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Abstract— In this paper, we propose a new approach for
self-adaptive particle swarm optimization, using the function’s
topology to adapt the parameters and modifying them when
a planar region is identified in the objective function. Particle
swarm optimization is a metaheuristic developed to optimize
nonlinear problems. This metaheuristic has four parameters
to adapt the search for the different optimization problems.
However, finding an optimal set of parameters is not a trivial
problem. Some strategies to adapt the parameters have been
developed, but they are not robust enough to cover all kinds
of problems. Function’s topology is one of the most decisive
factors in order to choose a right set of parameters; i.e. convex
functions need more exploitation because this topology offers
a clear direction to the minimum point. In the opposite way,
a noise function can be trapped in a local minimum for the
same level of exploitation. In order to validate and compare
our methods, we use the benchmark functions from CEC 2005
to compare the different particle swarm optimization versions.
The results show that the proposed version is significant better
than the original particle swarm optimization and the standard
particle swarm optimization proposed in 2011.

I. INTRODUCTION

Particle swarm optimization (PSO) is a popular meta-
heuristic, widely used to solve real-world optimization prob-
lems and proposed in 1995 by Kennedy and Eberhart [1].
Inspired in behavior of birds, PSO uses as other metaheuris-
tics parameters to arrange the search. Nevertheless, selecting
the parameters for metaheuristics is an optimization problem
itself. This problem is usually solved using control param-
eters techniques [2], [3], [4]. Often classical metaheuristics
have some self-adaptive versions. PSO is not an exception.
The PSO adaptive version introduces a strategy based on
stochastic functions and hybrids with other metaheuristic or
gradient methods[5], [4].

Globalization strategies for metaheuristics are often linked
with balance between exploration and exploitation [6], [7],
[8], and the probability to find attraction area (A) [9]. This
area (A) is defined as the region that provides information
about optimal point location. For instance, in a convex
unimodal function, all feasible solutions give information
about the minimum. The parameters of metaheuristics are
a possible way to change this balance, because a right set of
parameters favors the probability to find a solution from the
region A. When a point in A is found, the algorithm gets
information about optimal point and exploits it. In many
cases, strategies to control the parameters use iterations,
increasing the exploitation while exploration is reducing loop
by loop [5], [10], [11]. However, landscape of objective
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function information is used only in a few approaches to
calculate the best parameters to optimize the problem. For
PSO the approach directed to landscape is called landscape
adaptive particle swarm optimizer (LAPSO) [12]. In this
case, a new parameter is introduced to improve the step
length and force the individual to turn to the slope given by
minimum and maximum found by the solutions of the pop-
ulation. It uses the information of slope found by minimum
and maximum, but there is not a modification to increase
exploration. Conversely, the exploitation is increased for all
kinds of functions.

Each topology has a different kind of attraction area A. A
general classification can be: large areas, which are highly
probable to find (convex functions, quasi convex functions,
etc.) and small areas, which have small probability to be
found. In any case, big attraction areas are not always easy
to optimize. Then there are attraction areas with high-quality
information, e.g. convex functions where decedent direction
is clear, and attraction areas with low-quality information
like planar regions. In the last case, descent direction is not
clearly defined, e.g. Rosenbrock function. Notice that, it is
important to increase the exploitation in big attraction areas
with high-quality information. In contrast, for low-quality
areas, increase the exploration is recommended. In a previous
work, we present a criterion to determine when the function
probably has planar regions that might be problematic to
optimize [13].

Regularly, the strategies for control parameters take into
account the number of iterations, but if the function to control
the parameters would uses: iterations and the shape of the
fitness function; probably, the search could improve in terms
of results and robustness. In this paper, we propose a self-
adaptive strategy for PSO parameters based on the infor-
mation about topology of the function that is provided from
population and iterations. The strategy consists in identifying
planar regions using the current population; the solution
changes iteration by iteration giving new information about
topology. If the landscape shows planar regions, i.e. regions
with poor-quality information about optimal solution, then
parameters to increase exploration are chosen. In the opposite
case (high-quality information), parameters to increase the
exploration are selected.

