite sides of a two-dimensional square 
playing area.  Each team has a flag that they must defend, 
which is originally placed on their side of the field. In order 
to  win  a  game,  players  must  grab  and  carry  the  flag 
belonging to the opposing team and bring it into their own 
half, while at the same time keeping the opposing team from 
doing  the  same.  If  a  player  is  “tagged”  by  an  opposing 
player while in the opposer's side of the field, they are sent 
to  “jail,”  where  they must  remain  until  a  teammate  frees 
them by touching  the  jail  they  are  in.  Figure  1  shows  a 
segment of  a sample game situation,  where the blue team 
has grabbed the red flag and there is a blue player in jail. 

In  these experiments, neural networks will need to play 
against one of two different opposing teams. One of them, 
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called Champion, has two defenders that stay close to their 
flag and try to tag enemies within a radius of ten distance 
units from them, and three attackers that either try to grab 
the enemy flag, or go towards the jail if there is a teammate 
in the jail and they are the closest attacker to the jail. The 
other team, called  runner-up, plays by distributing players, 
at  the  beginning  of  the  game,  in  the  following  way:  two 
guards to protect their own flag; one attacker to try to grab 
the opposing flag; one sweeper to stay close to the middle of 
the field tagging opponents close to it, and  one flexer to free 
any  teammates  that  might  be  in  jail,  if  any,  otherwise 
behaving like an attacker.  Based on these descriptions,  we 
can see that these two teams are not completely different, 
but they nevertheless use different tactics.  As documented 
later in Section IV, these differences in the teams' playing 
tactics  are  enough  to make a difference  during  evolution. 
Games last for five minutes, or until a flag is captured and 
taken across the field's center line. If a flag is captured this 
way, the capturing team receives 200 points. In addition, a 
team receives  one point  for  each second of  the game that 
they  had  the  enemy  flag  in  their  possession,  minus  the 
number of seconds the opposing team had their flag. 

III. THE EVOLUTIONARY SYSTEM

A. Neural Networks Being Evolved
A team of five agents controlled by homogeneous neural 

networks is evolved to play against the two types to teams 
described above. These neural networks have 27 inputs and 
four outputs. The 27 inputs are distributed as follows: four 
two-dimensional vectors to each of its teammates; five two-
dimensional vectors to each of the opposing players; a two-

dimensional vector to its own flag; a two-dimensional vector 
to the opposing team's flag; a two-dimensional vector to the 
center of the field; the number of teammates that have been 
captured and are in jail; the number of opposing players that 
have been captured and are in jail; and a number between 
one and five that identifies which member of the team this 
one is. All vectors are normalized based on the size of the 
playing  field.  The  number  of  players  in  each  jail  is 
normalized based on the total number of players in teams. 

The input layer of these networks is fully connected to a 
hidden layer  with twenty nodes.  This first  hidden layer  is 
then  fully  connected  to  a  second  hidden  layer  of  twenty 
nodes. Finally, the second hidden layer is fully connected to 
an  output  layer  with  four  nodes.  These  four  NN  outputs 
indicate a preference towards performing one of four roles: 
defending, sweeping, attacking, or flexing. These four tasks 
are  defined  the  same  way  as  for  the  runner-up  team 
described in section II. After generating these four outputs, 
the  agent  performs  the  role  indicated  by  the  output  node 
with the highest activation value. This topology provides for 
enough  connections  as  to  allow  the  evolutionary  systems 
described below to show different behaviors under changing 
conditions.  Fig.  2  displays  a  network  with  this  particular 
topology,  with  node  colors  representing  activation  values 
after processing a sample game situation. Arrows between 
layers represent full connectivity in the direction shown.

B. Coding of NN Weights in Chromosomes
The weights used by these neural networks are evolved by 

a  genetic  algorithm system using  one  of  several  possible 
coding schemata. In one system, which I will refer to as DC, 
direct encoding of weights is used. The genomes used in this 
system have  1400  genes,  one  for  each  connection  in  the 
networks  described  above.  There  are  also  three  different 

Fig. 1.Sample capture the flag scene

Fig. 2. NN topology
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Lindenmayer  systems,  or  L-systems  ([8]). Following  the 
work of Kitano, a genetic algorithm is used to evolve a set 
of rules defining different L-Systems ([5]). These L-Systems 
are  then  used  to  generate  a  set  of  weights  for  the  NN 
connections following the algorithm outlined below.

