

Abstract— Differential Evolution (DE), a global optimization
algorithm based on the concepts of Darwinian evolution, is
popular for its simplicity and effectiveness in solving numerous
real-world optimization problems in real-valued spaces. The
effectiveness of DE is due to the differential mutation operator
that allows DE to automatically adjust between the
exploration/exploitation in its search moves. However, the
performance of DE is dependent on the setting of control
parameters such as the mutation factor and the crossover
probability. Therefore, to obtain optimal performance
preliminary tuning of the numerical parameters, which is quite
timing consuming, is needed. Recently, different parameter
adaptation techniques, which can automatically update the
control parameters to appropriate values to suit the
characteristics of optimization problems, have been proposed.
However, most of the adaptation techniques try to adapt each of
the parameter individually but do not take into account
interaction between the parameters that are being adapted. In
this paper, we introduce a DE self-adaptive scheme that takes
into account the parameters dependencies by means of a
multivariate probabilistic technique based on Gaussian
Adaptation working on the parameter space. The performance
of the DE algorithm with the proposed parameter adaptation
scheme is evaluated on the benchmark problems designed for
CEC 2014.

I. INTRODUCTION
IFFRENTIAL Evolution (DE) [1], is one of the most
successful stochastic search technique for numerical
optimization. Similar to most of the stochastic

algorithms that are based on the principles of Darwinian
evolution, DE makes use of genetic operators such as
mutation, crossover and selection. However, the effectiveness
of DE can be attributed to the differential mutation operator
through which the algorithm can self-adapt its search to suit
the landscape of the optimization problem at hand. The
effectiveness of DE has been demonstrated in many
application fields such as mechanical engineering [1],
communication [2], optics [3], pattern recognition [4], signal
processing [5] and power systems [6].

R. Mallipeddi and Minho Lee are with the School of Electronics

Engineering, Kyungpook National University, Daegu, South Korea 702 701
(phone: +8253-950-7223; fax: +8253-950-5505; e-mail:
mallipeddi.ram@gmail.com, mholee@gmail.com).

Guohua Wu is with the National University of Defense Technology,
Changsha, Hunan, China 410073 (e-mail: guohuawu.nudt@gmail.com)

P. N. Suganthan is with School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore, 639 798 (e-mail:
epnsugan@ntu.edu.sg)

However, experimentally [7, 8] and theoretically [9] it has
been demonstrated that the performance of DE is sensitive to
the mutation strategy, crossover strategy and control
parameters such as population size (NP), crossover rate (CR)
and scale factor (F). In other words, the best combination of
strategies and their associated control parameters can be
different for different optimization problems. In addition, for
the same optimization problem the best combination can vary
depending on the available computational resources and
accuracy requirements [10]. Therefore, to successfully solve
a specific optimization problem, it is necessary to perform
trial-and-error search for the most appropriate combination of
strategies and their associated parameter values. However,
the trial-and-error search process is time-consuming and
incurs high computational costs. Therefore, to overcome the
time consuming trial-and-error procedure different adaptation
schemes [11-15] have been proposed in the literature.

From the different adaptive or self-adaptive parameter
control techniques proposed [11-15], it can be observed that
a well-designed parameter adaptation scheme can enhance
the robustness of an algorithm by dynamically adapting the
parameters to the characteristic of different fitness
landscapes. In other words, a well-designed parameter
adaptation technique can effectively solve various
optimization problems without the need for the trial and
error process of parameter tuning. In addition, the
convergence rate can be improved if the control parameters
are adapted to appropriate values at different evolution
stages of a specific problem.

Most of the DE parameter adaptation techniques [11-15]
employ explorative mutation strategies to obtain better
performance. However, in [16], the authors proposed a
parameter adaptation method with a greedy mutation strategy
and binomial crossover strategy as search basis. The greedy
mutation strategy ‘‘DE/current-to-pbest’’ utilizes the
information of multiple best solutions to balance the
greediness of the mutation and diversity of the population.
The parameter adaptation technique is implemented by
evolving the mutation factors and crossover probabilities
based on their historical record of success. The authors claim
the parameter adaptation to increase the convergence rate
while maintaining the reliability of the algorithm at a high
level.

