


Abstract—This paper reports the effects that different
coding schemes at the genetic level have on the evolution of
neural network multi-agent systems that operate under
dynamic (changing) environments. Types of NN encoding
include direct encoding of weights and three different L-
Systems. Empirical results show that even variations within the
same type of coding scheme can have considerable effects on
evolution. Several different analysis of both genotypes and
phenotypes are used in order to explain the differences caused
by the coding schemes.

I. INTRODUCTION

Multi-agent systems in competitive environments need to
be able to adapt to varying competition, while at the same
time maintaining some basic approaches in the face of
changing opponents. For example, under the RoboCup
competition, which is commonly used as a testbed for multi-
agent systems ([1]), virtual players controlled by an
intelligent computer program should know how to perform
basic tasks like kicking/passing the ball to a teammate or to
a goal, or intercepting a pass or a shot, regardless of the
particular strategy being used by their opponent. At the same
time, a good system should be able to modify details of how
to best attack or defend an opponent based on that
opponent's particular style of play. Stone and Veloso have
discussed ways to learn basic, low-level skills like the ones
mentioned above, while leaving open the question of how to
learn high level strategies ([2])

A good machine learning system for a competitive
environment should be able to learn general strategies that
apply to all opponents while being able to quickly modify its
behavior when needed. In cases where learning is performed
via evolutionary computation, learning should balance
exploration of new alternatives with exploiting solutions that
have proven successful in the past. When looking at a
complete evolutionary computation system, partial solutions
to different variations of a common problem could be found
in different segments of population elements, in the
information coded in specific genes, or in the diversity of
elements in the current population. Previous research in
evolutionary computation has looked at the effect of
maintaining population diversity when operating under
dynamically changing environments ([3]). This is based on
the premise that having diversity in the population will help
in finding good solutions when variations in the problem
space take place, avoiding the well known problem of early

J. Dávila is with the School of Cognitive Science, Hampshire College,
Amherst, MA 01002 USA (phone: 413-559-5687; fax: 413-559-5438; e-
mail: jdavila@hampshire.edu).

convergence to sub-optimal solutions. Oliveto and
Sarges([4]) have looked at the effect of looking at different
types of diversity, such as genotype and fitness value, for
this type of problem. For static environments, while Kitano
found L-Systems to outperform direct encoding of weights
for evolution of neural networks ([5]), Siddiqi and Lucas
have found conflicting results ([6]). Also for static
environments, Bornhofen and Lattaud have looked at the
effect of different mappings from genotypes to phenotypes
in evolved L-systems, and their ability to store useful
information in dormant production rules ([7]).

In the research discussed in this paper, I have evolved
neural networks (NN) multi-agent systems (MAS) to play
the team-based game of capture the flag (CTF), testing the
effect that genetic coding scheme and genotype to
phenotype translation have on the ability to deal with
changes in their opponents. Empirical results indicate that
different coding schemata provide the systems with differing
ability to both adapt to change and to store solutions to past
environmental conditions for later use.

The rest of this paper is organized as follows: Section II
describes the game of CTF as implemented for these
experiments; Section III describes the evolutionary process
being used to evolve neural network agents, as well as the
parameters being controlled in the experiments; Section IV
describes and analyzes the the results obtained; Section V
mentions future research suggested by the results presented
here; Section VI summarizes results and conclusions;
section VII acknowledges important people that have proven
essential in the development and maintenance of the
computing platform used to run these experiments.

II.THE CAPTURE THE FLAG (CTF) CHALLENGE

In this version of CTF, two teams of five players each
start the game in opposite sides of a two-dimensional square
playing area. Each team has a flag that they must defend,
which is originally placed on their side of the field. In order
to win a game, players must grab and carry the flag
belonging to the opposing team and bring it into their own
half, while at the same time keeping the opposing team from
doing the same. If a player is “tagged” by an opposing
player while in the opposer's side of the field, they are sent
to “jail,” where they must remain until a teammate frees
them by touching the jail they are in. Figure 1 shows a
segment of a sample game situation, where the blue team
has grabbed the red flag and there is a blue player in jail.

