
Behavioral Learning of Aircraft Landing

Sequencing Using a Society of Probabilistic Finite

State Machines

Jiangjun Tang∗ and Hussein A. Abbass†

School of Engineering and Information Technology, UNSW-Canberra, Canberra, Australia
∗Email: j.tang@adfa.edu.au

†Email: h.abbass@adfa.edu.au

Abstract—Air Traffic Control (ATC) is a complex safety critical
environment. A tower controller would be making many decisions
in real-time to sequence aircraft. While some optimization tools
exist to help the controller in some airports, even in these
situations, the real sequence of the aircraft adopted by the
controller is significantly different from the one proposed by the
optimization algorithm. This is due to the very dynamic nature
of the environment.

The objective of this paper is to test the hypothesis that one can
learn from the sequence adopted by the controller some strategies
that can act as heuristics in decision support tools for aircraft
sequencing. This aim is tested in this paper by attempting to learn
sequences generated from a well-known sequencing method that
is being used in the real world.

The approach relies on a genetic algorithm (GA) to learn these
sequences using a society Probabilistic Finite-state Machines
(PFSMs). Each PFSM learns a different sub-space; thus, decom-
posing the learning problem into a group of agents that need
to work together to learn the overall problem. Three sequence
metrics (Levenshtein, Hamming and Position distances) are
compared as the fitness functions in GA. As the results suggest,
it is possible to learn the behavior of the algorithm/heuristic that
generated the original sequence from very limited information.

I. INTRODUCTION

To find optimal landing sequences for arrival aircraft is an

NP-hard problem when the constraints of spacing between

arrivals depend on aircraft types and other conditions [1]. The

First-Come-First-Served (FCFS) heuristic has been used as

the most common approach for sequencing aircraft [2]. FCFS

simply schedules the landing aircraft based on the Estimated

Time of Arrival (ETA) at the runway and the minimum

separation time between two consecutive aircraft as listed in

Table I.

Leading Aircraft
Trailing Aircraft

Heavy Large Small

Heavy 96 157 196

Large 60 69 131

Small 60 69 82

TABLE I
MINIMUM TIME SEPARATION (IN SECONDS) BETWEEN LANDINGS AND

MANDATED BY FAA [3]

FCFS schedule is easy to be implemented, and it maintains

a sense of fairness. However, the landing efficiency in terms

of runway throughput can’t be guaranteed by FCFS when

unnecessary spacing requirements exist. Therefore, many air-

craft landing sequencing approaches have been proposed and

automation tools have been deployed in the operational envi-

ronment to increase the efficiency of the system by maximizing

runway throughput while maintaining safety.

Constrain Position Shifting (CPS) [4] is a common approach

in practice, which shifts an aircraft forward or backward in the

FCFS schedule by a specified maximum number of positions

in order to achieve a landing sequence with the smallest time

span. These approaches show some advantages over FCFS,

such as providing the Air Traffic Controller (ATC) with addi-

tional flexibility and decision support plots to predict landing

times and positions [5]. However, they increase ATC-Pilot

communication and controller workload. Therefore, a mixed

approach combining FCFS and aircraft shifting methods can

be a better option in the operational environment for trading-

off efficiency and ATC-pilot communications. Sequencing of

aircraft landing by ATC is a more complex procedure in the

real world. Many factors can come into play including weather

conditions, emergency situations, and even the personality and

experience of an ATC [6]. Any mistake made for aircraft

landing sequencing can cause critical safety risks in aviation.

Our previous work looked at the risk assessment of aircraft

landing sequencing algorithms [7]. Some critical issues were

recognized by approaches based on the Computational Red

Teaming (CRT) [8] concept. The previous work was not con-

cerned with learning the behaviors that generated a sequence.

CRT usually starts with no or limited knowledge about the

object to be challenged at the beginning. The behavior of an

object needs to be learned by CRT through observations. In

order to understand aircraft landing sequencing behavior and

then provide some assessments, a methodology is needed to

learn and model the behavior, which can enable us to apply

CRT to challenge it specifically and thus, improving it.