This paper is organized as follows. In section II, we present
the materials and methods where we describe the algorithms,
criterion and the proposed functions to adapt the parameters.
In section III, we describe the experimental design, and the
results obtained and discuss them. And finally, conclusions
and future work are presented at section IV.
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II. MATERIALS AND METHODS

A. PSO algorithm

The original version of PSO, inspired by social behavior
of birds and proposed in 1995 has evolved to many different
versions [1]. Currently, there are standard versions proposed
by Clerc [14] based on the improvements described in
the literature. Pseudocode 1 describes the general steps of
canonical PSO. Each version changes in different parts of
the algorithm specially in the lines 1,5 and/or 6 of the
Pseudocode 1.

The original algorithm proposed in 1995 [1] uses a random
population uniformly distributed the expression in Line 1 will
be:

v(t+1)
i = ωvti + c1u1 ⊗ (pt

i − xti) + c2u2 ⊗ (gti − xt
i) (1)

x(t+1)
i = xti + v(t+1)

i (2)

where xti is the current population and x(t+1)
i is the new

population. v(t+1)
i is new velocity and vti is the current

velocity. ω is the parameter that controls the amplification in
the current direction. u1 and u2 are random vectors following
uniform distribution. pt

i and gt are the best particle found for
the particle i and the best result found for entire population
respectively. Eqs. 1 and 2 are used to calculate velocity and
the new population in Lines 5 and 6 respectively.

Pseudocode 1 Canonical PSO
Require: f ,LB,UP,C1, C2, w, N, max-iterations;

1: Initial population
2: while i ≤ max-iterations do
3: fitness function
4: select pbest and gbest
5: calculate velocity according to PSO version
6: new population according to PSO version
7: end while

Two main failures have been detected for original PSO.
The first one, it is getting trapped in local minimums; which
is boarded for different versions like: comprehensive-learning
PSO (CLPSO) [15] , LAPSO, the hybrid between differen-
tial evolution and PSO (DE-PSO), among others [16]. The
second one is high computational effort [14]. Computational
effort is described as the required calls to objective function.
Some versions try to improve computational efficiency, e.g.
µ-PSO, coordinate PSO[14], [17]. The generalizable and
robustness improvements of PSO are summarized in the
last official version of PSO, called standard particle swarm
optimization SPSO-2011 [18], [19].

SPSO-2011 version includes some improvements: random
topology paradigm(here topology are referring to neigh-
borhood of the particles) and the change of the hyper-
cube idea to hyper-sphere idea [20]. The mixture of these
improvements change Line 1 of Pseudocode 1. In this case,
the velocity is calculated using random topology paradigm

[14]. Also, Line 5 is changed by introducing a new term in
the Eq. 1 given by

Gt
i =

3xt
i + c1u1 ⊗ (pt

i − xt
i) + c2u2 ⊗ (gti − xti)
3

(3)

Then, hyper-sphere Hi(Gt
i, ‖G

t
i − xti‖), where Gt

i is the
center of hyper-sphere and the radius of the hype-sphere is
‖Gt

i − xti‖
In Line 5 of Pseudocode 1 the equation is modified from

Eq. 1 to Eq. 4 and Line 6 does not change. Thus, the version
that we use to test and validate the proposed strategy is
SPSO-2011.

v(t+1)
i = ωv(t+1)

i +Hi(Gt
i, ‖G

t
i − xti‖)− xti (4)

B. PSO parameters and some previous adaptations

PSO has four parameters: Size of population (N ), ω, c1
and c2 (See Eq. 1). The size of population, as a parameter,
is important because it helps to reduce computational effort
[17]. However, we focus in local minimum trap. Then, we
propose a strategy to control the other three parameters,
which are directly related with the balance between exploita-
tion and exploration [1], [10], [14].
ω is the amplification of the current direction of the

particle i. If a particle is directed only by ωvt
i this particle

follows the line with direction vt
i jumping with a step with

magnitude of ωvt
i. Consequently, big values for ω favor

exploration whereas small values favor exploitation.
c1 and c2 magnify the influence of the best point found

by the particle i and the best point found by the whole
population, respectively. if c1 = c2 the importance of local
minimum is equal to the global minimum. The random
vectors u1 and u2 are not considered parameters, but they
affect the search introducing noise that increases exploration.

