
PSO-Based Evacuation Simulation Framework

Pei-Chuan Tsai

Department of Computer Science

National Chiao Tung University

HsinChu City, TAIWAN

Email: pctsai@nclab.tw

Chih-Ming Chen

Department of Computer Science

National Chiao Tung University

HsinChu City, TAIWAN

Email: ccming@nclab.tw

Ying-ping Chen

Department of Computer Science

National Chiao Tung University

HsinChu City, TAIWAN

Email: ypchen@cs.nctu.edu.tw

Abstract—Evacuation simulation is a critical and important
research issue for people to design safer building layouts or
plan more effective evacuation routes. Many studies adopted
methodologies in evolutionary computation into the evacuation
simulation systems for finding better solutions. To simulate
human behavior or crowd motion is one key factor to the
practicality of the system. Particle swarm optimization algorithm
(PSO), which is originated from the inspiration of bird flocking, is
commonly applied to model human behavior. Based on the PSO-
based human behavior simulation, many studies have got good
results on evacuation simulation. However, the configurations of
describing the experiment environment in the literature are com-
plicated and specialized for certain specific scenarios. Observing
the fact, we propose a new PSO-based simulation framework
in order to provide a simple and general way to configure
various simulation scenarios. This work adopts our previously
proposed PSO-based crowd movement controlling mechanism
and introduces new mechanisms to make the simulation fitting
into evacuation circumstance more real. In the proposed frame-
work, all people, obstacles, exits, and even the evacuation guide
indicators are modeled as the original component of the PSO
algorithm. It is convenient to setup the simulation environment
upon the framework. Therefore, taking the proposed work as a
research tool will be advantageous when the issue of evacuation
simulation is investigated.

I. INTRODUCTION

Evacuation simulation is useful and critical in several as-

pects such as evacuation planning and building safety eval-

uation. Lots of evacuation simulation models have been de-

veloped to apply in various situations. Many of them utilize

methodologies in evolutionary computation to find better evac-

uation plan or building layout. Garrett et al. used Genetic

Algorithms (GA) and Estimation of Distribution Algorithms

(EDA) to find the better placement of exit positions in two

specified scenarios [1]. Zong et al. applied multi-ant colony to

model evacuation routing with mixed traffic flow and showed

that the congestion on the optimal exit caused by single ant

colony modeling can be prevented by providing communi-

cations between different colonies [2]. Yusoff, Ariffin, and

Mohamed proposed an improved discrete particle swarm opti-

mization (DPSO) scheme to solve vehicle assignment problem

for evacuation [3]. Although there are many kinds of evacu-

ation simulation models designed to solve diverse problems,

the simulation of human behavior is always an important part

in these modeling systems. In order to appropriately simulate

the behavior or the movement of human, many researchers

take advantage of particle swarm optimization in evolutionary

computation. Particle swarm optimization (PSO) was proposed

by Kennedy and Eberhart in 1995 which was inspired by the

behavior of bird flocking [4]. Researchers set up their environ-

ments and used the particle swarm movement to simulate the

human moving in the evacuation scenarios [5], [6]. Kou et al.

further combined PSO and a non-dominated sorting genetic

algorithm to simulate and optimize the evacuation plan [7].

Observing that although all studies which used PSO-based

human behavior simulation got good experimental results, the

settings of environment in each work are specialized and not

compatible with another. Therefore, this paper proposes a

PSO-based evacuation simulation framework to provide a gen-

eral configuration for describing environmental settings and

human behavior as well. The framework adopts the PSO-based

crowd movement controlling mechanism proposed in [8], [9].

In the controlling mechanism, the obstacles were formulated

as parts of objective functions and the collision avoidance

mechanism between crowd members was also provided. By

the proposed simulation framework, it would be convenient

to describe various scenarios and apply to find the better

evacuation plans or better building layouts for evacuation.

The remainder of the paper is organized as follows. Sec-

tion II gives the details of the PSO-based crowd controlling

scheme proposed in [8], [9], including the mapping from

human movement to particle swarm, obstacle formulation, and

collision avoidance mechanism. In section III, we propose

the improvements applied on the framework which make

the simulation be more realistic in evacuation scenarios. For

demonstrating the proposed simulation framework, we set up

several scenarios to simulate. The details of configurations and

the experimental results are presented in section IV. Finally,

the conclusions and our contributions are given in section V.

II. PSO-BASED SIMULATION SCHEME

In 1995, Kennedy and Eberhart proposed PSO algorithm

to solve optimization problems. The PSO method formulates

each possible solution as a particle in a D-dimensional space:

x = [x1, x2, ..., xD]
T
.