C. L-Systems
An L-System is  a  collection  of  production  rules  of  the 

form A → B, read as “A goes to B,” where A is a non-
terminal  symbol,  and  B  is  a  collection  of  one  or  more 
terminals  and  non-terminals.  In  the  experiments  reported 
here,  a  terminal  is  a  symbol  that  represents  a  specific 
decimal  number  between  -1  and  1.  To  generate  a  set  of 
connection  weights  with  an  L-System,  we  begin  by 
expanding the starting symbol S, into whatever the right side 
of that production rule indicates, substituting any terminals 
with the appropriate number based on those terminals' rule. 
If there are any non-terminals after expanding the S symbol, 
we continue expanding each of these non-terminals based on 
their own rules, until we have generated the desired number 
of weight values, or until we detect that no new weights will 
be  generated  regardless  of  continuing  to  expand  non-
terminals.  At  that  point  we substitute any remaining non-
terminal  with  zeros,  and  use  the  generated  numbers  as 
connection  weights  in  a  neural  network.  Some  of  the 
characteristics  of  L-Systems that  make them attractive  for 
evolutionary neural  networks are that they can represent a 
large number of weights with a smaller genome  ([5]), and 
that  they  can  facilitate  the  creation  of  modularity  in  the 
evolved networks ([9]).

In  the  experiments  reported  here,  I  have  used  three 
different types of L-Systems. One of them has sixteen non-
terminals and five terminals,  another has 21 non-terminals 
and five terminals, and a third one has 38 non-terminals and 
ten terminals. In each of these L-systems, non-terminals can 
expand  to  4,  36,  and  36  elements  at  the  right  side  of  a 
production rule, respectively. In the rest of this paper, these 
three L-Systems are referred to as LS-16-5-4, LS-21-5-36, 
and LS-38-10-36, respectively. 

Experimenting with these three L-Systems and with direct 
encoding allows for an examination of the effect of different 
genome sizes and genotype-to-phenotype translation on the 
evolutionary process.

At  the  genetic  level,  each  rule  in  these  L-System  is 

represented  by  a  collection  of  N  genes,  where  N  is  the 
expansion rate for the system. The first group of N genes  
stores what the S symbol expands to, the next group of N 
genes stores what the second non-terminal expands to, and 
so  forth  for  each  non-terminal.  Finally,  the  last  T  genes 
represent what specific number between -1 and 1 each of the 
T  terminals  represents.  Therefore,  an  L-System  requires 
N*(expansion-rate) + T genes. Table I shows the number of 
terminals, non-terminals, expansion rate and total number of 
genes  per  L-System  for  the  three  cases  used  in  the 
experiments reported in this paper.

D. Evolutionary Parameters
Regardless of coding scheme, populations had a constant 

size of one hundred elements. At each generation, 90% of 
offspring  were  generated  by  uniform  crossover,  5%  by 
copying,  and 5% by mutation. Elements for each of these 
operations were selected with a tournament selection size of 
50,  where  50 elements  were  grabbed  at  random from the 
population and the best one of those 50 being selected for 
the operation.  Outside  of  the  5% copying  mechanism, no 
element, regardless of fitness value,  was copied into future 
generations.  This made processing through genetic schema 
the only way by which to propagate specific genes from one 
generation to the next.

Systems  were  always  evolved  for  eighty  generations 
against one opponent, and then switched to a different one. 
That is, systems were either evolved against the runner-up 
for  80  generations  before  switching to  evolve  against  the 
champion,  or  evolved  against  the  champion  for  80 
generations before changing to evolving against the runner-
up. Results reported in this paper are the averages for eight 
runs under the same experimental conditions.

IV. RESULTS FROM EVOLUTIONARY PROCESS

A. Champion and Runner-up as Different Environmental 
Challenges

Since the central  topic of  this paper is  the evolution of 
neural  networks under  dynamic  environments,  it  is  fair  to 
ask if the two challenges being presented to the system (i.e.  
playing against Champion and against runner-up) are in fact 
different from each other.

