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Abstract—SO-MODS is a new algorithm that combines sur-
rogate global optimization methods with local search. SO-MODS
is an extension of prior algorithms that sought to find near
optimal solutions for computationally very expensive functions
for which the number of allowable evaluations is strictly limited.
The global search method in SO-MODS perturbs the best point
found so far in order to find a new sample point. The number
of decision variables being perturbed is dynamically adjusted
in each iteration in order to be more effective for higher
dimensional problems. The procedure for dynamically changing
the dimensions perturbed is drawn from earlier work on the
DYCORS algorithm. We use a cubic radial basis function as
surrogate model and investigate two approaches to improve the
solution accuracy. The numerical results show that SO-MODS is
able to reduce the objective function value dramatically with just
a few hundred evaluations even for 30-dimensional problems. The
local search is then able to reduce the objective function value
further.

I. INTRODUCTION

Evolutionary algorithms mimic the natural behavior of
survival of the fittest. These algorithms are based on the
use of a ”population” that serves to carry information about
objective function values of multiple decision vectors that have
been evaluated in a previous iteration into the search for new
solutions in the current iteration. This is a major strength of
evolutionary algorithms that is absent from derivative-based
search (e.g. SQP) that chooses the next evaluation point based
primarily on the values of the current evaluation point and all
its derivatives.

In this paper we introduce the algorithm SO-MODS
(Surrogate-assisted Optimization with Memetic Optimization
Dimensionally-controlled Search), which has been developed
for global optimization of high-dimensional, computationally
expensive black-box functions when a high accuracy of the
solution is desired. SO-MODS differs from most evolutionary
algorithms in that the population in iteration 𝑛 includes all
values of the decision vector that have had their objective
function evaluated in any previous iteration. Hence, the size
of the population is growing with each iteration.

For computationally expensive black-box objective func-
tions, for which due to the black-box nature derivatives are
not available, the goal is to obtain good solutions with rel-
atively few objective function evaluations in order to reduce
the total computation time. SO-MODS achieves this goal by

forming a multivariate approximation (a response surface) of
the expensive function 𝑓(𝑥). This response surface 𝑠(𝑥) is
used as a surrogate for the expensive function 𝑓(𝑥) during
the search, and therefore the number of required expensive
function evaluations for finding accurate solutions can be
significantly reduced. The novelty in SO-MODS is a memetic
approach to improve the accuracy of the solution in which
we use a local optimization search around a subset of the
previously evaluated (decision vector) points.

SO-MODS has three main phases:

1) high dimensional global optimization search with an
extension of DYCORS [1] that employs additional
logic for local optimization searches on the response
surface.

2) ORBIT [2], which is a derivative-free local optimizer,
and GORBIT which is multi-start ORBIT [3].

3) gradient-based local optimization with fmincon.

Phases 1 and 2 use a radial basis function surrogate for 𝑓(𝑥)
to avoid the need to do expensive finite difference calculations.
Phase 3 is implemented to improve the precision of the final
solution and uses numerical differentiation to approximate the
derivatives of the true objective function. Phase 3 (fmincon)
requires in each iteration at least 𝑑 (problem dimension)
function evaluations to numerically compute the derivatives.
At least one additional function evaluation is then needed to
identify the point for starting the next iteration. Hence, at
least 𝑑+1 expensive evaluations are required in each fmincon
iteration. Hence, the goal is to get close to the global minimum
during Phases 1 and 2 of SO-MODS such that only very few
iterations with fmincon will be required.

The purpose of this study is to develop and demonstrate a
global optimization algorithm for relatively high dimensional
problems that improves the accuracy of the solution while
maintaining high efficiency for computationally expensive
functions for which there is a strict limitation on the number
of objective function evaluations that can be allowed.

A. Problem Formulation

We consider the global optimization problem in the form:

min
𝑥∈𝒟

𝑓(𝑥) (1)
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where the objective function 𝑓 : 𝒟 ⊂ ℝ
𝑑 → ℝ is a

deterministic black-box function, and 𝒟 =
∏𝑑

𝑖=1[𝑎𝑖, 𝑏𝑖] a box-
constrained set with −∞ < 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 <∞ for 1 ≤ 𝑖 ≤ 𝑑.
We are particularly interested in problems that have multiple
local minima, a relatively high dimension 𝑑, and for which the
gradient of 𝑓(𝑥) is assumed to be unavailable. Furthermore,
we assume that there exists a global minimum 𝑥∗ ∈ 𝒟 for
which 𝑓(𝑥) ≥ 𝑓(𝑥∗) for all 𝑥 ∈ 𝒟 and that 𝑓 is continuous
at the point 𝑥∗.