Each particle has its position, velocity, and an objective value

determined by the objective function. The new position of the

particle is decided by its experience and social knowledge in

order to move toward to expected and currently known best

solution. Before deciding the new position, the velocity is

1944

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

calculated first. The velocity of particle pi at time t + 1 is

determined by the following equation

vi(t+ 1) = ωvi(t) + c1r1 (piBLS − pi(t))

+ c2r2 (pBGS − pi(t)) ,

where vi and pi are the velocity and position of the ith particle.

ω is the weight for the previous velocity. piBLS is the best

position according to its experience and pBGS is the global

best position that have achieved by the swarm. c1, c2 are the

parameters to control the influence of piBLS and pBGS . r1, r2
are random numbers selected from [0, 1] to make the velocity

more diverse. After computing the velocity vi(t+1), the new

position of the ith particle can be determined by

pi(t+ 1) = pi(t) + vi(t+ 1).

In each iteration, every particle updates its velocity/position

and then evaluates its own objective value according to the

objective function. Among all the new objective values, the

values of piBLS and pBGS may also be updated to take the

swarm toward the optimal solution.

Since the particle is free to fly to any possible position, there

has some modifications need to be considered for applying to

simulate human behavior. Based on [8], [9], there are three

major parts to be modified: 1) restriction of particle movement

to simulate human moving path; 2) obstacle modeling; 3)

collision avoidance between crowds and obstacles. The details

are described in following sections.

A. Particle movement

First of all, considering that the evacuation simulation

usually examined in a 2D space, we restrict the particle

position and velocity into 2D space as pi = [pix, piz]
T and

vi = [vix, viz]
T . In order to simulate human pace and prevent

the particle from jumping too far to be unreal for human, the

velocity is separated into direction part Di = [Dix, Diz]
T and

speed part Si. The direction part is used to decide where to go

and the speed part can therefore be used to control the moving

distance of each step. The update equation for the direction

part is similar to update the velocity

Di(t+ 1) = ωDi(t) + c1r1 (piBLS − pi(t))

+ c2r2 (pBGS − pi(t)) ,

where (piBLS − pi(t)) and (pBGS − pi(t)) are represented in

unit vector for indicating the direction only. Other parameters

are defined as the original PSO. By deciding the direction of

the particle, the new position of the particle can be determined

as in original PSO

pi(t+ 1) = pi(t) + Si(t+ 1)×Di(t+ 1),

where Si(t + 1) is the speed part within a range [0, Vmax].
Vmax can be set as a step size or determined by other

user defined parameters. For making the movement of the

particle more like a human being, the speed can be updated

proportional to the reverse of the particle’s objective value.

This setting is inspired by the intuition that human would

slow down their speed when approaching close to an obstacle.

Since PSO is established to search the minimum around the

environment, the objective value should be higher when the

particle is close to an obstacle and therefore a lower velocity

is rendered.

B. Objective function

In [8], [9], a cost function to evaluate the relations between

the particle and any other objects in the search space was

defined. The cost value of particle p with object q is computed

by the following exponential function

Cost(p, q)

= exp

(
−

(
(px − qx)

2

(σpx
+ σqx)

2 +
(pz − qz)

2

(σpz
+ σqz)

2

))
, (1)

where (px, pz) is the position of the particle p, (qx, qz) is

the position of the object q, and (σpx
, σpz

), (σqx , σqz) is the

scope of the particle p and the object q, respectively. The scope

represents the coverage area of the object. Since the object q

can be an obstacle, target, or other particles, the scope would

be different. For example, the scope of an object with 20 by

40 would be set to (σqx , σqz) = (10, 20). For representing the

target, the scope may be set to the whole search area. Among

these related configurable parameters, the object is easy to

adjusted and controlled for satisfying user needs. By defining

the cost function, the search space with a minimum position

as target can be obtained by overlaying these exponential

functions with identical or different parameters. Therefore, the

objective function of the scheme is defined as

Fobj(p) = cobs ×max
o∈O

(Cost(p, o)) +
1

Cost(p, g)
,

where O is the set of all the obstacles including specified

obstacles and other human in the crowd, g is the target for

particle to move forward, and cobs is a constant for user to

control the importance between the obstacles and the target.