Fig.  3 shows the fitness results of all runs evolved first 
against the runner-up, with an average fitness at generation 

TABLE I
GENETIC CODING SCHEMA

Name
Non-

terminals
Terminals

Expansion 
rate

# of 
genes

DC N/A N/A N/A 1400
LS-16-5-4 16 5 4 69

LS-21-5-36 21 5 36 761
LS-38-5-36 38 5 36 1373

TABLE II
EVOLUTIONARY PARAMETERS

Parameter Value

Population size 100
Crossover rate 90%
Copying rate 5%

Tournament size 50
Mutation rate 5%
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80 of  -783.88,  with an average  immediate drop  to -395.5 
when switching to  evolving against  the champion. Fig.  4 
shows  fitness  results  of  all  runs  evolved  first  against  the 
champion,  with  an  average  fitness  at  generation  80  of 
-301.45,  with  an  average  increase  to  331.8  in  four 
generations. Since the champion presents a harder challenge 
to  the  evolutionary  system,  the  rest  of  this  paper 
concentrates  on  two  versions  of  dynamic  changes  during 
evolution: how the coding schema react to evolving to play 
against the runner-up for 80 generations and then evolving 
against  the  champion  for  40  generations;  and  evolving 
against the champion for 80 generations, then switching to 
the  runner-up  for  40  generations,  and  finally  evolving 
against  the  champion  once  more  for  40  additional 
generations.

B. On the Ability of Direct Encoding and L-Systems to Find 
Good Solutions

 Both direct encoding and L-Systems are able to find good 
solutions to the problem presented. Table III shows fitness 
values for all runs, for direct encoding and each L-System. 
While  different  coding  schema  end  up  being  superior  at 
different points in the evolutionary process, direct encoding 
and  LS-38-5-36 produce  better  values  the  most  often.  As 
seen  in  Fig.  5,  direct  encoding  suffers  a  smaller  drop  in 

fitness when switching from evolving against the runner-up 
to evolving against the champion, and also improves faster 
once they start evolving against the champion, compared to 
L-Systems.  Closer  examination  of  L-Systems,  presented 
later in this paper,  show that the L-Systems used in these 
experiments  behave  differently  from each  other,  and  that 
LS-38-5-36 produces better values the most often. As seen 
in Fig.  5, direct encoding suffers a smaller drop in fitness 
when  switching  from  evolving  against  the  runner-up  to 
evolving  against  the  champion,  and  also  improves  faster 
once they start evolving against the champion, compared to 
L-Systems. 

TABLE III
RESULTS OF EVOLUTIONARY PROCESS

Coding 
schema

After 80 
generations 
against the 
runner-up

After 40 
additional 

generations 
against the 
champion

All runs 1493.4 1187.66
Direct 

Encoding
1526.65 1257.62

All L-
Systems

1478.56 1160.95

LS-16-5-4 1460.95 968.87
LS-21-5-36 1282.39 1046.9
LS-38-5-36 2132.26 1221.14

 

C.On what Different Types of Diversity Tell Us about the 
Evolutionary Process 

Observing  diversity  values  during  evolutionary  runs 
allows  us  to  understand  why  some  coding  schemes  are 
performing better than others in these tasks, and in particular 
when switching from one opponent to another. First, let us 
define two types of diversity to look at: genetic diversity and 
phenotypic  diversity.  I  define  genetic  diversity  as  the 
average  difference  between  genes  occupying  the  same 

Fig. 3: fitness values, across all runs evolving against 
runner-up first.

Fig. 4: fitness values, across all runs evolving against the 
champion first

Fig. 5: direct encoding vs L-Systems, when switching to 
harder task
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position  in  different  genomes,  across  all  elements  of  a 
population.  For  direct  encoding  schemes,  the  difference 
between two genes can be obtained by subtracting one gene 
value from another, obtaining the formula in equation [1].

∑
i=1

∣P∣

∑
j=i+1

∣P∣

∑
k=1

∣G∣

∣g (i , k)−g( j , k )∣/∣G∣

∣P∣
                    (1)

where P is the current population, G is the genome in the 
coding scheme, and g(i,k) is the kth gene of element i. For L-
Systems, where the genome uses symbols instead of floating 
point numbers, I define the difference between genes as zero 
when the symbols are the same and one when the symbols 
are different,  producing the algorithm in Fig.  6, with term 
definitions as above.           

Phenotypic  diversity,  on  the  other  hand,  is  defined  by 
looking  at  the  weights  of  the  neural  networks  that  are 
deterministically produced from the genomes at the moment 
of evaluating their fitness.  In  the experiments reported in 
this paper, where all the networks have the same topology,  
only the 1400 weights between nodes are changing, giving 
us the formula in equation (2)

∑
i=1

∣P∣

∑
j=i+1

∣P∣

∑
k=1

1400

∣w k(i)−w k( j)∣

1400
                                   (2)

where P is again the current population, and Wx(y) is the xth 

weight of the network generated by genome y. 