In these experiments, neural networks will need to play
against one of two different opposing teams. One of them,

Genotype Coding, Diversity, and Dynamic Environments: A Study on an
Evolutionary Neural Network Multi-agent System

Jaime J. Dávila

2306

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

called Champion, has two defenders that stay close to their
flag and try to tag enemies within a radius of ten distance
units from them, and three attackers that either try to grab
the enemy flag, or go towards the jail if there is a teammate
in the jail and they are the closest attacker to the jail. The
other team, called runner-up, plays by distributing players,
at the beginning of the game, in the following way: two
guards to protect their own flag; one attacker to try to grab
the opposing flag; one sweeper to stay close to the middle of
the field tagging opponents close to it, and one flexer to free
any teammates that might be in jail, if any, otherwise
behaving like an attacker. Based on these descriptions, we
can see that these two teams are not completely different,
but they nevertheless use different tactics. As documented
later in Section IV, these differences in the teams' playing
tactics are enough to make a difference during evolution.
Games last for five minutes, or until a flag is captured and
taken across the field's center line. If a flag is captured this
way, the capturing team receives 200 points. In addition, a
team receives one point for each second of the game that
they had the enemy flag in their possession, minus the
number of seconds the opposing team had their flag.

III. THE EVOLUTIONARY SYSTEM

A. Neural Networks Being Evolved
A team of five agents controlled by homogeneous neural

networks is evolved to play against the two types to teams
described above. These neural networks have 27 inputs and
four outputs. The 27 inputs are distributed as follows: four
two-dimensional vectors to each of its teammates; five two-
dimensional vectors to each of the opposing players; a two-

dimensional vector to its own flag; a two-dimensional vector
to the opposing team's flag; a two-dimensional vector to the
center of the field; the number of teammates that have been
captured and are in jail; the number of opposing players that
have been captured and are in jail; and a number between
one and five that identifies which member of the team this
one is. All vectors are normalized based on the size of the
playing field. The number of players in each jail is
normalized based on the total number of players in teams.

The input layer of these networks is fully connected to a
hidden layer with twenty nodes. This first hidden layer is
then fully connected to a second hidden layer of twenty
nodes. Finally, the second hidden layer is fully connected to
an output layer with four nodes. These four NN outputs
indicate a preference towards performing one of four roles:
defending, sweeping, attacking, or flexing. These four tasks
are defined the same way as for the runner-up team
described in section II. After generating these four outputs,
the agent performs the role indicated by the output node
with the highest activation value. This topology provides for
enough connections as to allow the evolutionary systems
described below to show different behaviors under changing
conditions. Fig. 2 displays a network with this particular
topology, with node colors representing activation values
after processing a sample game situation. Arrows between
layers represent full connectivity in the direction shown.

B. Coding of NN Weights in Chromosomes
The weights used by these neural networks are evolved by

a genetic algorithm system using one of several possible
coding schemata. In one system, which I will refer to as DC,
direct encoding of weights is used. The genomes used in this
system have 1400 genes, one for each connection in the
networks described above. There are also three different

Fig. 1.Sample capture the flag scene

Fig. 2. NN topology

2307

Lindenmayer systems, or L-systems ([8]). Following the
work of Kitano, a genetic algorithm is used to evolve a set
of rules defining different L-Systems ([5]). These L-Systems
are then used to generate a set of weights for the NN
connections following the algorithm outlined below.

C. L-Systems
An L-System is a collection of production rules of the

form A → B, read as “A goes to B,” where A is a non-
terminal symbol, and B is a collection of one or more
terminals and non-terminals. In the experiments reported
here, a terminal is a symbol that represents a specific
decimal number between -1 and 1. To generate a set of
connection weights with an L-System, we begin by
expanding the starting symbol S, into whatever the right side
of that production rule indicates, substituting any terminals
with the appropriate number based on those terminals' rule.
If there are any non-terminals after expanding the S symbol,
we continue expanding each of these non-terminals based on
their own rules, until we have generated the desired number
of weight values, or until we detect that no new weights will
be generated regardless of continuing to expand non-
terminals. At that point we substitute any remaining non-
terminal with zeros, and use the generated numbers as
connection weights in a neural network. Some of the
characteristics of L-Systems that make them attractive for
evolutionary neural networks are that they can represent a
large number of weights with a smaller genome ([5]), and
that they can facilitate the creation of modularity in the
evolved networks ([9]).