Observing the definition of the objective function, it can

be found that the particle would have lower objective value

when approaching to the targets. On the other hand, when the

particle moves close to an obstacle, no matter it is a wall in real

world or other human in the crowd, the objective value would

rise. Under the objective function, the PSO optimization ability

could be applied in such an evacuation simulation model. The

evacuation exits or safety zones can be modeled as targets,

and the walls, holes, or furniture can be modeled as obstacles.

Another advantage of the simulation scheme is that no extra

model needs to be added for including new objects. All objects

or other kinds of particles, such as moving cars or elders,

can be modeled by controlling the introduced parameters.

With appropriate parameter settings, the PSO-based simulation

scheme would achieve its design goal and the particles would

converge to the desired target by a reasonable path with a high

probability.

1945

50 40 30 20 10 0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Distance to obstacle

P
r
o

b
a
b

il
it

y

k = −0.5 k = 0 k = 1 k = 2

Fig. 1. The figure shows the acceptance probability of a new position for
different parameter sizes, in which the radius of particle and the obstacle are
respectively 5 and 20.

C. Collision avoidance

Although the objective function was designed to make the

particle to walk around the obstacles, there is still a possibility

that the particle would go through or collide with the obstacles.

To avoid this possibility, the new position of the particle should

be checked whether it can be accepted or not. The check

mechanism is also based on exponential functions. Depending

on users’ decision or preference, other function families can be

adopted in both the objective function and check mechanism.

The exponential function is chosen in this study because it

is easy to compute and manipulate. The check mechanism

uses the probability as following to decide the acceptance of

a newly computed position

Prob(f) = 1−
f

e−k
, (2)

where f is the cost of the newly computed position and k

is a constant to control the behavior when a particle comes

close to the obstacle. The constant k lets the user conveniently

specify the acceptance around the obstacles. According to the

acceptance probability function, there exists a hard boundary

when setting k = 1 because the probability would be 0 if the

cost is f = e−1, which means the particle and the obstacle

stay close together by the definition of the cost function

(Equation (1)). Therefore, the collisions can be prevented by

the check mechanism. Assume that the radius of the particle

and the obstacle are respectively 5 and 20. Figure 1 illustrates

the acceptance probability while the particle is close to the

obstacle. If the new position is not accepted, another direction,

such as adding a random degree between ±20◦ to original

direction, would be tested for making the path smoothly. The

position of the lower cost would be chosen as the new position

of the particle.

III. IMPROVEMENTS APPLIED ON THE PSO-BASED

SIMULATION FRAMEWORK

Although the proposed simulation scheme have dealt with

almost all the differences between crowd in real and swarm

in free space, some details still need to be attended, such

as the solution to a trapped particle to get out and the non-

line-of-sight problem. We propose two improvements in our

simulation framework to solve these situations and explain in

the following sections.

A. Local search

Observing the collision avoidance mechanism adopted in

[8], [9], we find that a particle still has the probability to step

into a position too close to an obstacle or facing a non-round

obstacles such that it can not find an accepted position in the

next iteration, even though it has searched all directions in

the range between ±20◦. The particle is finally trapped on

that position and would not move to any where till the end

of the simulation. To get the particle out of this situation, we

improve the local search for finding possible new positions.

Local search is a common mechanism used with PSO and

also applied in [8], [9] for collision avoidance. However, the

search area is restricted within ±20◦ to the original direction

which may be sufficient for round obstacles. For the obstacles

with sharp edges or rectangles, particles can still not find an

accepted position in such a restricted area. For getting the

particle out, we extend the local search area incrementally

until find an accepted direction to move. For an unaccepted

direction, D, computed from the original PSO, we randomly

sample a new direction from [D − θ
2 , D + θ

2] and check the

acceptance. If the direction is still unaccepted, we repeatedly

sample another one to check for at most a configurable times,

e.g., 20 times. If all these sampled directions are unacceptable,

we then extend the search range with θ each time, i.e., the

search range would be extended from θ to 2θ, 3θ, ..., etc.

The search mechanism is inspired from the behavior that

when a human faces the wall and wants to find a way to

keep moving, he may walk along the wall to seek a door or

the end of it. The movement of the trapped particle based on

this incrementally search would finally act as moving along

the edge of the obstacle. The extended local search area

and the random sample mechanism provide the particle the

opportunity to move on and also avoid the oscillation around

the area.