Historically, there are a hundred of different versions
including new parameters, strategies to control parameters
and strategies to determine parameters [4], [12], [11], [14].
For the sake of brevity, we mention only two paradigms for
each parameter. we consider the parameters chosen are the
the closest and most useful for our approach.

The equations to control ω are:
• ω = ωmax − (ωmax − ωmin)

t
T [21]

• ω = 0.6
1+(log(t))2 [11]

where ωmax = 0.97 and ωmin = 0.4 are the minimum
and maximum values recommended for ω [11] and T is the
maximum number of iterations.

The equations to control c1 and c2 are
• c1 = c2 = constant [1]
• c1 = 3− (3− 0.5) t

T and c1 = 0.5 + (3− 0.5) t
T [4]

• c1 = 1.3 and c2 = 2.8 [23]

C. Planar regions criterion

Each iteration gives us information about N solution,
where N is the size of the population. We use the individual
information, e.g. pt

i and gt. However, the information of
whole population is not used, i.e. statistics measure as mean,
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distributions or median. Mesa, Velasquez and Jaramillo pro-
posed a criterion to use the information given by statistical
measures to determine when the function has a problematic
planar region [13].

The criterion uses mean and median to determine the kind
of function that the algorithm is searching for. How does it
work? In Fig. 1, the possible cases are defined. For part (a)
Range Rg > 0 and the mean and median are approximately
equal; this means that the distribution of particles over the
range is uniform. The uniformity is associated to functions
with strong minimums and clear descendent directions. In
the case (b), Rg > 0 and the mean and median are different
values. The difference between both measures shows that
there are outlier points. Also means that, the most part of
population is near to median. For a random population, this
indicates that there is a pretty flat region near to median
value.

Fig. 1: Cases for criterion. (a). mean and median are approx-
imately equal. (b).mean and median are difference

The concept of criterion was described above, but there
are not punctual limits to determine which actually are or not
are a problematic region. In [13] the percentage difference
between mean and median (m) is defined as:

m =
mean(f)−median(f)

Rg
(5)

where mean and median are calculated with value of the
objective function for current population and Rg is the
range defined as max − min. This measure is affected by
the dimension. An empirical equation, presented in [13], to
delimitate problematic or not problematic function according
to dimensions is:

%MM ≥ 7.675(D)−0.588 (6)

where D is the dimensions of the problem. Moreover,
if %MM satisfy eq. 6, then the function presents a flat
topology. Also, the range has a meaning. If the range is equal
or so close to zero, the region is completely flat. While, the
range Rg > 0 indicates a different topology of the function.
In addition, authors in [13] also conclude that the minimal
N is 30 because for N under 30 the mean and median are
not consistent for different random populations [13].

D. How do parameters work in PSO?

PSO has four parameters to control the search. We focus
on three of them (c1, c2 and ω), as mentioned above. They
affect the search as follow: when c1 and ω decrease, and/or
c2 decrease the exploitation of the algorithm increase. When
the parameters move in the opposite way the exploration of
the algorithm increase.

In Table I, recommended values in the literature for c1,
c2 and ω are presented. Using these parameters, we plot the
behavior of the PSO’s population for two sets of parameters
with the aim to know the influence of them in the balance
between exploration and exploitation. The Figs. 2 and 3 show
the influence of parameters for two different functions f1 and
f6. f1 is a translated sphere; this function is convex, unimodal
and smooth. In contrast, f6, a translation of Ronsebrock’s
function, is non-separable, unimodal (only for 2D), uniform
and has the banana region, which is planar. The extreme
values of the parameters present in Table I are used. The size
of the population is 25 and total iteration are 6; Iterations 2,
4, and 6 are shown in the figures mentioned above.