In this paper, we present a stochastic approach combined

with a Probabilistic Finite-state Machine (PFSM) [9] and Ge-

netic Algorithm(GA) [10] to represent and learn the behavior

of aircraft landing sequencing. We developed a simulator for

simulating this type of behavior, where either FCFS and CPS

operate on aircraft landing sequencing in order to balance

runway efficiency and ATC-pilot communications. The current

610

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

simulator considers some traffic conditions including mixed

aircraft types and their ETA sequence.

A Finite-state Machine (FSM) has been widely used as

a representation in many domain of applications such as,

behavioral modelling in simulating autonomous entities [11],

machine learning [12], and pattern recognition [13]. It has also

been applied with Evolutionary Computation for solving vari-

ous problems [14] [15] [16]. In our approach, PFSM is used

to simulate the behavior for sequencing landing aircraft and

then GA improve it by evolving the transition probabilities for

generating aircraft landing sequences with high similarity to

the targeting landing sequencing from the behavior simulator.

In our approach, the similarity is measured by three sequence

metrics: Levenshtein [17], Hamming [18] and Position based

distances. GA is applied to each of them to evolve PFSM.

A comparison among the metrics is conducted for finding a

better measurement.

This paper is organized as follows. The behavior simulator

and problem definition of aircraft landing sequencing are

described in Section II. This is followed by the proposed

methodology and the three metrics for learning and modelling

the behavior. Finally, the experimental results are presented

for both training and testing.

II. PROBLEM DEFINITION AND AIRCRAFT LANDING

SEQUENCING SIMULATOR

Given aircraft arrival sequence A(a1, a0, . . . , an) and their

corresponding wake turbulence W (w1, w2, . . . , wn), aircraft

landing sequence A′(a′1, a
′
0, . . . , a

′
n) can be scheduled by

some approach in order to maximize/minimize certain ob-

jectives, e.g. increasing runway throughput and maintaining

safety. The wake turbulence of aircraft is classified into three

catalogs: Heavy (H), Light (L), and Small (S). The minimum

separation is defined in Table I and is required to constrain

the inter-landing time of two subsequent aircraft.

According to the minimum separation requirements and

given sequences (A) and wake turbulence (W), CPS can search

for and construct a sequence with the minimum time span for

the landing of all aircraft. Sometimes the re-scheduled aircraft

landing sequence (A′) is not necessarily better than the FCFS

sequence (A) [7]. The data used in the simulator represent

peak time data; that is, the intervals between every two aircraft

estimated time of arrival (ETA) is always less than 1 minute.

This inter-arrival time constraints the schedule because it is

mostly less than the minimum separation requirement. 1-CPS

is used in the simulator, which means aircraft position can be

shifted forward or backward by 1 position only. If a time span

of an aircraft landing sequence (A′) from CPS is better than

the FCFS sequence (A) by a certain level, the CPS sequence

(A′) is used otherwise the FCFS sequence (A) is used.

In summary, the aircraft landing sequencing simulator

takes a number of aircraft arrival sequence (A1, A2, . . . , Am)

with associated wake turbulence (W1,W2, . . . ,Wm) and

generates a number of new aircraft landing sequencing

(A′
1, A

′
2, . . . , A

′
m) using a combination of CPS and FCFS

actions in order to balance efficiency and ATC-pilot commu-

nications.

The objective of this paper is to present an approach

for learning and modelling the behavior of this simulator

using a Probabilistic Finite-state Machine (PFSM) and Genetic

algorithm (GA). The methodology assumes knowledge of the

following information:

• the original arrival aircraft sequences(A1, A2, . . . , Am)

and their corresponding wake turbulence

(W1,W2, . . . ,Wm), and

• a new sub-sequences generated by either CPS or FCFS.

These optimized sub-sequences are used to train the

algorithm. (training set).

However, the algorithm doesn’t know any of the following

information:

• The intents of the behavior; that is, whether the objective

is to minimize or maximize the time span for landing all

arrival aircraft,

• the underlying mechanism/algorithm being used for se-

quencing aircraft landing,

• the threshold that was used to select either CPS or FCFS,

and

• the minimum separation requirements for different wake

turbulence.

III. METHODOLOGY

A. Probabilistic Finite-state Machine

A Probabilistic Finite-state Machine (PFSM) can be defined

as a tuple A = (QA,
∑

, δA, IA, FA, PA) [13], where

• QA is a finite set of states;

•
∑

is a finite input alphabet;

• δA ⊆ QA ×
∑

×QA is a set of transition;

• IA : QA → R
+ is the initial-state probabilities;

• PA : δA → R
+ is the transition probabilities;

• FA : QA → R
+ is a set of acceptable states.