  In  direct  coding  schemata,  genetic  and  phenotypic 
diversity  are  of  course  the  same.  Plotting  genetic  and 
phenotypic  diversity  for  L-Systems,  on  the  other  hand, 
shows  different  behavior  for  different  codings.  While 

genetic and phenotypic diversity are never identical, figs. 7-
9  show  how  the  relationship  between  genetic  and 
phenotypic diversity is strongest for LS-38-5-36, weaker for 
LS-21-5-36, and even weaker for  LS-16-5-4.  This exactly 
maps with the fitness  these  systems obtain  after  evolving 
first  against  the runner-up and then against  the champion. 
Notice how for LS-16-5-4 systems the diversity values cross 
each  other  multiple  times  during  runs,  in  LS-21-5-36 
systems  phenotypic  diversity  is  always  below  genetic 
diversity, and for LS-38-5-36 systems phenotypic diversity 
is always below genetic diversity and their curves have the 
same  general  shapes.  The  high  discrepancy  between 
diversity values in LS-16-5-4 systems is caused by changes 
in the rules being evolved that do not lead to changes in the 
resulting  neural  networks.  That  is,  the  rules  that  are 
changing are not expressing into phenotypic changes. This 
situation diminishes for LS-21-5-36 systems, and still exists 
but is even smaller for LS-38-5-36 systems.

Fig. 8: diversities for LS-21-5-36 systems

Fig. 7: diversities for LS-16-5-4 system

Fig. 6: algorithm for computing genetic diversity in L-
Systems
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  These  differences  in  how coding  schemes  manage  to 
express  or  fail  to  express  their  genes  can  explain  the 
performance difference  between them. As direct  encoding 
manages  to  express  100%  of  its  genes,  it  can  react  to 
changes  in  the  environment  more  quickly.  Among  L-
Systems, those coding schemes that tend to express more of 
their genes also present better performance. 

Next I take a look at two additional criteria that have been 
used to evaluate L-systems and direct encoding: their ability 
to create modules that become useful in different part of the 
phenomes,  and  their  ability  to  store  information  in  their 
genotype  that  becomes  useful  when  facing  environmental 
changes. 

D. On the ability of different coding schemata to evolve 
modularity in neural networks

Given that LS-38-5-36 systems are managing to respond 
to  environmental  changes  faster  than  direct  encoding,  we 
could ask if they are doing this while losing the ability to 
create modular neural networks, specially since its behavior 
is closer to that of direct encoding than either of the other L-
Systems. While the literature shows disagreement on how to 
define modularity ([5], [6], [10]), we can set its highest limit 
as  a  count  of  how  often  weights  are  being  repeated 
throughout  network  topologies  in  the  elements  of  a 
population. Fig. 10 shows this information for the three L-
Systems used. 

While  LS-16-5-4  can  produce  higher  modularity,  this 
modularity  varies  more  and  on  occasions  drops  to  values 
lower that under other schemata. LS-21-5-36 and LS-38-5-
36 show almost identical constant modularity.

E. On the ability of different coding schemata to retain 
learning under differing environmental conditions

Some of the literature on genetic schemata for evolution 
of neural networks centers around their ability keep useful 
learned traits in their genotype, under changing conditions, 
which  can  then  form  part  of  good  solutions  when  those 
conditions  arise  again.  To  analyze  the  coding  schemata 
discussed  in  this  paper  based  on  this  property,  I  ran  the 
following evolutionary experiments: solutions were evolved 
for  eighty generations  to  play against  the  champion,  then 
they evolve for forty additional generations to play against 
the  runner-up,  finally  evolving  for  forty  additional 
generation playing against the champion again. While direct 
encoding continues to show the ability to quickly adapt to 
environmental changes (Fig. 11), LS-38-5-36 outperforms it, 
suffering little performance decrease when switching back 
to  evolving  against  the  champion.,  compared  with how it 
was doing forty generations before when last playing against 
this opponent (Fig. 12).  