In Fig. 2, we show the behavior for function 1 and 6. The
left column of the Fig. 2 presents the population behavior for
ω = 0.4. On this occasion, population covered a small part of
a feasible area. Quickly, the best point is followed and other
parts are not covered by the search. On the other hand, the
opposite situation is shown in the right column of the Fig. 2
where a larger area is covered for the population. In this case,
the exploration for f6 is bigger than the exploration for f1;
this means that, for a function with a descendent direction
defined the ω influence is smaller than in flatter functions.

In Fig. 3, the behavior for functions 1 and 6 is presented
as in the previous figure. The left column of the Fig. 3
shows the population when c2 and ω are constant and c1
change from 2 to 2.8. For the function f1, there is not a
clear change in the exploration balance of the population. In
contrast, f6 exploration is increased proportional to c1; i.e.,
when descendent direction is not defined, an increment of c1
augments the exploration of the algorithm.

TABLE I: RECOMMENDED VALUES FOR PARAMETERS OF
PSO

Parameter Value Reference
ω ωmax = 0.9and ωmin = 0.4 [11]
c1 c1 = 2 or c1 = 1.193 [1], [14]
c2 c2 = 2 or c2 = 1.193 [1], [14]

c1and c2 c1 + c2 ≤ 4 [14]

E. Proposed self-adapting strategy

In this section, we propose a strategy to adapt c1, c2 and ω.
The current version SPSO2011 presents a good performance
for the most part of unimodal functions (translate sphere,
Schwefel 1.2 function, [22]). The traditional parameters
achieve a good balance between exploration and exploitation.
Therefore, these parameter should remain in our strategy.

The strategy has two parts, the first one is to keep the
current behavior which is good for convex and unimodal
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Fig. 2: Population for PSO with c1 = c2 = 1.193, K = 25
iterations 2, 4 and 6 for ω = 0.4, 0.65 and 0.9
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Fig. 3: Population for PSO with ω = 0.4,c2 = 1.193, K = 25
iterations 2, 4 and 6 for and c1 = 2 and 2.8

functions. The second one is to adapt the parameter to
improve the performance for the functions which have a
low-quality information for the attraction area. Following the
criterion presented in section 2.C., m is calculated classifying
the function in problematic planar or non planar. When the
function is non-planar, we remain the parameters. In contrast,
for planar regions the parameters must change.

The exploration of the algorithm increase by:
• Increase ω
• Increase c1 for planar regions
• Decrease c2

when the exploitation increase is desired, the parameters
must move in the opposite way. Also, it is important to
remind that when exploration increases exaggeratedly, the
algorithm may not converge.

Thinking in the last items, the proposed strategy have
two main points. First, reduce the risk of an infinite growth
of exploration. And second, increase the exploration for
functions which are consider as planar regions following the
criterion.
ω will decrease according to the number of iterations

with the aim of stopping exploration growth. In this paper,
we defined such control function for the parameter ω the
following sigmoid function:

ω =
1

1.8 + e
8t

(T−1)−4

+ 0.4 (7)

where T and t are maximum number of iterations and current
iteration respectively. This function takes the values of 0.4
for t = T and 0.9 for t = 1. From t = 1 to t = T the
value of ω decrease smoothly, preventing the failure because
of convergence.

In any case, the exploration should be augmented for
planar regions and kept the current parameter for non-
planar region. For problematic planar regions detected c1
should increase and c2 should decrease. It is important to
notices that the difference between mean and median can be
positive or negative. If it is positive, outlier points are bigger
than median and the exploration should increase. Moreover,
negative difference means that the outlier point is smaller
than median; then, exploitation should augment. The control
equation due increase c2 for negative values and decrease it
for positive values and c1 should move in the opposite way.
A piecewise function is defined as follows:

c1 =


m < −%MM 1

0.56+em+1 + 1

−%MM ≤ m ≤ %MM 1.193
m > %MM 1

0.56+em−1 + 1


c2 =


m < −%MM 1

0.56+e−m−1 + 1

−%MM ≤ m ≤ %MM 1.193
m > %MM 1

0.56+e−m+1 + 1


(8)

where %MM is the limit proposed in the Eq.6 and m is the
calculation of the difference between mean and median in the
current population, presented in Eq. 5. Eq. 8 is represent in
the Fig. 4. In addition, the parameters for non-planar regions
are the current parameter for SPSO2011.
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Fig. 4: Function to control c1 and c2

III. RESULTS

A. Convergence test

The first implementation was tested using two function f1
and f3 for 10 dimensions. Convergence curves are shown
in Fig 5. Dashed lines represent the behavior for SPSO2011
version, and solid lines are the performance for PRPSO for
the same functions. For both functions algorithms converge,
but PRPSO needs fewer iterations than SPSO2011 to achieve
the same minimum.