B. Global best value updating mechanism

The original PSO has no obstacles in the search space and

the particles always update the global best information no

matter where the position is. In real world, human would

not know the information if there are obstacles between itself

and the position with the global best objective value. In such

a circumstance, the global best information should not be

updated to the particles with such positions unless they ”see”

someone who has the best position. It is usually called as ”non-

line-of-sight” effect. As a consequence, the update mechanism

should be modified to fit into the real world properly. For

1946

obstacle

p1

p2

p3
(a) Before particle p1 moves to new
position

obstacle

p1

p2

p3
(b) After particle p1 moves to new
position

Fig. 2. Illustration of global best information piBGS update mechanism.

modeling non-line-of-sight effect, we make each particle keep

itself global best information, piBGS , instead of sharing an

universal global best information, pBGS , with all particles. The

global best information of each particle would keep the best

position that ever appears in its sight. The information would

be updated only if there is a particle with better objective value

coming into its sight, i.e., no obstacles between them. Figure 2

illustrates an example of the improved update mechanism.

Assume the objective value of particle p1 is the best of all

the other particles p2, p3. In Figure 2(a), since both p2 and p3
can see the particle p1, they will keep the position of p1 as their

global best information. As shown in Figure 2(b), after particle

p1 moves to the new position with better objective value,

only particle p2 will get the updated global best information

because particle p1 still in its sight. The particle p3 would

not have the new information of p1 in this situation. We use

this mechanism to model the situation that people would not

ever know what the direction someone who is covered behind

an obstacle moves to. Therefore, the modified computation of

each particle would be the following steps in each iteration:

1) Find an accepted new position,

2) Calculate the objective value,

3) Update its local best information and global best infor-

mation if needed

4) Update the global best information of all particles in its

sight

By applying aforementioned improvements, the simulation

framework would much well model the actual human behavior.

We provide simulations in several different scenarios in the

following section to show the capability and flexibility of our

proposed simulation framework.

IV. EXPERIMENTAL RESULTS

In this section, we set up four room layouts to demonstrate

our simulation framework. The layouts are shown in Figure 3.

All the rooms are in the same size of 600 × 400 and the

coordinates are specified in Figure 3. Each particle is set as

a circle with radius 5, i.e., σpx
= σpz

= 5, and the maximal

speed is Vmax = 5. The parameters used in PSO are given in

Table I. We assume that particles would refer to the position

with the global best objective value with a higher priority

than the local best position ever seen. The target of each

TABLE I
THE SETTINGS OF PARAMETERS USED IN PSO.

Parameter ω c1 c2 k C
obs

Vmax

Value 1.0 0.2 1.0 1.0 0.1 5.0

TABLE II
THE SIMULATION RESULTS OF EACH LAYOUT.

Layout 3(a) 3(b) 3(c) 3(d)

Average iterations 134.783 104.504 119.427 117.785

Worst iterations 334.977 291.120 250.203 244.260

Standard deviation 12.486 9.043 9.008 8.508

TABLE III
URLS OF VIDEO CLIPS DEMONSTRATING SIMULATION OF EACH LAYOUT.

Layout URLs of simulation video clips

3(a) https://nclab.github.io/pso.evac/Scene1.avi
3(b) https://nclab.github.io/pso.evac/Scene2.avi
3(c) https://nclab.github.io/pso.evac/Scene3.avi
3(d) https://nclab.github.io/pso.evac/Scene4.avi

layout is also shown in Figure 3. We put 50 particles in each

round of simulation and record the number of iterations for

each particle to reach the goal. For every layout, we simulate

1000 rounds and the average results are listed in Table II.

The standard deviation represents the deviation of the average

iterations among all simulation rounds. We also show the

illustrations of the evacuation path generated by each particle

in our simulation framework in Figure 4. The illustrations are

interesting and may help user to understand the weakness of

the layout and then to improve it. For dynamic simulation

demonstration, one can find the video clips at the urls listed

in Table III.

A. Comparison between different positions of exits

Many evacuation simulations are applied to evaluate and

search for a better position to setup an exit. In our simulation

framework, it can be achieved by changing the position of the

target. The experimental results of 3(a) and 3(b) demonstrate

this feature of our framework. In the two layouts, the position

of exit in layout 3(b) should be better than layout 3(a), since

the average distance from every position to the exit, regardless

of obstacles, of layout 3(a) is larger than that of layout 3(b).

The experimental results of our simulation framework exactly

confirm this assumption. It shows that in layouts 3(a) and 3(b),

the average iterations needed for evacuation are 133.6144 and

104.4127, respectively. Even in the worst case, layout 3(a)

needs more iterations than layout 3(b).