B. Related Work

Since simulations in engineering applications can be com-
putationally extremely expensive and unacceptably time con-
suming, several surrogate based methods have been proposed
to solve such global optimization problems. The first use of
a non-quadratic surrogate response surface for traditional (e.g.
fixed population sized) evolutionary algorithms was by Regis
and Shoemaker [4]. The first surrogate global optimization
method that keeps all available points was Jones et al.’s EGO
method [5] which is based on a kriging surface and involves
the maximization of an expected improvement function. Radial
basis functions were used in Regis and Shoemaker’s LMSRBF
method [6], [7] which uses a weighted score computed based
on the objective function value prediction by the response
surface and the distance to previously evaluated points to
iteratively select sample points. This sampling method has
also been employed as a framework in DYCORS [1]. The
interested reader is referred to [8]–[11] for a review and
more information as well as applications of existing response
surface based methods for global optimization. A recent survey
of surrogate-assisted evolutionary optimization techniques can
also be found in [12]. Other response surfaces such as polyno-
mial regression models [13], MARS (regression splines) [14],
as well as mixture surrogate models [15], [16] have been
successfully applied to solve global optimization problems
arising in engineering.

II. SO-MODS FRAMEWORK

A. Stochastic Response Surface

Regis and Shoemaker [7] introduced a class of Stochastic
Response Surface (SRS) algorithms which is a framework for
expensive global optimization. Examples of methods based on
SRS are LMSRBF [6], [7], DYCORS [1], SO-I [17], and SO-
MI [18]. The SRS framework is given in Algorithm 1.

Algorithm 1 SRS
1: Build an initial response surface.
2: while Termination condition not met do
3: Randomly generate candidate points.
4: Select a candidate point for the expensive function

evaluation.
5: Update the best point found so far, 𝑥best.
6: Update the response surface.
7: end while
8: return Approximate global minimum.

In this paper, we adopt the SRS framework in the global
search phase (Phase 1) of SO-MODS.

B. SO-MODS

SO-MODS involves a memetic search, which is a combi-
nation of global and local search methods. Phase 1 utilizes an
extension of the DYCORS algorithm [1] because it has been
shown to be able to efficiently find good solutions for high-
dimensional, computationally expensive multi-modal black-
box problems when the number of function evaluations is
strictly limited (e.g., 1000 function evaluations for 30 dimen-
sional problems). The extension of DYCORS developed here
uses additional local optimization searches on the inexpensive
response surface. Both DYCORS and Phase 1 of SO-MODS
differ from earlier algorithms by the authors (e.g., [6], [7])
in that the number of perturbed dimensions is random and the
expected number of perturbations decreases with iteration. This
dynamical dimensioned search feature has been shown to be
efficient for higher dimensional problems [19]. The individual
steps of SO-MODS are shown in Algorithm 2.

Inputs:

I-1 A real-valued function 𝑓 defined on a hyper-rectangle
𝒟 =

∏𝑑
𝑖=1[𝑎𝑖, 𝑏𝑖] ⊂ ℝ

𝑑.
I-2 A response surface model.
I-3 A set of initial evaluation points 𝒮0 = {𝑥1, ..., 𝑥𝑛0

}
determined by a randomly generated Latin hypercube
design.

I-4 The number of candidate points randomly generated
in each iteration, denoted by 𝑁cand.

I-5 The maximum number of allowed function evalua-
tions, denoted by 𝑁max.

I-6 A function 𝜑(𝑛) defined for all positive integers 𝑛0 ≤
𝑛 ≤ 𝑁max − 1 whose values are in (0, 1].

I-7 The initial step size 𝜎init and the minimum step size
𝜎min.

I-8 The tolerance for the number of consecutive failed
iterations 𝜏fail and the threshold for the number of
consecutive successful iterations 𝜏success.

I-9 The maximum number of times the step size can be
reduced (𝑇max) before starting the local search.

Algorithm 2 SO-MODS
1: Initialization. Set 𝜎0 ← 𝜎int, 𝐶fail ← 0, 𝐶success ←

0, 𝑇shrink ← 0.
2: Initial point evaluation and initial surrogate. Set 𝑛 =

𝑛0. Denote the best point found so far by 𝑥best, i.e.,
𝑥best = argmin𝑥∈𝑆0

𝑓(𝑥), and 𝑓best = 𝑓(𝑥best). Build
the initial response surface 𝑠0(𝑥) based on the initial 𝑛0

evaluated points.
3: while 𝑛 < 𝑁max do
4: Global search phase
5: Local search phase
6: end while
7: return Best solution found: 𝑥best and 𝑓best.

We introduce two versions of SO-MODS that use the same
global and local search strategy in Phase 1 and Phase 3,
respectively, but that use different search approaches in Phase
2.

1) Global Search Phase: The global search phase is sum-
marized in Algorithm 3 and works as DYCORS [1]. Both SO-
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MODS versions use the same global stopping criterion (GSC),
which is either the maximum number of allowed function
evaluations (in which case Algorithm 2 stops after Step 4), or
𝑇shrink = 𝑇max (see Algorithm 3, Step 9), whichever criterion
is satisfied first.