Fig. 5: Convergence curves for f1 and f3 for SPSO2011 and
PR PSO

B. Benchmark’s functions

We test the proposed strategy using CEC-2005 benchmark
functions [22]. These 25 functions are divided as: the first 5
functions (f1 − f5) are unimodal, the next seven functions
are basic multimodal functions (f6 − f12), the following
two functions (f13 and f14) are expanded functions. The
remaining functions are hybrid functions (f15 − f25). This
test is characterized by the high level of complexity, all
functions are modify to be asymmetrical and translate to have
minimums different than zero.

C. Experimental design

We validate the proposed self-adaptive PSO version com-
paring with other two versions of PSO. Long SentenceThe
first one is the original version of PSO [1]. The results for this

classical version were presented by Derrac et al. in [23]. The
second algorithm is the standard version SPSO2011 which
corresponds to the last version proposed [20], [19]. In this
case, we ran the test using R language according to version
available in the free access code [24]. The parameters for
each version are summarized in Table II. Other adaptive
PSO versions have not been public code and are tested with
other benchmark functions and other conditions, which are
not comparable.

TABLE II: PARAMETERS USED TO RUN THE DIFFERENT
VERSION OF PSO

parameter PSO SPSO2011 PRPSO
c1 2.8 1.193 Self-adative Eq. 8
c2 1.3 1.193 Self-adative Eq. 8
ω ω = 0.9− (0.5) t

T
0.7213 Self-adative Eq. 7

population size 100 40 40

For each function, the three algorithms run 50 times. The
optimizers stop when 1000 iterations was achieved or the
error found was equal or less than 1×10−8. Table III presents
the average of the minimum found for the 50 independent
runs of each 25 functions.

D. Discussion

In Table III, The columns present each algorithm com-
pared. The rows show the functions results for each function
which corresponds to the average of the best minimum found
for each 50 runs.The bold letter corresponds to the minimal
values of each function. In the last row of the table, the
Friedman’s test rank is presented.

We compare the results posing a set of hypothesis for
Friedman’s test. Thereby, we can determine if there is a sig-
nificant difference in the performance of the algorithms [23].
The null hypothesis (H0) correspond to non-significant dif-
ference between algorithms’ behavior. Whereas, alternative
hypothesis (Ha) is associated with a significant difference
between the three algorithms. To calculate the Friedman’s
test statistic we use Iman and Davenport approximation
described in [23] and the equation is:

FF =
12n

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (9)

and
FID =

(n− 1)FF

n(k − 1)− FF
(10)

where n is the number of functions, k the number of
algorithms and Rj is the average rank of each algorithm.
The calculated value for this rank is presented in last row
of the Table III. Using the F distribution with (k − 1) and
(k − 1)(n − 1) degree of freedom we find a p − value =
3.98 × 10−7. According to the p-value, we reject H0 with
high level of probability, i.e. there is a significant difference
between the performance of the algorithms.

With the Friedman’s test, we can conclude that there is
a significant difference between the algorithms. Now we
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TABLE III: AVERAGE ERROR FOR DIFFERENT VERSIONS
OF PSO USING CEC 2005 BENCHMARK FUNCTIONS SET
AND RANKING FOR FRIEDMAN’S TEST