In the experiments reported here, I have used three
different types of L-Systems. One of them has sixteen non-
terminals and five terminals, another has 21 non-terminals
and five terminals, and a third one has 38 non-terminals and
ten terminals. In each of these L-systems, non-terminals can
expand to 4, 36, and 36 elements at the right side of a
production rule, respectively. In the rest of this paper, these
three L-Systems are referred to as LS-16-5-4, LS-21-5-36,
and LS-38-10-36, respectively.

Experimenting with these three L-Systems and with direct
encoding allows for an examination of the effect of different
genome sizes and genotype-to-phenotype translation on the
evolutionary process.

At the genetic level, each rule in these L-System is

represented by a collection of N genes, where N is the
expansion rate for the system. The first group of N genes
stores what the S symbol expands to, the next group of N
genes stores what the second non-terminal expands to, and
so forth for each non-terminal. Finally, the last T genes
represent what specific number between -1 and 1 each of the
T terminals represents. Therefore, an L-System requires
N*(expansion-rate) + T genes. Table I shows the number of
terminals, non-terminals, expansion rate and total number of
genes per L-System for the three cases used in the
experiments reported in this paper.

D. Evolutionary Parameters
Regardless of coding scheme, populations had a constant

size of one hundred elements. At each generation, 90% of
offspring were generated by uniform crossover, 5% by
copying, and 5% by mutation. Elements for each of these
operations were selected with a tournament selection size of
50, where 50 elements were grabbed at random from the
population and the best one of those 50 being selected for
the operation. Outside of the 5% copying mechanism, no
element, regardless of fitness value, was copied into future
generations. This made processing through genetic schema
the only way by which to propagate specific genes from one
generation to the next.

Systems were always evolved for eighty generations
against one opponent, and then switched to a different one.
That is, systems were either evolved against the runner-up
for 80 generations before switching to evolve against the
champion, or evolved against the champion for 80
generations before changing to evolving against the runner-
up. Results reported in this paper are the averages for eight
runs under the same experimental conditions.

IV. RESULTS FROM EVOLUTIONARY PROCESS

A. Champion and Runner-up as Different Environmental
Challenges

Since the central topic of this paper is the evolution of
neural networks under dynamic environments, it is fair to
ask if the two challenges being presented to the system (i.e.
playing against Champion and against runner-up) are in fact
different from each other.

Fig. 3 shows the fitness results of all runs evolved first
against the runner-up, with an average fitness at generation

TABLE I
GENETIC CODING SCHEMA

Name
Non-

terminals
Terminals

Expansion
rate

of
genes

DC N/A N/A N/A 1400
LS-16-5-4 16 5 4 69

LS-21-5-36 21 5 36 761
LS-38-5-36 38 5 36 1373

TABLE II
EVOLUTIONARY PARAMETERS

Parameter Value

Population size 100
Crossover rate 90%
Copying rate 5%

Tournament size 50
Mutation rate 5%

2308

80 of -783.88, with an average immediate drop to -395.5
when switching to evolving against the champion. Fig. 4
shows fitness results of all runs evolved first against the
champion, with an average fitness at generation 80 of
-301.45, with an average increase to 331.8 in four
generations. Since the champion presents a harder challenge
to the evolutionary system, the rest of this paper
concentrates on two versions of dynamic changes during
evolution: how the coding schema react to evolving to play
against the runner-up for 80 generations and then evolving
against the champion for 40 generations; and evolving
against the champion for 80 generations, then switching to
the runner-up for 40 generations, and finally evolving
against the champion once more for 40 additional
generations.

B. On the Ability of Direct Encoding and L-Systems to Find
Good Solutions

 Both direct encoding and L-Systems are able to find good
solutions to the problem presented. Table III shows fitness
values for all runs, for direct encoding and each L-System.
While different coding schema end up being superior at
different points in the evolutionary process, direct encoding
and LS-38-5-36 produce better values the most often. As
seen in Fig. 5, direct encoding suffers a smaller drop in

fitness when switching from evolving against the runner-up
to evolving against the champion, and also improves faster
once they start evolving against the champion, compared to
L-Systems. Closer examination of L-Systems, presented
later in this paper, show that the L-Systems used in these
experiments behave differently from each other, and that
LS-38-5-36 produces better values the most often. As seen
in Fig. 5, direct encoding suffers a smaller drop in fitness
when switching from evolving against the runner-up to
evolving against the champion, and also improves faster
once they start evolving against the champion, compared to
L-Systems.