Algorithm 3 Global Search [1]
1: while Global stopping criterion not met (GSC = false) do
2: Compute the probability of perturbing a coordinate:

𝑝select = 𝜑(𝑛).
3: Generate 𝑁cand candidate points around 𝑥best : Ω𝑛 =

{𝑦𝑛, 1, ..., 𝑦𝑛,𝑁cand} by perturbing each variable with
probability 𝑝select. The perturbation magnitude is an
𝑁(0, 𝜎𝑛) random variable.

4: Select the next point for evaluation (𝑥𝑛+1) from Ω𝑛

based on the information from the surrogate 𝑠𝑛(𝑥) and
the distance to previously evaluated points through the
function Select Evaluation Point(Ω𝑛, 𝑠𝑛(𝑥), 𝒮𝑛).

5: Do the expensive function evaluation 𝑓(𝑥𝑛+1).
6: Update the set of evaluated points: 𝒮𝑛+1 = 𝒮𝑛 ∪

{𝑥𝑛+1}.
7: Update 𝑥best and 𝑓(𝑥best). Update the response surface

𝑠𝑛 ← 𝑠𝑛+1(𝑥).
8: Update counters. If 𝑓(𝑥𝑛+1) < 𝑓best, reset 𝐶success =

𝐶success+1 and 𝐶fail = 0; otherwise reset 𝐶fail = 𝐶fail+1
and 𝐶success = 0.

9: Adjust step size 𝜎𝑛+1: [𝜎𝑛+1, 𝐶success, 𝐶fail] =
Adjust Step Size(𝜎𝑛, 𝐶success, 𝜏success, 𝐶fail, 𝜏fail). If
𝜎𝑛+1 < 𝜎𝑛, 𝑇shrink = 𝑇shrink + 1.

10: Reset 𝑛 = 𝑛+ 1
11: end while

The global search phase described in Algorithm 3 shows
that after building an initial response surface (Algorithm 2,
Step 2), we create in Step 3 of Algorithm 3 candidate (decision
vector) points by adding a random multivariate perturbation
to the current best point. Generating this random perturbation
involves computing first (Algorithm 3, Step 2) 𝑝select = 𝜑(𝑛),
which is the probability that any one dimension is perturbed. In
case no variable of 𝑥best is selected for perturbation, we select
one variable at random. 𝑁cand candidate points are generated
by perturbing the selected dimensions by adding an 𝑁(0, 𝜎𝑛)
random variable. Then in Step 4 of Algorithm 3, one of the
candidate points is selected for evaluation. This is the point
with a minimum score which is computed as the weighted
sum of the surrogate surface value 𝑠(𝑥cand) and a metric that
is based on the distance between 𝑥cand and the set of previously
evaluated points 𝒮𝑛. Hence, the algorithm is selecting a point
that has both a low response surface value and is not too close
to previously evaluated points. The weights for both criteria
cycle through the pattern Υ which allows a repeated transition
from local to global search. After updating 𝑥best in Step 7,
the surrogate surface 𝑠(𝑥) is updated. The variance 𝜎𝑛 (for
𝑁(0, 𝜎𝑛)) is adjusted in Step 9 of Algorithm 3 to speed up
the convergence. The term 𝑇shrink in Step 9 is a measure of the
iterations done without improvement and when 𝑇shrink reaches
the value 𝑇max, the global search stops and Phase 2 (search for
improvements on the response surface) starts.

Note that for generating the candidate points, adjusting
𝜑(𝑛), Select Evaluation Point, and Adjust Step Size (Al-
gorithm 3, Steps 3, 2, 4, and 9, respectively), we follow the

method suggested by Regis and Shoemaker [1]. For space
considerations, we will not repeat the description here and refer
the reader to this paper for more details.

For Phase 2 of SO-MODS, we examined two approaches,
namely

1) SO-MODS version A: use GORBIT and explore the
various local minima of the response surface

2) SO-MODS version B: use ORBIT

which will be described in the following. Also, we note here
that SO-MODS version A does not use any scaling of the
objective function values of the evaluated points for fitting the
response surface, whereas in version B function values larger
than the median of all function values computed so far are
replaced by the median value.

2) SO-MODS version A: Algorithm 4 describes SO-MODS
version A (denoted by SO-MODS-A in the following). SO-
MODS-A starts as soon as the stopping criterion of Algo-
rithm 3 has been satisfied (if the budget of function evaluations
has not been exhausted).

Algorithm 4 SO-MODS-A
1: Use GORBIT with first ORBIT run starting from 𝑥best.
2: if Function evaluations left then
3: repeat
4: Update the response surface using all the function

evaluation data obtained so far.
5: Apply MLSL to find the minimum points of the

response surface (denote the set of points by ℳ).
6: Delete points in ℳ that are too close to already

evaluated points.
7: if ℳ ∕= ∅ then
8: Do the expensive evaluations at the points in ℳ.
9: Update 𝑥best and 𝑓best.