From the experimental [7, 8] and theoretical [9], it has been
found that the performance of the DE algorithm depends on
the appropriate combination of the mutation scale factor and
the crossover probability. However, most of the parameter
adaptation techniques proposed in the literature [11-16],
consider the adaptation of the two different parameter
individually but do not consider the interaction between the
two parameters. In other words, they do not take into account

Gaussian Adaptation based Parameter Adaptation for Differential
Evolution

R. Mallipeddi, Guohua Wu, Minho Lee and P. N. Suganthan

D

1760

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the side effects introduced by changing the values of the
parameters individually.

Estimation of Distribution Algorithms (EDAs) such as
Covariance Matrix Adaptation (CMA) [17] and Gaussian
Adaptation (GaA) [18], based on probabilistic models,
consider the dependencies between the different variables
during the evolution. In other words, CMA and GaA are good
at handling the inter-correlations among the problem
variables.

In this paper, we propose a parameter adaptation technique
based on GaA to manage the dependencies between the two
parameters (mutation scale factor, F and the crossover
probability, CR) considered. The proposed adaptation
technique is used to improve the performance of DE
algorithm and is referred to as GaAPADE.

The reminder of this paper is organized as follows: Section
II presents a literature survey on 1) DE and different adaptive
DE variants, and 2) Gaussian Adaptation. Section III presents
the proposed GaAPADE algorithm. Section IV presents the
experimental results and discussions while Section V
concludes the paper.

II. LITERATURE REVIEW

A. Differential Evolution
Differential Evolution (DE) is a real-coded global

optimization algorithm over continuous spaces [19]. DE, a
parallel direct search method, utilizes NP D-dimensional
parameter vectors, { } NPixx D

GiGiGi ,...,1 , ,...,X ,
1
,, == to encode

the candidate solutions. The initial set of parameter vectors
referred to as population are uniformly sampled within the
search space constrained by the minimum and maximum
parameter bounds { } ,...,X min

1
minmin

Dxx= and { } ,...,X max
1
maxmax

Dxx= .

1) Mutation operation: During every generation G,
corresponding to each individual Xi,G in the current
population, referred to as target vector, a mutant vector Vi,G is
produced by the mutation operation. The most commonly
employed mutation strategies are:

“DE/best/1” [20])XX.(XV

21 ,Gr,Grbest,Gi,G iiF −+= (1)

“DE/best/2 [20])XX.()XX.(XV
4321 ,Gr,Gr,Gr,Grbest,Gi,G iiii FF −+−+= (2)

“DE/rand/1” [20]:)XX.(XV
321 ,Gr,Gr,Gri,G iii F −+= (3)

“DE/rand/2”[13])XX.()XX.(XV
54321 ,Gr,Gr,Gr,Gr,Gri,G iiiii FF −+−+= (4)

“DE/current-to-rand/1” [21]
)XX.()XX.(XU

321 ,Gr,Gri,G,Gri,Gi,G iii FK −+−+= (5)

The indices iiiii rrrrr 54321 ,,,, are mutually exclusive integers
randomly generated within the range [1, NP] and are different
from the index i. The scale factor F is a positive value for
scaling the difference vector while K is randomly chosen
within the range [0, 1]. Xbest,G is the individual vector with the
best fitness value in the population at generation G.

2) Crossover operation: After mutation, crossover operation
is applied to each pair of the target vector Xi,G and its

corresponding mutant vector Vi,G to generate a trial vector
Ui,G. In DE, the most commonly used crossover is the
binomial (uniform) crossover defined as follows [19]:

otherwise
)(or)[0,1](if

,

,
,

randj
j
Gi

j
Gij

Gi

jjCRrand
x
v

u
=≤

⎩
⎨
⎧

=
 1, 2, ... ,j D= (6)

In (6), the crossover rate CR is a user-specified constant
within the range [0, 1] while randj is a randomly chosen
integer in the range [1, D].

3) Selection operation: After the crossover, the trial vectors
are evaluated to obtain the objective function and selection
operation is performed. The objective function value of each
trial vector f(Ui,G) is compared to that of its corresponding
target vector f(Xi,G) in the current population. If the trial
vector is better than the corresponding target vector, the trial
vector will replace the target vector and enter the population
of the next generation. In a minimization problem, the
selection operation can be expressed as follows:

otherwise

)X()U(if

,X
,U

X ,

,

,
1,

i,GGi

Gi

Gi
Gi

ff ≤

⎩
⎨
⎧

=+
 (7)

In DE, mutation, crossover and selection are repeated
generation after generation until a termination criterion is
satisfied. The algorithmic description of DE is summarized in
Table I.