TABLE III
RESULTS OF EVOLUTIONARY PROCESS

Coding
schema

After 80
generations
against the
runner-up

After 40
additional

generations
against the
champion

All runs 1493.4 1187.66
Direct

Encoding
1526.65 1257.62

All L-
Systems

1478.56 1160.95

LS-16-5-4 1460.95 968.87
LS-21-5-36 1282.39 1046.9
LS-38-5-36 2132.26 1221.14

C.On what Different Types of Diversity Tell Us about the
Evolutionary Process

Observing diversity values during evolutionary runs
allows us to understand why some coding schemes are
performing better than others in these tasks, and in particular
when switching from one opponent to another. First, let us
define two types of diversity to look at: genetic diversity and
phenotypic diversity. I define genetic diversity as the
average difference between genes occupying the same

Fig. 3: fitness values, across all runs evolving against
runner-up first.

Fig. 4: fitness values, across all runs evolving against the
champion first

Fig. 5: direct encoding vs L-Systems, when switching to
harder task

2309

position in different genomes, across all elements of a
population. For direct encoding schemes, the difference
between two genes can be obtained by subtracting one gene
value from another, obtaining the formula in equation [1].

∑
i=1

∣P∣

∑
j=i+1

∣P∣

∑
k=1

∣G∣

∣g (i , k)−g(j , k)∣/∣G∣

∣P∣
 (1)

where P is the current population, G is the genome in the
coding scheme, and g(i,k) is the kth gene of element i. For L-
Systems, where the genome uses symbols instead of floating
point numbers, I define the difference between genes as zero
when the symbols are the same and one when the symbols
are different, producing the algorithm in Fig. 6, with term
definitions as above.

Phenotypic diversity, on the other hand, is defined by
looking at the weights of the neural networks that are
deterministically produced from the genomes at the moment
of evaluating their fitness. In the experiments reported in
this paper, where all the networks have the same topology,
only the 1400 weights between nodes are changing, giving
us the formula in equation (2)

∑
i=1

∣P∣

∑
j=i+1

∣P∣

∑
k=1

1400

∣w k(i)−w k(j)∣

1400
 (2)

where P is again the current population, and Wx(y) is the xth

weight of the network generated by genome y.

 In direct coding schemata, genetic and phenotypic
diversity are of course the same. Plotting genetic and
phenotypic diversity for L-Systems, on the other hand,
shows different behavior for different codings. While

genetic and phenotypic diversity are never identical, figs. 7-
9 show how the relationship between genetic and
phenotypic diversity is strongest for LS-38-5-36, weaker for
LS-21-5-36, and even weaker for LS-16-5-4. This exactly
maps with the fitness these systems obtain after evolving
first against the runner-up and then against the champion.
Notice how for LS-16-5-4 systems the diversity values cross
each other multiple times during runs, in LS-21-5-36
systems phenotypic diversity is always below genetic
diversity, and for LS-38-5-36 systems phenotypic diversity
is always below genetic diversity and their curves have the
same general shapes. The high discrepancy between
diversity values in LS-16-5-4 systems is caused by changes
in the rules being evolved that do not lead to changes in the
resulting neural networks. That is, the rules that are
changing are not expressing into phenotypic changes. This
situation diminishes for LS-21-5-36 systems, and still exists
but is even smaller for LS-38-5-36 systems.

Fig. 8: diversities for LS-21-5-36 systems

Fig. 7: diversities for LS-16-5-4 system

Fig. 6: algorithm for computing genetic diversity in L-
Systems

2310

 These differences in how coding schemes manage to
express or fail to express their genes can explain the
performance difference between them. As direct encoding
manages to express 100% of its genes, it can react to
changes in the environment more quickly. Among L-
Systems, those coding schemes that tend to express more of
their genes also present better performance.

Next I take a look at two additional criteria that have been
used to evaluate L-systems and direct encoding: their ability
to create modules that become useful in different part of the
phenomes, and their ability to store information in their
genotype that becomes useful when facing environmental
changes.