10: end if
11: until ℳ = ∅
12: Local search on the true objective function starting from

𝑥best.
13: end if

After SO-MODS’ Phase 1 has finished (Algorithm 2,
Step 4), Phase 2 starts. We use GORBIT (described in [20]), a
multi-start version of the ORBIT algorithm [21] where we start
the first ORBIT run from the best point found so far (𝑥best).
The purpose of using GORBIT is to improve the accuracy
of the solution in a computationally cheap way without the
need of numerical differentiation. Hence, we can improve
𝑥best in a computationally efficient way. We allow GORBIT
to do at most min{𝑁max/4, 𝑁max − 𝑛} expensive function
evaluations. After GORBIT has finished, we update the re-
sponse surface with all the points that have been evaluated
so far. We then identify the local and global minima of the
response surface. Since the response surface is in general
multi-modal, we use MLSL (multi level single-linkage [22])
together with MATLAB’s local minimizer fmincon to identify
the various local minima of the response surface. Note that
for finding the minima of the response surface the expensive
objective function is not evaluated and this step is therefore
computationally cheap. We denote the set of local minimum
points by ℳ. We compute the distance of the points in ℳ to
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the set of already evaluated points and discard points in ℳ
that are too close to already evaluated points. If there are points
left inℳ, we do the computationally expensive evaluations at
these points, update the response surface with the new data,
and update 𝑥best and 𝑓best = 𝑓(𝑥best). We iterate (find the
local minima of the response surface, compute distances to
already evaluated points, do the expensive evaluations, update
the response surface) until ℳ = ∅.

Lastly, in Phase 3, we start a local search with MATLAB’s
local optimization algorithm fmincon on the true objective
function starting from 𝑥best in an attempt to further improve
the solution. We must note here that fmincon requires in each
iteration at least 𝑑 function evaluations to numerically compute
the derivatives (we already know the function value at the
current point) and then it needs one or more additional function
evaluations to find the point for starting the next iteration.
Hence, for a 30-dimensional problem, at least 𝑑 + 1 = 31
expensive evaluations are required in each fmincon iteration,
and therefore the budget of remaining function evaluations is
quickly used up. As a result, we must use a global variable
to count expensive function evaluations rather than counting
the algorithm’s iterations. The performance of this last local
optimization heavily depends on 𝑥best. Local optimization
algorithms converge to local minima and, if 𝑥best is not in the
vicinity of the global minimum, fmincon will stop at a local
minimum. The improvement achieved by fmincon depends on
where in the vicinity of a (local) minimum 𝑥best is located.
If 𝑥best is on a very steep slope of the objective function
landscape, then fmincon can find improvements within rel-
atively few evaluations. However, if 𝑥best is in a very shallow
valley, fmincon’s progress will be slower (in terms of function
evaluations needed for finding improvements). If there are
function evaluations left after fmincon stops, the algorithm
goes back to the global search phase (see Algorithm 2, Step 5).

3) SO-MODS version B: Our second approach for Phases 2
and 3 of SO-MODS is described in Algorithm 5 and will be
denoted in the following by SO-MODS-B. Phase 1 of SO-
MODS-B is the same as Phase 1 of SO-MODS-A.

Algorithm 5 SO-MODS-B
1: Use a local optimizer starting from 𝑥best to find the

minimum of the response surface. Denote the minimum
point found by 𝑥𝑠.

2: Use the ORBIT algorithm starting from 𝑥𝑠 to further
improve the solution. The best point found by ORBIT
is denoted by 𝑥𝑜. The maximum number of allowed
evaluations for ORBIT is 300.

3: Use MATLAB’s fmincon starting from 𝑥𝑜 on the true
objective function to further improve the solution.

Algorithm 5 uses in Step 1 MATLAB’s local optimizer
fmincon to find the minimum of the response surface starting
from 𝑥best, which is the best point found during the global
search phase. In Step 1 of Algorithm 5, the computation-
ally expensive objective function is not evaluated. Also, the
minimum point of the response surface found with fmincon
is not guaranteed to be the global minimum of the response
surface. The goal of this step is to find the best starting point
for the ORBIT algorithm [21] in Step 2 of Algorithm 5.
The number of expensive evaluations ORBIT is allowed to

do is fixed to 300. Numerical experiments showed that this
budget delivers the best results and ORBIT terminates in many
cases before the budget is used up. After ORBIT has stopped,
we apply fmincon on the true objective function to further
improve the accuracy of the solution. We want to stress at
this point again that fmincon does in each iteration at least
𝑑+1 evaluations, and hence the remaining budget of function
evaluations decreases fast. However, should there be function
evaluations left after fmincon stops, the algorithm goes back
to the global search phase (Algorithm 2, Step 4).