Looking into the simulation by observing the evacuation

path generated by each particle in Figure 4(a) and Figure 4(b),

we find that several particles would congest along with the

edge of the obstacle near the exit in layout 3(a). In layout 3(b),

fewer particles congest along the nearest round obstacle to the

exit. It means that a rectangular obstacle would block the sight

and the evacuation path more easily than a round obstacle

1947

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(a) The original room layout with the exit set at (30, 10).

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(b) The room layout with only the exit changed to (300, 10).

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(c) The room layout with obstacles rearranged. The sizes of obstacles and
the location of exit are kept identical.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(d) The room layout with evacuation guide indicators located on the left
and bottom walls.

Fig. 3. Experimental room layouts.

would. Also, comparing the space near exits, it can be found

that exit of layout 3(b) has larger space which would help

evacuate, too. Therefore, we can conclude that the placement

of layout 3(b) is better based on intuitive comparison and

simulation. The comparison demonstrates that our simulation

can be used in such a problem to evaluate the appropriateness

of the exit placement. It also verifies that our simulation

framework can well agree with real evacuation events.

B. Comparison between different positions of obstacles

One of the evacuation simulation applications is to find a

better placements of the furniture. For example, the department

store sometimes rearranges their layout for allocating space for

new brands or adjusting some brands to a different floor. In this

situation, the position of exit is fixed and the manager would

not want to rearrange into a placement which would block the

evacuation path of customers. The experiment of comparison

between layout 3(a) and layout 3(c) is presented to show that

our simulation also can deal with this kind of problem. In

layout 3(c), we place the obstacles more closely to each other

than layout 3(a) to make the aisle wider. It would be helpful

for evacuation if the aisle is wide enough to let many people

go through. On the other hand, the wide aisle would have

less possibility to block the sight of human. The simulation

results confirm this rearrangement is better. The average and

worst iterations needed to escape are 133.6144 and 330.423 in

layout 3(a), which are 119.1571 and 250.513 in layout 3(c).

Investigating the evacuation paths in these layouts, it is obvi-

ous that the congestion caused by the obstacles in layout 3(a)

is released. The wider aisle and more regular placement of

obstacles enable people to pass more smoothly without idling

around. It shows that the regularity also reduces the number of

turns needed to reach an exit. Summing up these reasons, the

placement of layout 3(c) is better and the simulation validates

this assumption. It shows that our simulation framework can

also be used to evaluate the placement of the obstacles.

C. Comparison for the presence evacuation guide indicators

In addition to the features mentioned in previous sections,

our simulation framework has the ability to simulate the evac-

uation environment with guide indicators. The guide indicators

in evacuation are the useful information about the location of

exit to lead people to get out of danger zones. It is commonly

used in each building and is definitely helpful. However, the

1948

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(a) The original room layout. The population needs 148.76 iterations in
average and 327 iterations in the worst case to evacuate.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(b) Room layout with a different position of exit. The population needs
98.12 iterations in average and 194 iterations in the worst case to evacuate.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(c) Room layout with different positions of obstacles. The population
needs 102.62 iterations in average and 218 iterations in the worst case
to evacuate.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(d) Room layout with evacuation guide indicators. The population needs
112.38 iterations in average and 200 iterations in the worst case to
evacuate.

Fig. 4. Evacuation paths generated by particles in each room layout are selected from one of the 1000 rounds of simulation.

position of the guide indicator is important. If a guide indicator

is placed at a position invisible to people, it would be useless.

In our simulation framework, we can model the guide indicator

as a static particle with a better objective value. Any other

particles that come into the sight of the guide indicator would

therefore be updated a better global best information and then

move toward it. By the help of the guide indicators, the particle

would to be able find the way out more easily. The simulations

of layout 3(a) and layout 3(d) show the benefit of the presence

of guide indicators. The average and worst iterations used

are 118.4122 and 247.086 in layout 3(d), whereas it needs

133.6144 iterations in average and 330.423 iterations in the

worst case to evacuate in layout 3(a).

Observing the evacuation path generated in the simulation

of layout 3(d) (Figure 4(d)), it can be found that the particles

really are attracted by the indicators and make them be on the

way out more quickly. By the evacuation guide indicators,

particles would move to the nearest indicator and hence

would not detour between the obstacles in the middle. This

experiment shows that the proposed framework can also model

the evacuation guide indicator without any additional modeling

and the simulation confirms that the indicator indeed work

under this modeling.