D. On the ability of different coding schemata to evolve
modularity in neural networks

Given that LS-38-5-36 systems are managing to respond
to environmental changes faster than direct encoding, we
could ask if they are doing this while losing the ability to
create modular neural networks, specially since its behavior
is closer to that of direct encoding than either of the other L-
Systems. While the literature shows disagreement on how to
define modularity ([5], [6], [10]), we can set its highest limit
as a count of how often weights are being repeated
throughout network topologies in the elements of a
population. Fig. 10 shows this information for the three L-
Systems used.

While LS-16-5-4 can produce higher modularity, this
modularity varies more and on occasions drops to values
lower that under other schemata. LS-21-5-36 and LS-38-5-
36 show almost identical constant modularity.

E. On the ability of different coding schemata to retain
learning under differing environmental conditions

Some of the literature on genetic schemata for evolution
of neural networks centers around their ability keep useful
learned traits in their genotype, under changing conditions,
which can then form part of good solutions when those
conditions arise again. To analyze the coding schemata
discussed in this paper based on this property, I ran the
following evolutionary experiments: solutions were evolved
for eighty generations to play against the champion, then
they evolve for forty additional generations to play against
the runner-up, finally evolving for forty additional
generation playing against the champion again. While direct
encoding continues to show the ability to quickly adapt to
environmental changes (Fig. 11), LS-38-5-36 outperforms it,
suffering little performance decrease when switching back
to evolving against the champion., compared with how it
was doing forty generations before when last playing against
this opponent (Fig. 12).

Notice how LS-38-5-36 behaves differently when
originally evolving against the champion from generation
zero. This new behavior is not caused by the forty additional

Fig. 9: diversities for LS-38-5-36 systems

Fig. 11: Direct encoding fitness, when returning back to
champion

Fig. 12: LS-38-5-36 fitness, when returning back to
champion

Fig. 10: module generation in L-systems

2311

generations evolving against the champion, as seen from Fig
13, where LS-38-5-36 evolves for 160 consecutive
generations against the champion.

These patterns are not seen with LS-16-5-4 or LS-21-5-
36, and in fact LS-16-5-4 fails to re-learn how to play
against the champion, never achieving its original
performance against it, as seen in Fig. 14.

To understand why LS-16-5-4 and LS-38-5-36 behave so
differently, I have taken a look at the neural network
connection weights present in the population after initially
evolving against the champion, and seeing how many are
repeated after evolving against the runner-up.

With the algorithm shown in figure 15, the number of
repetitions are shown in Table IV. LS-38-5-36 manages to
keep 21.73% more connections present after switching
opponents.

LS-38-5-36, then, is seen to have both the capacity to
maintain characteristics across environmental changes and
the capacity to create some modules. On the downside, this
schema uses 1373 genes, close to the same number of
connection weights that need to be generated.

V. FUTURE RESEARCH

While results of the experiments reported in this paper
clearly demonstrate that coding schemata are making a
difference in performance, and that those differences are
based on the generated phenomes, it is not clear why these
phenomes behave differently for this task. Experiments with
neural networks of different topologies and L-System with
different parameters (such as numbers of terminals, non-
terminals, expansion rates, and total number of genes) will
help clarify the relationship between these variables and
system performance. Aside from genetic and phenotypic
diversity, I have started to look at behavioral diversity,
which is based on the specifics of how the agent systems
behave against different opponents. Other future research
includes generating neural networks via genetic
programming (GP) instead of genetic algorithms, as GP
have also been found to provide for scalability and
modularity ([11], [12]. Finally, I am interested in how the
methods presented in this paper perform on other types of
tasks. I am currently configuring poker-playing
environments where GA/NN systems learn to detect high-
level playing pattern in their opponents, and configuring
CTF games where neural networks determine low level
decisions, such as in which direction to move, instead of the
high level decisions they perform in the experiments
reported here.