IA, PA and FA are functions as below:∑
q∈QA

IA(q) = 1

and

∀q ∈ QA, FA(q) +
∑

a∈
∑

,q′∈QA
PA(q, a, q

′) = 1

Our approach manipulates the aircraft landing sequence

according to only two known inputs: (A1, A2, . . . , Am) and

their wake turbulence (W1,W2, . . . ,Wm). Here, the sequence

of mixed wake turbulence is the only meaningful information

of traffic conditions. In order to utilize it, a PFSM can be

constructed by taking each combination of wake turbulence as

a state(Q), whose immediate next states are all permutations of

this wake turbulence combination. The transitions δ between

them are governed by a set of given probabilities(P). However,

the total number of states will be 3n; given that there are

three wake turbulence types and n aircraft in a sequence. The

computation cost for evaluating and evolving such kind of

PFSM increases exponentially when the number of aircraft

increasing.

611

�

���

���

���

���

���

���

����

����

����

����

����

����

�

����

���	

���

�����

�����

�����

�����

�����

�����

�����

�����

����	����

�����

�����

�����

�����

�����

�����

�����

�����

����	

����

�����

�����

�����

�����

�����

�����

�����

(a) PFSM1: three aircraft with three wake turbulence (H,L, and S)

� ���

���

���

����

����

����

�

����

����
����

����

���	

���

(b) PFSM2: three aircraft with two wake turbulence (H and L)

Fig. 1. Two examples of PFSM for scheduling a sub-sequence of landing aircraft with different wake turbulence (H: Heavy, L: Large, and S: Small). pi,j
is the transition probabilities, i is the index of a PFSM, and j is the index of a probability.

Instead of building a very complex PFSM containing all

permutations as states, we construct a number of smaller

PFSMs. Each of them contains a group of related permutations

(as states) containing the same wake turbulence types. There-

fore, we decompose the aircraft sequence into a set of sub-

sequences with length of 3. We use this short length to capture

the number of wake turbulence types. There is a total of 27

combinations that can be generated, but three of them (“HHH”,

“LLL”, “SSS”) is not necessary to be included into the PFSM.

This is mainly because regardless of the sequencing algorithm

being used, the wake turbulence constraint is inactive for these

sequences. Hence, a total of 7 PFSMs are constructed as listed

in Table II.

PFSM States (permutations) Number of Transitions

PFSM1 HLS, HSL, LHS, LSH, SHL, SLH 36

PFSM2 HHL, LHH, HLH 9

PFSM3 HHS, SHH, HSH 9

PFSM4 LLH, HLL, LHL 9

PFSM5 LLS, SLL, LSL 9

PFSM6 SSH, HSS, SHS 9

PFSM7 SSL, LSS, SLS 9

TABLE II
PROBABILISTIC FINITE-STATE MACHINES BASED ON WAKE TUBURLANCE

Figure 1 depicts two examples of the PFSMs (PFSM1 and

PFSM2). Figure 1(a) presents a PFSM for an aircraft sequence

with three aircraft and each of them belongs to one wake

turbulence. Another example of three aircraft with only two

turbulence types H and L is presented in Figure 1(b). The

structure of other PFSMs with only two aircraft turbulence

types is similar.

As shown in the figures, There are no probabilities associ-

ated with the transitions between an initial state and its next

states or between a state and the end state. In effect, this means

that there are multiple initial states and multiple end states.

The use of a single start and end state in the representation is

mainly for convenience.

The different proposed PFSMs work together on a given

arrival aircraft sequence to generate an aircraft landing se-

quence by Algorithm 1. The parameter s defines the number

of aircraft in a temporary sequence that can be saved into the

final aircraft landing sequence.