C. Radial Basis Function Interpolation

The surrogate model used in our algorithm is a radial basis
function (RBF) interpolant. We chose the RBF model based on
the results reported in [16]. Denote in the following 𝑥𝜄 ∈ ℝ

𝑑,
𝜄 = 1, . . . , 𝑛, the already evaluated points. The RBF model
can then be represented as

𝑠(𝑥) =
𝑛∑

𝜄=1

𝜆𝜄𝜙(∥𝑥− 𝑥𝜄∥) + 𝑝(𝑥), (2)

where 𝑠(𝑥) is the surrogate model prediction at the point 𝑥,
𝜙 : ℝ

𝑑 �→ ℝ denotes the radial basis function (we use the
cubic RBF 𝜙(𝑟) = 𝑟3), and 𝑝(𝑥) = 𝛽𝑇𝑥+𝛼 is the associated
polynomial tail. Here, 𝛽 = [𝛽1, . . . , 𝛽𝑑]

𝑇 ∈ ℝ
𝑑 and 𝛼 ∈ ℝ.

The parameters 𝜆𝜄, 𝜄 = 1, . . . , 𝑛, 𝛽𝑗 , 𝑗 = 1, . . . , 𝑑, and 𝛼 are
determined by solving a linear system of equations:[

Φ 𝑃
𝑃𝑇 0

] [
𝜆
𝑐

]
=

[
𝐹
0

]
, (3)

where Φ𝜄𝜈 = 𝜙(∥𝑥𝜄−𝑥𝜈∥), 𝜄, 𝜈 = 1, . . . , 𝑛, 0 is a matrix with
all entries 0 of appropriate dimension, and

𝑃 =

⎡
⎢⎢⎢⎣
𝑥𝑇
1 1

𝑥𝑇
2 1
...

...
𝑥𝑇
𝑛 1

⎤
⎥⎥⎥⎦ , 𝜆 =

⎡
⎢⎢⎣
𝜆1

𝜆2

...
𝜆𝑛

⎤
⎥⎥⎦ 𝑐 =

⎡
⎢⎢⎢⎢⎣
𝛽1

𝛽2

...
𝛽𝑑

𝛼

⎤
⎥⎥⎥⎥⎦ , 𝐹 =

⎡
⎢⎢⎣
𝑓(𝑥1)
𝑓(𝑥2)

...
𝑓(𝑥𝑛)

⎤
⎥⎥⎦ .

(4)

The matrix in (3) is invertible if and only if rank(𝑃 ) =
𝑑+ 1 [23].

III. NUMERICAL EXPERIMENTS

The CEC’14 suite of expensive optimization test problems
consists of 8 benchmark problems, each with dimensions 10,
20, and 30. Hence, there are totally 24 problems which we
use to test SO-MODS. We follow closely the instruction given
in [24]. Hence, although we do know the analytic description
of the test problems, we treat them as black boxes. The test
problems are computationally cheap to evaluate which facil-
itates efficient testing of SO-MODS. The test problems have
characteristics such as unimodal, multi-modal, step function,
and very long and narrow valleys where the global minimum
is located. The maximum number of function evaluations is
50𝑑. We do 20 trials for each problem with each algorithm
version.
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A. Algorithm Parameters

Parameters in the global search phase of SO-MODS were
set following [1], except for the parameters for generating
the initial experimental design. The parameter values used in
this paper are provided in Table I, where 𝑙(𝒟) represents the
length of the shortest side of the hyper-rectangle 𝒟. For SO-
MODS-A, we used totally 𝑛0 = 2(𝑑+1) points for the initial
experimental design, where 𝑑 + 1 points were created by a
symmetric Latin hypercube design and the remaining 𝑑 + 1
points were created with a random Latin hypercube design
using MATLAB’s built-in function lhsdesign. For SO-MODS-
B we created 𝑛0 = 10𝑑 points for the initial experimental
design with a symmetric Latin hypercube design strategy.

TABLE I. SO-MODS PARAMETER VALUES FOR GLOBAL SEARCH

Parameter Value

𝑁cand = ∣Ω𝑛∣ (number of candidates points) min(500𝑑, 5000)
Υ (weight pattern) < 0.3, 0.5, 0.8, 0.95 >
𝜎int (initial step size) 0.2𝑙(𝒟)
𝜎min (minimum step size) 0.2 1

26
𝑙(𝒟)

𝜏success 3
𝜏fail max(𝑑, 5)

B. Experimental Results

The numerical results for SO-MODS versions A and B for
the test problems are summarized in Tables II, III, and IV. The
better result of both algorithm versions is marked in bold. The
global minimum of all functions is zero. Hence, the reported
numbers show the statistics for the absolute errors between the
final solution found by the SO-MODS versions and the true
minimum. Results with a function value≤ 10−8 are considered
zero, and thus we do not report decimals for these problems.
Problems with function values larger than 10−8 are reported
with four decimal places. The discussion of the results for the
test problems is in the following grouped into unimodal and
multi-modal problems.

TABLE II. SO-MODS RESULTS, VERSIONS A AND B FOR

10-DIMENSIONAL PROBLEMS.1

Alg. Problem Best Worst Median Mean Std.