Notice  how  LS-38-5-36  behaves  differently  when 
originally  evolving  against  the  champion  from generation 
zero. This new behavior is not caused by the forty additional 

Fig. 9: diversities for LS-38-5-36 systems

Fig. 11: Direct encoding fitness, when returning back to 
champion

Fig. 12: LS-38-5-36 fitness, when returning back to 
champion

Fig. 10: module generation in L-systems
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generations evolving against the champion, as seen from Fig 
13,  where  LS-38-5-36  evolves  for  160  consecutive 
generations against the champion. 

These patterns are not seen with LS-16-5-4 or LS-21-5-
36,  and  in  fact  LS-16-5-4  fails  to  re-learn  how  to  play 
against  the  champion,  never  achieving  its  original 
performance against it, as seen in Fig. 14. 

To understand why LS-16-5-4 and LS-38-5-36 behave so 
differently,  I  have  taken  a  look  at  the  neural  network 
connection weights present in the population after initially 
evolving against  the champion,  and  seeing how many are 
repeated after evolving against the runner-up. 

With  the  algorithm shown in figure  15,  the  number  of 
repetitions are shown in Table IV. LS-38-5-36 manages to 
keep  21.73%  more  connections  present  after  switching 
opponents.

LS-38-5-36,  then,  is  seen  to  have  both  the  capacity  to 
maintain characteristics  across  environmental  changes  and 
the capacity to create some modules. On the downside, this 
schema  uses  1373  genes,  close  to  the  same  number  of 
connection weights that need to be generated.

V. FUTURE RESEARCH

While results  of  the  experiments  reported  in  this  paper 
clearly  demonstrate  that  coding  schemata  are  making  a 
difference  in  performance,  and  that  those  differences  are 
based on the generated phenomes, it is not clear why these 
phenomes behave differently for this task. Experiments with 
neural networks of different topologies and  L-System with 
different  parameters  (such  as  numbers  of  terminals,  non-
terminals, expansion rates, and total number of genes) will 
help  clarify  the  relationship  between  these  variables  and 
system  performance.  Aside  from  genetic  and  phenotypic 
diversity,  I  have  started  to  look  at  behavioral  diversity, 
which is based on the specifics of how the agent systems 
behave  against  different  opponents.  Other  future  research 
includes  generating  neural  networks  via  genetic 
programming  (GP)  instead  of  genetic  algorithms,  as  GP 
have  also  been  found  to  provide  for  scalability  and 
modularity ([11],  [12]. Finally,  I am interested in how the 
methods presented in this paper perform on other types of 
tasks.  I  am  currently  configuring  poker-playing 
environments where GA/NN systems learn to detect  high-
level  playing  pattern  in  their  opponents,  and  configuring 
CTF  games  where  neural  networks  determine  low  level 
decisions, such as in which direction to move, instead of the 
high  level  decisions  they  perform  in  the  experiments 
reported here.

VI. CONCLUSIONS

This  paper  has  presented  results  obtained  by  evolving 
neural networks for agent-based high-level decision making 
in  dynamic  environments.  Both  direct  encoding  of 
connection weights and L-Systems are able to find quality 
high level strategies for a team-based game with multi-agent 
systems.  The  schema used  at  the  genetic  level  to  encode 

Fig. 13: LS-38-5-36 fitness, 160 generations against the 
champion

TABLE IV
WEIGHT REPETITIONS

Coding 
schema

Connection weights from generation 
80 repeated in generation 120

LS-16-5-4 558462
LS-38-5-36 713514

Fig. 14: LS-16-5-4 fitness, when returning back to 
champion

Fig. 15: algorithm for computing capacity to maintain 
phenotypic characteristics through environmental change
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neural  network  connectivity  is  found  to  make  substantial 
differences  in  performance.  Simultaneously  looking  at 
genetic  and  phenotypic  diversity  proves  useful  in 
understanding the performance of genetic coding methods. 
Direct encoding, where all genes are expressing as weights 
of a network, adjusts to environmental changes the fastest. 
From among L-Systems, where differing genes sometimes 
but  not  always  express  into  different  connection  weights, 
those methods that have higher gene expression outperform 
others.  We  also  see  that  systems  that  manage  to  carry 
phenotypic  characteristics  through  differing  environments 
have  better  performance  when  returning  to  past 
environmental  conditions.  While  the  L-System that  reacts 
the quickest to environmental changes has close to the same 
number of genes as direct encoding (losing the commonly 
mentioned advantage of scalability), this L-System also has 
a  higher  ability  to  maintain  genes  across  environmental 
changes that more compact L-Systems.
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