Let us take an example. Assume a sequence of “HSLH”, the

first three aircraft “HSL” will be input to PFSM1 and generate

a new sequence. Assume that the output from PFSM1 is SHL

because the transition probability, p1,11, between HSL and

SHL is the largest transition probability in the learnt model

(i.e. a maximum likelihood approach). If the step (s) is defined

as 1, then the first aircraft (S) is pushed into a new sequence

(A′′), and the rest of the aircraft HL and the forth aircraft

(H) in arrival sequence form a new temporary sub-sequence

“HLH”. Therefore, PFSM2 is selected. A final output is one

of “HLH”, “HHL”, and “LHH” based on the given transition

probabilities (p2,4, p2,5, and p2,6). Let us suppose that state

“HHL” is selected as the output of the second PFSM, and

let us assume that this is the last sub-sequence, this complete

sub-sequence is pushed to the end of A′′. In this way, a new

aircraft landing sequence (SHHL) is constructed.

As demonstrated by the example, the proposed PFSMs

and algorithm is capable of re-constructing aircraft landing

sequencing based only on the arrival sequence of aircraft and

their wake turbulence without any knowledge of the actual

decision module or algorithm being used to generate such

sequence.

Since this is a probabilistic approach, it is necessary to

develop an algorithm to learn the probabilities and as such,

guides the PFMS to learn the real decision module that was

used to generate that sequence. Before we discuss this algo-

612

Algorithm 1 Aircraft landing sequencing by PFSM

1: {Input: arrival aircraft sequence (A(a1, a2, . . . , an)) with wake turbulence

(W (w1, w2, . . . , wn))}
2: Initial a empty sequence A′′

3: Create two empty lists of TempA and TempW

4: Initial a integer step s, (∈ [1, 3])
5: Get the first three aircraft (a1, a2, a3) and their (w1, w2, w3)
6: if w1 ≡ w2 ≡ w3 then

7: Put (a1, a2, a3) into a new sequence S

8: else

9: Select a FPSMk has a state of (w1, w2, w3)
10: FPSMk generate a new sequence of S

11: end if

12: Put the first s aircraft of S into A′′

13: Put the rest aircraft into TempA and the associated wake turbulence into TempW

14: for i = 3 to n step 1 do

15: if length of TempA (l) ≡ 3 then

16: if all wake turbulenc in TempW are same then

17: Put TempA into a new sequence of S

18: else

19: Select a FPSMk has a state of TempW

20: FPSMk generate a new sequence of S

21: end if

22: Empty TempA and TempW

23: Put the first s aircraft of S into A′′

24: Put the rest aircraft of S into TempA and the associated wake

turbulence into TempW

25: else

26: Add ai to the end of TempA and wi to the end of TempW

27: end if

28: end for

29: if length of TempA (l) > 0 then

30: Move the last (3 − l) aircraft from A′′ and add them into TempA

31: Add the related wake turbulence into TempW

32: Select a FPSMk has a state of TempW

33: FPSMk generate a new sequence of S

34: Put the whole sequence S at the end of A′′

35: end if

rithm, we need to discuss how two sequences are compared

to calculate a measure of merit or a similarity measure.

B. Sequence Metrics

As the aircraft sequence can be transferred into a string

sequence of aircraft types, string metrics are a suitable mea-

surement to evaluate the performance of the proposed PFSM

when learning and modelling of arrival aircraft sequencing

behavior. Here, we use three string metrics with different

biases as described below.

1) Levenshtein Distance: Levenshtein distance [17] mea-

sures the difference between two strings by the minimum

number of single character edits including insertions, deletions

or substitutions required to change one string into another. For

two given aircraft sequences “SLLHLH” and “LLHLHS”, the

Levenshtein distance of them is 2, which includes deleting the

first ’L’ and inserting an ’S’ at the end of the second sequence.

Therefore, the local optimal alignment between two sequences

is considered in Levenshtein distance.

2) Hamming Distance: Hamming distance [18] is a widely

used metric to compare two strings with equal length. In our

case, both original arrival sequence and shifted sequence have

equal length, therefore, it is a suitable measurement for our

PFSM. The Hamming distance is the minimum substitutions

required to change one string to another; in other words, it

is the number of mismatched characters between two strings.

It is classically used for binary domains, but it is a generic

metric independent of the size of the alphabet set. For example,

given two aircraft sequences of “SLLHLH” and “LLHLHS”,

the Hamming distance is 5.

3) Position based Distance: The third distance used in this

paper is defined as the sum of the distances between the

position of an aircraft in the original position and the shifted

position of the same aircraft in the shifted position. Equation

1 describes the calculation of it.