A

F1 0 0.0000 0 0.0000 0
F4 0 0.0018 0.0002 0.0003 0.0004
F7 0 0.0057 0.0007 0.0012 0.0015
F10 0 0 0 0 0
F13 0.0001 0.0018 0.0005 0.0006 0.0005
F16 0.0001 0.1600 0.0101 0.0259 0.0362
F19 0.2284 101.4595 8.3836 13.3185 21.2667
F22 6.9648 41.7884 19.4017 22.2374 10.1582

B

F1 0 0 0 0 0
F4 0 0.0000 0.0000 0.0000 0.0000
F7 0.0000 0.0128 0.0005 0.0021 0.0037
F10 0 0 0 0 0
F13 0.0000 1.1551 0.0001 0.1156 0.3555
F16 0.0000 0.0885 0.0099 0.0154 0.0212
F19 5.6356 72.2342 7.1151 10.4275 14.5768
F22 12.9345 58.7023 25.3714 27.0131 12.6030

1 Bold numbers denote the better result of both algorithms for the respective test
problem.

1) Unimodal Problems: Test problems F1-F12 are uni-
modal, i.e., there is only one minimum, which is the global
minimum. Test problems F10-F12 are three instances of the
step function, which is discontinuous. In general, if we know
that our objective function is unimodal, we should use a local

TABLE III. SO-MODS RESULTS, VERSIONS A AND B FOR

20-DIMENSIONAL PROBLEMS.2

Alg. Problem Best Worst Median Mean Std.

A

F2 0 0.0000 0.0000 0.0000 0
F5 0.0001 0.0038 0.0013 0.0015 0.0011
F8 0 0.0161 0.0022 0.0030 0.0038
F11 0 0 0 0 0
F14 0.0004 0.0036 0.0015 0.0015 0.0008
F17 0.0001 0.0833 0.0013 0.0106 0.0190
F20 15.8335 60.6626 17.5148 19.7182 9.6773
F23 27.8589 70.6418 42.8138 43.3055 10.8154

B

2 0 0 0 0 0
F5 0.0001 0.1611 0.0008 0.0102 0.0357
F8 0.0000 0.0227 0.0005 0.0023 0.0053
F11 0 0 0 0 0
F14 0.0000 0.0007 0.0001 0.0001 0.0001
F17 0.0000 0.0472 0.0001 0.0038 0.0107
F20 16.0645 19.3468 17.8302 17.9037 0.9123
F23 30.8437 102.4802 56.7125 59.7471 20.7312

2 Bold numbers denote the better result of both algorithms for the respective test
problem.

TABLE IV. SO-MODS RESULTS, VERSIONS A AND B FOR

30-DIMENSIONAL PROBLEMS.3

Alg. Problem Best Worst Median Mean Std.

A

F3 0 0.0000 0.0000 0.0000 0
F6 0.0005 0.0160 0.0025 0.0039 0.0038
F9 0.0304 2.0614 0.1537 0.3564 0.5050
F12 0 0 0 0 0
F15 0.0013 0.0080 0.0020 0.0024 0.0015
F18 0.0002 0.1133 0.0093 0.0144 0.0252
F21 26.2578 140.4813 71.9988 61.9795 32.2668
F24 54.7270 108.4505 84.5724 83.9804 15.7449

B

F3 0 0.0018 0 0.0001 0.0004
F6 0.0015 3.0618 0.0368 0.3278 0.8651
F9 0.9225 130.7708 9.6791 20.2410 30.7410
F12 0 0 0 0 0
F15 0.0000 0.0026 0.0000 0.0002 0.0006
F18 0.0001 0.0756 0.0024 0.0110 0.0193
F21 25.9159 122.7319 28.4763 36.5977 25.6698
F24 56.7139 173.6795 94.5187 109.5081 38.8189

3 Bold numbers denote the better result of both algorithms for the respective test
problem.

optimization algorithm because convergence to the minimum
will be faster. If the objective function is, however, a black
box as in this investigation, we do not know a priori how
many local and global optima there are, and thus a global
optimization algorithm must be used to avoid getting trapped
in a local optimum. In that case, many function evaluations
may be done without improving the solution because the global
search selects samples that are relatively far away from the best
point found so far in unexplored regions of the variable domain
(exploration) rather than focusing on the best point and locally
searching in its vicinity (exploitation).

For problems F1-F8, SO-MODS found near-optimal solu-
tions, where the results for the shifted sphere function are best
(F1-F3). For problems F4-F6 and F7-F9, respectively, we can
see that with increasing dimension (from 10 to 30), it becomes
increasingly more difficult to find accurate solutions within the
given budget of allowable function evaluations. This can be
noted especially for the shifted rotated ellipsoid function (F7-
F9) for which the errors for the 30-dimensional problem are
significantly larger than for the 10-dimensional problem.

For problems F10-F12, both SO-MODS versions detected
the global minimum already before Phase 2 started. We should
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note here that using a local solver as, for example, MATLAB’s
fmincon is unlikely to find the optimum of the step function.
The local solver fmincon numerically computes the derivatives
from the current best point. However, because of the step-
shape, all the points in the vicinity of the current best point
have the same objective function value (the gradient is zero),
and therefore fmincon will terminate without improving the
solution. On the other hand, it is not claimed that fmincon
would perform well on this problem class (fmincon is a
gradient based optimizer that requires the objective function
and first derivative to be continuous), which emphasizes the
need of derivative-free global optimization algorithms that are
able to deal with these kinds of problems.