V. CONCLUSIONS

Since it is hard to verify the evacuation plan in real,

simulation systems become important and indispensable for

evaluating and testing the plan. Many studies have been

developed for applying in various scenarios. Evolutionary

algorithms are often used for finding the optimum solution

to exit placement, evacuation route, or building layouts. For

simulating human behavior, which is critical in any simulation

systems, lot of studies apply particle swarm optimization

(PSO) algorithm because PSO was designed with the inspira-

tion of the movement of birds. The simulation models adopted

in the literature are usually complicated, suitable for only

specific scenes, and incompatible with each other, we proposed

a PSO-based simulation framework in this paper which models

all the factors needed in an evacuation scenario, such as human

beings, obstacles, exits, and even guide indicators, by the

1949

compositions of PSO. The users can easily set up their scenario

and simulate by configuring parameters of PSO. The work is

based on the proposal of controlling crowd movement by PSO

in [8], [9]. In order to apply in an evacuation simulation and

model the more realistic human behavior, we design some

mechanisms such as local search and global optimum update

to enhance the framework. For demonstrating the abilities

of the simulation framework, we provide several scenarios

and make the comparisons. The scenarios are designed such

that we usually can judge which one is better to verify our

simulation framework. By these scenarios, we can confirm

the proposed framework simulates well since the simulation

results match our assumption and intuition. Furthermore, the

simulation framework also provides the ability to display the

evacuation path which would be useful for improving the

evacuation plan or the rearrangement.

In this paper, we proposed the PSO-based evacuation sim-

ulation framework that can be adopted in evaluating the

placements of exits, obstacles, and even evacuation guide

indicators. The modeling of human behavior in our framework

is simple and useful. However, human behavior is complicated

and easily affected by emotional and physical factors. For

example, some researchers discussed the differences of moving

pattern between normal human and elder or injured ones.

They used two different groups of particle swarms with

different maximum speeds for the modeling. This can also

be adopted in our framework. It is a challenge to properly

model complicated human behavior and we will continually

pursue this line of research. On the other side, the modeling of

diverse scenarios is also a promising research direction, such

as modeling of multiple exits and spread of disaster area. The

implementation of our proposed simulation framework is open

source [10] for researchers interested in adopting in their study

and practitioners interested in employing for evaluation.

ACKNOWLEDGMENTS

The authors are grateful to the National Center for High-

performance Computing for computer time and facilities. The

work was supported in part by the National Science Council

of Taiwan under Grant NSC 101-2628-E-009-024-MY3.

REFERENCES

[1] A. Garrett, B. Carnahan, R. Muhdi, J. Davis, and G. Dozier, “Evacuation
planning via evolutionary computation,” in Proceedings of the IEEE

Congress on Evolutionary Computation, 2006, pp. 157–164.
[2] X. Zong, S. Xiong, Z. Fang, and Q. Li, “Multi-ant colony system for

evacuation routing problem with mixed traffic flow,” in Proceedings of

the IEEE Congress on Evolutionary Computation, 2010, pp. 1–6.
[3] M. Yusoff, J. Ariffin, and A. Mohamed, “An improved discrete particle

swarm optimization in evacuation planning,” in Proceedings of the IEEE

International Conference of Soft Computing and Pattern Recognition,
2009, pp. 49–53.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of the 1995 IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[5] C. Wang, B. Yang, L. Li, and H. Huang, “A modified particle swarm
optimization-based human behavior modeling for emergency evacuation
simulation system,” in Proceedings of the 2008 IEEE International

Conference in Information and Automation, 2008, pp. 23–28.
[6] H. Junaedi, M. Hariadi, and I. K. E. Purnama, “Multi agent with

multi behavior based on particle swarm optimization (pso) for crowd
movement in fire evacuation,” in Proceedings of the IEEE International

Conference on Intelligent and Information Processing (ICICIP 2013),
2013, pp. 366–372.

[7] J. Kou, S. Xiong, H. Liu, and X. Zong, “Particle swarm and nsga-ii based
evacuation simulation and multi-objective optimization,” in Proceedings

of the IEEE International Conference on Natural Computation, 2011,
pp. 1265–1269.

[8] Y.-y. Lin and Y.-p. Chen, “Crowd control with swarm intelligence,” in
Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC

2007), 2007, pp. 3321–3328.
[9] Y.-p. Chen and Y.-y. Lin, “Controlling the movement of crowds in com-

puter graphics by using the mechanism of particle swarm optimization,”
Applied Soft Computing, vol. 9, no. 3, pp. 1170–1176, 2009.

[10] P.-C. Tsai, C.-M. Chen, and Y.-p. Chen, “PSO Evacuation Framework
Source Code,” https://github.com/nclab/pso.evac, March 2014.

1950