PosD =

l∑
i=1

|Pi − P ′
i | (1)

where l is the length of the sequence, Pi is the original position

of aircraft i in the original sequence, and P ′
i is the shifted

position in the shifted sequence. For the giving example, the

position distance is 10 (5 + 1 + 1 + 1 + 1 + 1) for the

two sequences “SLLHLH” and “LLHLHS” because the first

aircraft of ’S’ is shifted to the last position (i.e. distance is

5), then all other five aircraft are shifted to the left by a

single position. It is important to emphasize that because of

the redundancy in the alphabets, when a letter is checked,

it will be compared to the closest position it moved to. In

other words, the first “L” in the first sequence could be the

first, second or fourth “L” in the second sequence. We always

assume it is the closest encounter; as such, it is the first “L”

in the second sequence.

The Position based Distance is the most strict metric to mea-

sure the global similarity between two sequences regardless

of their local similarities. The Levenshtein Distance considers

is more local than the other two. The effect of different

metrics on evaluating our PFSM for learning the behavior and

modelling is investigated in Section IV.

C. PFSM Evolution

In our approach, Genetic Algorithm (GA) is used to train

our proposed PFSM to learn the behavior of aircraft landing

sequencing by evolving the transition probabilities.

The length of each chromosome is equal to the total number

of transitions (90) in all PFSMs as described before. The

locus in the chromosome is associated to a certain transition

probability in a certain PFSM. Each gene is a real number

with a lower boundary of 0 and an upper boundary of 100.

Each chromosome has 7 building blocks which are mapped

to the proposed 7 PFSMs respectively. The length of each

building block depends on the number of transitions in a PFMS

and they are varied, e.g. The length of the building block for

PFSM1 is 36 while the length of the building block for others

is 9. Each building block has several sub-building-blocks

associated with the transitions from one state to others. To

decode such a chromosome into the transitions probabilities,

a group of real numbers belonging to a sub-building-block is

converted into transition probabilities by normalization.

For example, nine probabilities (from p2,1 to p2,9) exist

in PFSM2 as shown in Figure 1(b). Therefore, there are

nine loci in a chromosome associated with this PFSM and

form one building block. This building block contains 3

sub-building blocks corresponding to the three groups of

transition probabilities: (p2,1, p2,2, p2,3), (p2,4, p2,5, p2,6), and

613

(p2,7, p2,8, p2,9). According to the definition of PFSM de-

scribed in Section III-A, the genes (g) on these loci are

normalized into transition probabilities satisfying:

p2,1 + p2,2 + p2,3 = 1
p2,3 + p2,5 + p2,6 = 1
p2,7 + p2,8 + p2,9 = 1

After determining the transition probabilities of PFSMs,

an aircraft landing sequence (A′′) is produced by a given

aircraft arrival sequence (A). Then A′′ is compared against the

corresponding landing sequences A′ from the aircraft landing

sequencing simulator by one of the string metrics (d) as

explained in the last section. As our PFMS is a scholastic

approach for aircraft landing sequencing, it requires multiple

evaluations of each chromosome to approximate the fitness:

1) Construct a PFSM by a chromosome

2) For each pair of given Ai and A′
i

a) Generate an aircraft landing sequence (A′′
i,j) by PFSM

with the input of Ai

b) Calculate the sequence metric: di,j = Dist(A′′
i,j , A

′
i);

c) Repeat Step a and b until a number (T) of evaluations

researched;

d) Get the mode (Di) from all di,j ;

3) Get the mode (D) from all Di as the fitness of the

chromosome.

From the above steps, the fitness of a chromosome can be

defined by Equation 2.

F = Modeni=1(ModeTj=1(Dist(A′′
i,j , A

′
i)) (2)

Where, i is the index of a pair of aircraft arrival and landing

sequences in a given set, n is the total number of aircraft

sequences in a given set, j is the index of an evaluation for

a chromosome, and T is the total number of evaluations on

a chromosome. The function of Dist can be any one of the

three sequence metrics as mentioned above.

The objective of our GA is to minimize F . Binary tour-

nament selection is used to choose parents and then Uniform

Crossover is applied for producing offspring. When the mu-

tation happens, a random real number between 0 and 100

replaces the old gene. GA stops when a predefined number

of generations is reached.