2) Multi-modal Problems: Test problems F13-F24 have
several local minima, which makes it significantly more diffi-
cult to find the global optimum within a very restricted number
of function evaluations since local optima (if detected) must
be explored until no further improvements can be found and
thereafter the search must continue globally in order to detect
new valleys in the objective function landscape where the
global minimum may be located. The results show that also for
most of these test problems the mean absolute error increases
with the dimension.

The mean errors are lowest for the Griewank function (test
functions F16-F18). This is the only multi-modal function
for which SO-MODS finds lower errors for the 20- and 30-
dimensional instances than for the 10-dimensional problem.
One reason for this behavior may be related to the fact that
finding the global minimum of the Griewank function becomes
easier as the dimension increases [25].

For the remaining multi-modal test functions, the algo-
rithms were on average not able to get as close to the global
optimum as for the unimodal problems. For the shifted and
rotated Rastrigin function (F22-F24), the errors are largest,
which may be related to the large number of local minima.
If the local search phase of SO-MODS (Phase 3) does not
start anywhere close to the global optimum, the search will
stop at a local optimum. SO-MODS-A finds better solutions
for this problem than SO-MODS-B which may be related to
the exploration of the various local minima of the response
surface in SO-MODS-A which enables a more global search
for improvements.

The shifted and rotated Rosenbrock function (F19-F21)
has a very long and narrow valley with a local and a global
optimum. Hence, it can be expected that the local search will
converge slowly if it is not trapped in the local minimum. The
reported standard deviations of both SO-MODS versions are
for this function large compared to the other test problems,
which is also reflected in the large difference between the best
and the worst function values found over all trials.

3) Analysis of Phases 1 and 2 of SO-MODS-A: We inves-
tigated how many objective function evaluations were done
in Phases 1 and 2 of SO-MODS-A. Table V summarizes the
number of function evaluations averaged over the 20 trials
done in each phase. The dashes denote problems for which
an improvement was not found in all 20 trials during the
respective optimization phase. GS-D denotes the global search
(average number of evaluations done during Algorithm 3),
GS-G denotes the search with GORBIT, and LS-M denotes

the search with MLSL on the response surface (both done
in Phase 2). The final local search with fmincon on the true
objective function (Phase 3) used up the remaining budget of
function evaluations except for problems F10-F12 where the
global minimum was detected already during GS-D.

The table shows that for the 10-dimensional problems, GS-
D uses for all problems less than half of the allowed number
of function evaluations (𝑁max = 500). For the 20-dimensional
problems, GS-D uses except for problems F11, F17, and
F23 more than half of the budget (𝑁max = 1000) indicating
that GS-D keeps making progress. For the 30-dimensional
problems, GS-D uses except for problems F12 and F18 always
more than half of the budget. The more function evaluations
used up by GS-D, the fewer function evaluations are left for
the local search.

We set GS-G’s budget of function evaluations to about one
fourth of the total budget. LS-M’s budget of allowed function
evaluations is not fixed and depends on the progress made.
Hence, we can see that for the unimodal problems only very
few evaluations are done during this stage. The minumum of
the response surface is for these unimodal problems already
relatively well-explored, and hence improvements by sampling
at the minimum point of the response surface are rarely
possible. For the highly multi-modal Rastrigin function (F22-
F24), LS-M finds several improvements by sampling at the
local minimum points of the response surface. Hence, for
multi-modal problems, exploring these local minima is of
advantage which is also reflected in the results in Tables II,
III, and IV.

TABLE V. AVERAGE NUMBER OF FUNCTION EVALUATIONS DONE IN

EACH PHASE OF SO-MODS-A.

𝑑 Problem GS-D4 GS-G5 LS-M6

10

F1 196 125 1
F4 208 126 1
F7 223 126 2
F10 122 - -
F13 213 125 12
F16 118 129 2
F19 205 124 5
F22 177 125 10

20

F2 583 247 2
F5 616 249 7
F8 591 250 4
F11 309 - -
F14 514 249 14
F17 279 251 2
F20 550 247 4
F23 475 249 23

30

F3 907 373 -
F6 1026 365 -
F9 1134 329 -
F12 485 - -
F15 897 375 24
F18 493 374 3
F21 864 373 5
F24 843 374 55

4 Global search with DYCORS (Phase 1).
5 Global search with GORBIT (Phase 2).
6 Global search with MLSL for minima of response surface (Phase 2).