VI. CONCLUSIONS

This paper has presented results obtained by evolving
neural networks for agent-based high-level decision making
in dynamic environments. Both direct encoding of
connection weights and L-Systems are able to find quality
high level strategies for a team-based game with multi-agent
systems. The schema used at the genetic level to encode

Fig. 13: LS-38-5-36 fitness, 160 generations against the
champion

TABLE IV
WEIGHT REPETITIONS

Coding
schema

Connection weights from generation
80 repeated in generation 120

LS-16-5-4 558462
LS-38-5-36 713514

Fig. 14: LS-16-5-4 fitness, when returning back to
champion

Fig. 15: algorithm for computing capacity to maintain
phenotypic characteristics through environmental change

2312

neural network connectivity is found to make substantial
differences in performance. Simultaneously looking at
genetic and phenotypic diversity proves useful in
understanding the performance of genetic coding methods.
Direct encoding, where all genes are expressing as weights
of a network, adjusts to environmental changes the fastest.
From among L-Systems, where differing genes sometimes
but not always express into different connection weights,
those methods that have higher gene expression outperform
others. We also see that systems that manage to carry
phenotypic characteristics through differing environments
have better performance when returning to past
environmental conditions. While the L-System that reacts
the quickest to environmental changes has close to the same
number of genes as direct encoding (losing the commonly
mentioned advantage of scalability), this L-System also has
a higher ability to maintain genes across environmental
changes that more compact L-Systems.

VII. ACKNOWLEDGEMENTS

Thanks to Josiah Erickson (Institutional Technology,
Hampshire College) for maintaining the computing cluster
where these experiments were run. The Breve simulation
environment was developed and made publicly available at
http://www.spiderland.org/ by Hampshire graduate Jonathan
Klein. All neural network computations done in the
Emergent software package, freely available at
http://grey.colorado.edu/emergent/index.php/Main_Page .
The Capture the Flag game/simulation was developed by a
course taught by Lee Spector, Professor of Computer
Science at Hampshire College. As part of this same course,
the champion CTF player was developed by Paul Swartz
and the runner-up was developed by Mikel Waxler. Graphs
presented in this paper were produced with Python scripts
using the PyLab set of libraries.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E.
Osawai, and H. Matsubara, “Robocup: A challenge
problem for ai and robotics,” in RoboCup-97: Robot
Soccer World Cup I, Springer, 1998, pp. 1–19.

[2] P. S. and M. Veloso, “A Layered Approach to Learning
Client Behaviors in the RoboCup Soccer Server.”

[3] F. L. Minku and X. Yao, “Using diversity to handle
concept drift in on-line learning,” in Neural Networks,
2009. IJCNN 2009. International Joint Conference on,
2009, pp. 2125–2132.

[4] P. S. Oliveto and C. Zarges, “Analysis of diversity
mechanisms for optimisation in dynamic environments
with low frequencies of change,” in Proceeding of the
fifteenth annual conference on Genetic and
evolutionary computation conference, 2013, pp. 837–
844.

[5] H. Kitano, “Designing Neural Networks Using Genetic
Algorithms with Graph Generation System,” Complex
Syst. J., vol. 4, pp. 461–476, 1990.

[6] A. A. Siddiqi and S. M. Lucas, “A comparison of
matrix rewriting versus direct encoding for evolving
neural networks,” in , The 1998 IEEE International
Conference on Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational
Intelligence, 1998, pp. 392–397.

[7] S. Bornhofen and C. Lattaud, “On hopeful monsters,
neutral networks and junk code in evolving L-systems,”
in Proceedings of the 10th annual conference on
Genetic and evolutionary computation, 2008, pp. 193–
200.

[8] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants. Springer-Verlag, 1990.

[9] J. Fekiac, I. Zelinka, and J. Burguillo, “Proceedings
25th European Conference on Modelling and
Simulation: ECMS 2011 : june 7th-10th, 2011, Krakow, 
Poland,” 2006.

[10] H. Lipson, J. B. Pollack, and N. P. Suh, “Promoting
modularity in evolutionary design,” in Proceedings of
DETC, 2001, vol. 1, pp. 9–12.

[11] Woodward, “Modularity in Genetic Programming,” in
Proceedings of EuroGP 2003, 2003.

[12] N. NourAshrafoddin, A. R. Vahdat, and M. M.
Ebadzadeh, “Automatic design of modular neural
networks using genetic programming,” in Artificial
Neural Networks–ICANN 2007, Springer, 2007, pp.
788–798.

2313

http://www.spiderland.org/
http://grey.colorado.edu/emergent/index.php/Main_Page