IV. EXPERIMENT AND RESULTS

A. Experiment Design

A total of 200 unique aircraft landing sequences (each

sequence has 20 aircraft) are generated randomly. They are all

being fed into the simulator. If the savings on the time span are

at least 5% time savings, the re-scheduled sequence from CPS

is saved otherwise FCFS is chosen. This is consistent with a

realistic operational environment constraints, where there is a

need to balance efficiency and ATC-pilot communications. The

first half of each sequence (100 aircraft) is used for training,

while the second half for testing.

A total of 90 transition probabilities is required to construct

all 7 PFSMs as explained in Section III-A.

GA is then used to evolve transition probabilities for training

the PFSM on the training set in order to learn and model

the aircraft landing sequencing behavior of the simulator. The

parameters used in GA is listed as follows:

• population size: 100

• number of generation: 1000

• crossover rate: 0.9

• mutation rate: 1/l, the reciprocal of the chromosome

length (l), which is 90 in this experiment.

• The initial generation initializes the chromosomes ran-

domly from uniform distributions.

As we have three different sequence metrics for fitness

calculations, we run GA on each metric using ten different

seeds. The training results are presented in the next section.

After training, the best individual in the population is

selected from each of three metrics respectively and is tested

on the test set. The test results are provided in Section IV-C.

B. Training Results

The evolutions of our PFSM from three different sequence

metrics are shown in Figure 2. The first three illustrate the

average fitness values along the generations for three sequence

metrics respectively. Figure 2(d) is showing the comparison of

different sequence metrics.

As expected, the fitness derived from Levenshtein distance

has the lowest magnitude and the fitness from Position dis-

tance has the highest magnitude. The fitness from Position

distance shows the largest variations between runs as shown

in Figure 2(d).

Since each metric is providing different magnitudes, it can

happen that the best solution found by each metric appears to

be different in fitness, but it is actually the same in terms of

decision variables (i.e. probabilities). Therefore, we continue

the analysis by taking the best solution found by one metric in

each generation and evaluate it also on the other two metrics.

An example of the best solution found over all runs using

Leveshtein distance is presented in Figure 3. This solution is

also being evaluated on the other two metrics in the figure.

Although the fitness is based on Levenshtein distance, the

other two generally follow the same trend of the fitness func-

tion. One interesting point is that the fluctuations of Hamming

distance is quite similar to Position distance, although their

magnitudes are at different levels. Similar circumstances are

also found when we investigated the best runs from Hamming

distance or Position distance.

Since we are evaluating the same individual in the figure at

each generation, the fluctuations in the Levenshtein distance

is due to the stochastic nature of the solution. However,

clearly there are different sources causing different types of

fluctuations when this solution is evaluated on the other two

metrics. To isolate the two sources of fluctuations: those

because of stochastic representation and those because of the

metric itself, we measured the correlation coefficient between

the Levenshtein distance and other two. The correlation co-

efficient was 0.92 and 0.91 in relation to the Hamming and

Position distances respectively. This indicates that there is a

614

0 200 400 600 800 1000
6

6.5

7

7.5

8

Generations

F
it
n
e
s
s

(a) Levenshtein distance

0 200 400 600 800 1000
6

7

8

9

10

11

Generations

F
it
n
e
s
s

(b) Hamming distance

0 200 400 600 800 1000
11

12

13

14

15

16

17

Generations

F
it
n
e
s
s

(c) Position distance

0 200 400 600 800 1000
6

8

10

12

14

16

18

Generations

F
it
n
e
s
s

Levenshtein
Hamming
Position

(d) Comparison of metrics

Fig. 2. The process in average fitness values for all three sequence metrics along with generations

small amount of extra fluctuations that are due to the metrics

themselves.

Three best individuals in terms of their evaluated sequence

metrics from the 30 runs are selected and compared in

Table III.

Individuals Fitness function
Sequence Metrics

Levenshtein Hamming Position

Ind Lev Levenshtein 4 6 10

Ind Ham Hamming 4 4 12

Ind Pos Position 4 6 6

TABLE III
THE FITNESS OF THE BEST INDIVIDUALS FOUND BY EVOLUTION USING

EACH METRIC AND BEING EVALUATED ON THE OTHER TWO SEQUENCE

METRICS.