4) Progress Plots for SO-MODS: Figures 1, 2, and 3 show
the progress plots of SO-MODS versions A and B for the
10-, 20-, and 30-dimensional problems, respectively. The plots
show the average best objective function value found after
10%, 20%,. . .,100% of the total number of allowed function
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evaluations. Note that the function values are shown on a log-
scale, and thus graphs that do not reach until the maximum
number of allowed evaluations indicate that the minimum
value zero has been found within fewer than the allowed
number of evaluations. The graphs show that, except for test
problems F19-F21, SO-MODS-A performs better than SO-
MODS-B and is outperformed by SO-MODS-B only near
the end of the budget of allowable function evaluations. For
problems F10-F12 (step function), SO-MODS-A finds the
minimum within significantly fewer function evaluations. This
behavior may in part be related to the number of points in
the initial experimental design which is for SO-MODS-B 10𝑑
and for SO-MODS-A 2(𝑑 + 1). Hence, SO-MODS-A starts
the systematic search for improved solutions earlier and is
thus able to find improved objective function values within
fewer evaluations than SO-MODS-B. Hence, if the budget of
allowed function evaluations is significantly lower than the
50𝑑 evaluations allowed in this study, SO-MODS-A should
be preferred. Otherwise, SO-MODS-B should be used.
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Fig. 1. The graphs show the number of function evaluations vs. the average
objective function value for the 10-dimensional problems.
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Fig. 2. The graphs show the number of function evaluations vs. the average
objective function value for the 20-dimensional problems.

5) Computational Complexity: The computational com-
plexity of both SO-MODS versions is shown in Table VI. As
may be expected, the computational complexity increases with
the problem dimension. For both algorithm versions, the com-
plexity for test problems F10-F12 is lowest because SO-MODS
stopped before the total budget of function evaluations was
used up. We can also see that the computational complexity
of SO-MODS-B is two to three times larger than that of SO-
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Fig. 3. The graphs show the number of function evaluations vs. the average
objective function value for the 30-dimensional problems.

MODS-A which may be related to the different sizes of initial
experimental designs used for both versions and the number
of evaluations allowed for ORBIT and GORBIT, respectively.

TABLE VI. COMPUTATIONAL COMPLEXITY OF SO-MODS, VERSIONS

A AND B

𝑑 Problem SO-MODS-A SO-MODS-B

10

F1 76 218
F4 96 226
F7 90 147
F10 13 108
F13 108 251
F16 73 143
F19 84 345
F22 82 236

30

F2 843 1979
F5 630 1949
F8 586 928
F11 137 710
F14 648 1489
F17 310 1079
F20 563 1750
F23 565 1367

30

F3 2708 6578
F6 2394 6903
F9 2758 5739
F12 453 2243
F15 2297 5203
F18 810 4728
F21 1858 7760
F24 2632 4883

IV. CONCLUSIONS

In this paper we introduced the algorithm SO-MODS,
which is a surrogate model based optimization algorithm
for computationally expensive black-box global optimization
problems. SO-MODS is an extension of the DYCORS algo-
rithm introduced by Regis and Shoemaker [1]. SO-MODS
extends DYCORS by two additional search phases, namely
ORBIT/GORBIT to further improve the best solution found
during the global DYCORS search, and a gradient based local
optimization on the true objective function to improve the
accuracy of the solution. We introduced two versions of SO-
MODS where version A uses GORBIT and version B uses
ORBIT. Version A explores all the local and global minima
of the response surface before it starts the local search on the
true objective function. Version B starts the local search from
the best point found during ORBIT.
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We evaluated the performance of SO-MODS on the
CEC’14 test problem suite consisting of 24 problem instances
that contained unimodal, multi-modal, continuous, and dis-
continuous test problems. The problems had 10, 20, and 30
dimensions, and the maximum number of allowed function
evaluations was restricted to 50×problem dimension. Numeri-
cal experiments showed that both SO-MODS versions are able
to find near-optimal solutions. For the multi-modal problems,
where the existence of several local minima makes the search
for the global minimum significantly more difficult, SO-MODS
was able to efficiently decrease the objective function value
within very few function evaluations. In general, we found
that SO-MODS version B reaches more accurate solutions than
version A for most test problems if 50×problem dimension
function evaluations are allowed. For lower budgets of allowed
evaluations, version A performed for most test problems better.

We found that our results improved by using OR-
BIT/GORBIT in Phase 2 of SO-MODS as compared to
switching directly from the global search in Phase 1 to the
gradient-based local search (e.g., with fmincon) in Phase 3.
The big advantage of ORBIT/GORBIT over fmincon is that
ORBIT/GORBIT does not need at least 𝑑+1 function evalua-
tions in each iteration to numerically compute the derivatives.
However, the response surface used in ORBIT/GORBIT is not
exact, and thus, in the final Phase 3 of SO-MODS, it is best to
do a gradient-based search with fmincon on the true objective
function since the goal in this contest is to find high accuracy
solutions (absolute errors less than 10−8) for the CEC’14
benchmark problems. Most real-world application optimization
problems of complex systems are not precise and have model
errors expected to be at least 5%. For these real models, SO-
MODS’ Phase 3 may be shortened or even eliminated since
finding a solution within 1% or 5% of the optimum is all that
is needed.
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