Function PSO SPSO2011 PRPSO
f1 1.230× 10−04 1.000× 10−08 1.000× 10−08

f2 2.600× 10−02 1.000× 10−08 1.284× 10−07

f3 5.170× 10+04 6.275× 10+04 1.563× 10+04

f4 2.490× 10+00 1.000× 10−08 4.288× 10−05

f5 4.100× 10+02 4.669× 10+01 2.046× 10+01

f6 7.310× 10+02 1.357× 10+02 1.389× 10+02

f7 2.680× 10+01 1.209× 10+03 1.167× 10+03

f8 2.040× 10+01 1.931× 10+01 1.937× 10+01

f9 1.440× 10+01 6.283× 10+00 5.972× 10+00

f10 1.400× 10+01 5.277× 10+00 4.987× 10+00

f11 5.590× 10+00 4.861× 10+00 5.592× 10+00

f12 6.360× 10+02 2.110× 10+02 5.381× 10+01

f13 1.500× 10+00 1.093× 10+00 1.021× 10+00

f14 3.300× 10+00 2.711× 10+00 3.027× 10+00

f15 3.400× 10+02 4.000× 10+02 3.566× 10+02

f16 1.330× 10+02 1.001× 10+02 1.065× 10+02

f17 1.500× 10+02 1.219× 10+02 1.262× 10+02

f18 8.510× 10+02 8.000× 10+02 3.001× 10+02

f19 8.500× 10+02 8.000× 10+02 3.000× 10+02

f20 8.510× 10+02 8.000× 10+02 3.003× 10+02

f21 9.140× 10+02 8.000× 10+02 5.000× 10+02

f22 8.070× 10+02 7.541× 10+02 7.438× 10+02

f23 1.030× 10+03 9.705× 10+02 5.495× 10+02

f24 4.120× 10+02 2.048× 10+02 2.000× 10+02

f25 5.100× 10+02 2.381× 10+02 2.002× 10+02

Rj 2.76 1.78 1.46

use Wilcoxon’s test, a pairwise comparison, to determine
which one is better. The set of hypothesis posed are: null
hypothesis the performances is non-significant different and
the alternative hypothesis there is a significant difference
between both algorithms. In this case, we use one-tailed
test to guarantee that the performance is better. In Table IV,
we present the ranks calculated from Table III. The negative
ranks show a better performance for PRPSO. The absolute
value of the smallest rank between positive and negative
ranks should be equal or less than the critical value of the last
column ([25] Table A.5) to be significant different. In both
cases, the difference between algorithms is significant and
the negative rank is greater. Therefore, PRPSO performance
is significant better than the other two algorithms.

TABLE IV: RANKING FOR WILCOXON’S TEST

Algorithms Positive Rank Negative Rank Critical Value
α = 0.05

PRPSO-PSO 67 -258 100
PRPSO-SPSO2011 79,5 -220,5 91

Besides, functions (f6 − f25) are multimodal. One of the
failures described in literature for SPSO2011 is multimodal
functions[19]. For hybrid and rotated functions (f15 − f25)
PRPSO shows better average for the most part of these
functions.

IV. CONCLUSIONS

PSO and SPSO2011 are well established techniques for
optimizing nonlinear complex functions; however, some

problems appear when functions have not a well-defined
descendent direction. The first contribution of this work is
applying a criterion for controlling the parameters according
to the characteristics of the topology of the optimized func-
tion; the criterion allows us to define when the population
is placed in a region that needs more exploration with the
aim to find the optimum. The second contribution is the
proposal of specific equations for the self-adaptation of the
three parameters of the PSO algorithm based on the previous
criterion. The proposed version of self-adaptive PSO is called
PRPSO. The main strategy of adaptive parameters is the
increment of exploration for objective functions that have
planar regions. The performance of PRPSO was validated
comparing it with another two version, original PSO and
SPSO2011. PRPSO is, in statistical terms, significant better
than the other two versions.

In the future, we expect to improve the control function
testing other kinds of functions different to the sigmoidal
function or changing the parameters of the current func-
tion for increasing the level of exploration according to
the number of iterations. Moreover, a new parameter for
the sigmoidal function can introduce a smoothly increas-
ing of the exploration when function presents low-quality
regions(planar regions) repeatedly. Futhermore, we expect to
control the size of population to reduce the computational ef-
fort. Finally, The proposed strategy should extend to another
metaheuristics.
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