The individual evaluated by Levenstein distance has a small

Hamming distance but a larger the Position distance as shown

in the first row in the table. The individual evaluated by

Position distance is also able to produce both small Levenshein

and Hamming distances as listed in the last row. However,

small Hamming distance can’t guarantee a small Position

distance as being demonstrated by the individual evaluated by

Hamming distance in the second row. These three individuals

listed in the table are also used for testing our approach using

the test set in the next section.

When looking at some specific aircraft landing sequencing,

we find that Levenshtein distance prefers to give low error

in two sequences when they have some local matching se-

quences. For example, “HHLSLLLSHHSLLSSSLHHL” and

“HHSLLLLSSHHSLLSSLHHL”, where Levenshtein distance

is 4 because there are three local sequence that are matched

between two sequence, which are “HH”, “LLLS”, and “SSL-

HHL”. However the Hamming distance is 6. But the Position

615

Levenshtein Hamming Position Levenshtein Hamming Position Levenshtein Hamming Position

0

5

10

15

20

25

d
is

ta
n
c
e

Individual evaluated by Levenshtein Individual evaluated by Hamming Individual evaluated by Position

Fig. 4. Whisker-box plots for the test results on three sequence metrics from all three best individuals obtained from training.

0 200 400 600 800 1000
6

8

10

12

14

16

18

Generations

D
is

ta
n
c
e
s

Levenshtein (Fitness)
Hamming
Position

Fig. 3. The best run of fitness calculated by Levenshtein distance and
evaluated also on the other two metrics measured on the same individuals

distance is 10 caused by the low global matching between

them.

C. Test Results

The aircraft arrival sequences in the test set is input to the

three individuals (PFSMs), Ind Lev, Ind Ham, and Ind Pos,

respectively. Each PFSM produces only one landing sequence

for a given arrival sequence using a maximum likelihood

approach. The new landing sequence is compared against the

sequence from the simulator. Table IV presents the mode of

the test results from three sequence metrics for all three indi-

viduals. Similar to the training session, both individuals that

have been evaluated by the Hamming and Position distances

can produce small Levenshtein distance.

Individuals
Sequence Metrics (mode)

Levenshtein Hamming Position

Ind Lev 6 8 14

Ind Ham 7 6 12

Ind Pos 4 6 8

TABLE IV
THE BEST INDIVIDUALS AND THEIR TEST RESULTS ON THREE SEQUENCE

METRICS

The distributions of distances on different sequence metrics

between the new sequences and the target sequence for each

individual are visualized as box charts in Figure 4. Overall,

all the distance distributions from these three individuals are

quite similar to each other in terms of means, 25th percentiles,

and 75th percentiles. The position distances produced by the

three individuals all have large variance but the variance of

Levenshtein distance are always smaller than the other two. As

illustrated in the chart, the individual evaluated by Hamming

distance has the lowest outlier.

The number of produced sequences from each individual

satisfying the following conditions are counted and listed in

Table V:

616

• the Levenshtein distance is less than 6 representing the

mode of the Levenshtein distances of Ind Lev

• the Hamming distance is less than 6 representing the

mode of the Hamming distances of Ind Ham

• the Position distance is less than 8 representing the mode

of the Position distances of Ind Pos

Individuals
Number of Sequences

Levenshtein ≤ 6 Hamming ≤ 6 Position ≤ 8
Ind Lev 56 20 20

Ind Ham 64 37 31

Ind Pos 63 41 37

TABLE V
THE NUMBER OF SEQUENCES FROM EACH INDIVIDUAL

As seen from the table, the individual evolved using Lev-

enshtein distance performed worse than the other two. The

individual evolved using Position distance has the best perfor-

mance in terms of high number of sequences below the given

errors for all three sequence metrics.

As demonstrated here, the PFSM approach is capable to

learn and model the aircraft landing sequencing behavior and

produce good matching landing sequences for the test data.

V. CONCLUSION

In this paper, we proposed a stochastic approach combined

with PFSM and GA to learn and model aircraft landing

sequencing behavior. As the experiment results suggested, this

approach is capable to achieve the learning objective while

only knowing limited information.

Three different sequence metrics are used for the fitness

function in the GA. These metrics showed different prefer-

ences when evolving the transition probabilities of PFSM.

Levenshtein distance considers the local matching sequence

more than the other two, while the Position distance is more

strict in terms of global matching. Therefore, the fitness

values of Position distance shown in the training session are

more varied than the other two. All three metrics are able

to guide GA to find a set of good transition probabilities

for the proposed PFSM. However, the global metrics, e.g.

Position distance, has demonstrated the best results on the test

set, where it produced a higher number of aircraft landing

sequencing with lower errors than the other two. The results

show that the proposed approach is capable of learning the

underlying mechanism that generates a landing sequence.

In the future, we will introduce more uncertainty variables

such as weather conditions and emergency situations to disturb

the sequences during training. We will also investigate biased

initialization by relying on statistical estimation methods to

initialize the population in the GA instead of using a purely

random initialization approach. In general, learning the mech-

anism that generated a solution can contribute to many sub-

fields in evolutionary computation including surrogate models,

simulation-based optimization, and fitness landscape analysis.

ACKNOWLEDGEMENT

This work has been funded by the Australian Research

Council (ARC) discovery grant number, DP140102590: Chal-

lenging systems to discover vulnerabilities using computa-

tional red teaming.

REFERENCES

[1] X.-B. Hu and W.-H. Chen, “Genetic algorithm based on receding horizon
control for arrival sequencing and scheduling,” Engineering Applications

of Artificial Intelligence, vol. 18, no. 5, pp. 633–642, 2005.
[2] A. R. Odoni, J.-M. Rousseau, and N. H. Wilson, “Models in urban and

air transportation,” Handbooks in operations research and management

science, vol. 6, pp. 107–150, 1994.
[3] R. de Neufville and A. Odoni, Airport Systems: Planning, Design, and

Management, ser. Aviation Week Book. Mcgraw-hill, 2002. [Online].
Available: http://books.google.com.au/books?id=9khd5ns3kz4C

[4] H. Balakrishnan and B. Chandran, “Scheduling aircraft landings under
constrained position shifting,” in AIAA guidance, navigation and control

conference and exhibit, 2006.
[5] F. Neuman and H. Erzberger, Analysis of delay reducing and fuel saving

sequencing and spacing algorithms for arrival traffic. Citeseer, 1991.
[6] C. D. Wickens, A. S. Mavor, and J. P. McGee, Flight to the future:

Human factors in air traffic control. National Academies Press, 1997.
[7] W. Zhao, J. Tang, S. Alam, A. Bender, and H. A. Abbass, “Evolutionary-

computation based risk assessment of aircraft landing sequencing al-
gorithms,” in Distributed, Parallel and Biologically Inspired Systems.
Springer, 2010, pp. 254–265.

[8] H. Abbass, A. Bender, S. Gaidow, and P. Whitbread, “Computational
red teaming: Past, present and future,” Computational Intelligence

Magazine, IEEE, vol. 6, no. 1, pp. 30–42, 2011.
[9] M. O. Rabin, “Probabilistic automata,” Information and control, vol. 6,

no. 3, pp. 230–245, 1963.
[10] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, ser. Artificial Intelligence. Addison-Wesley, 1989. [Online].
Available: http://books.google.com.au/books?id=3 RQAAAAMAAJ

[11] S. Donikian, “Hpts: A behaviour modelling language for
autonomous agents,” in Proceedings of the Fifth International

Conference on Autonomous Agents, ser. AGENTS ’01. New
York, NY, USA: ACM, 2001, pp. 401–408. [Online]. Available:
http://doi.acm.org/10.1145/375735.376382

[12] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill,
vol. 45, 1997.

[13] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and R. C.
Carrasco, “Probabilistic finite-state machines-part i,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 27, no. 7, pp.
1013–1025, 2005.

[14] D. B. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,”
Evolutionary Computation, vol. 1, no. 1, pp. 77–97, 1993.

[15] D. Fogel, “An introduction to simulated evolutionary optimization,”
Neural Networks, IEEE Transactions on, vol. 5, no. 1, pp. 3–14, 1994.

[16] H. A. Abbass, “Learning regularities and patterns using probabilistic
finite state machines,” in 7th Asia-Pacific Conference on Complex

Systems, 2004.
[17] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.
[18] A. M. Steane, “Error correcting codes in quantum theory,” Physical

Review Letters, vol. 77, no. 5, p. 793, 1996.

617