 TABLE I: Differential Evolution Algorithm
Step 1 Set the generation number G = 0, and randomly

initialize a population of NP individuals.

Step 2 WHILE stopping criterion is not satisfied

DO

 Step 2.1 Mutation

 Step 2.2 Crossover

 Step 2.3 Selection

 Step 2.4 Increment the generation count G = G + 1

Step 3 END WHILE

Recently, DE has attracted much attention and has been

successfully applied to solve many real-world problems
[1-6]. However, the performance of the conventional DE
algorithm depends on the chosen mutation strategy and the
associated control parameters. In addition, as complexity of
the optimization problem increases the performance of DE
algorithm becomes more sensitive to the strategy and the
associated parameter values [7]. Therefore, inappropriate
choice of mutation and crossover strategies and their
associated parameters may lead to premature convergence,
stagnation or wastage of computational resources [7, 14,
22-24]. In literature, various empirical guidelines were
suggested for choosing the appropriate strategies and control
parameter settings depending on the characteristics of the

1761

optimization problems [7, 19, 20, 25, 26]. However,
depending on the complexity of the optimization problem,
choosing an appropriate mutation strategy and control
parameters is not straight forward due to the complex
interaction of control parameters with the DE’s performance
[11]. In addition, the manual setting and/or tuning of DE
strategies and parameters based on the guidelines result in
various conflicting conclusions, which lack sufficient
justifications. Therefore, to avoid the tuning of parameters by
trial-and-error procedure, various adaptive techniques have
been proposed [14, 22, 27-29].

Among the three parameters (NP, F and CR), most of the
parameter adaptive techniques except [30], set the population
size (NP) to a predefined value based on the dimensionality of
the problem. In [13], a self-adaptive DE algorithm (SaDE)
was proposed in which the mutation strategies and the
respective control parameter (CR) are self-adapted based on
their previous experiences of generating promising solutions.
The scale factor, F was randomly generated with a mean and
standard deviation of 0.5 and 0.3 respectively. In [12], the
authors introduced a self-adaptation scheme (SDE) in which
CR is generated randomly for each individual using a normal
distribution N(0.5,0.15), while scale factor F is adapted
analogous to the adaptation of crossover rate CR in [27].
Therefore, SaDE [13] considers the adaptation of crossover
probability (CR) only while SDE [12] considers the
adaptation of scale factor (F) only.

In [28], the authors proposed FADE in which the control
parameters F and CR are adapted based on fuzzy logic
controllers whose inputs are the relative function values and
individuals of successive generations. FADE outperformed
the conventional DE on higher dimensional problems. In
[11], a self-adaptation scheme (JDE) was proposed, in which
control parameters F and CR are encoded into the individuals
and are adjusted depending on the parameters 1τ and 2τ . In
JDE, F and CR are initially assigned to 0.5 and 0.9,
respectively. In the consecutive iterations, F and CR are
reinitialized if a uniformly generated random number rand is
less than 1τ and 2τ respectively.

Among the different adaptive DE variants, adaptive
differential evolution proposed in [16], referred to as JADE,
is good in terms of convergence speed and robustness on a
variety of optimization problems. JADE [16] implements a
mutation strategy “DE/current-to-pbest” as a generalization
to the classic “DE/current-to-best” strategy. Unlike the
classic mutation strategy which uses the current best
individual, “DE/current-to-pbest” utilizes the information
present in p fitter individuals of the current population. The
use of multiple solutions helps in balancing the greediness of
the mutation and the diversity of the population. In JADE, the
control parameters (F and CR) are updated in an adaptive
manner in order to alleviate the trial and error search. In
JADE, using the “DE/current-to-pbest”, a mutation vector
corresponding to the individual Xi in generation G is
generated as:

)XX()XX(XV

,2,1,,,, GrGriGi
p

GbestiGiGi FF −+−+= (8)

where Xr1,G, Xr2,G and Xp
best,G are selected from the current

population. At each generation, the scale factor Fi and
crossover probability CRi of each individual Xi is
independently generated as

)1.0,(randc FiiF μ= (9)

)1.0,(randn CRiiCR μ= (10)

As shown in eqns. (9) and (10), the parameters F and CR
corresponding to each individual are sampled using Cauchy
and Normal distributions, respectively. Then mean values μF
and μCR are initialized to 0.5 and are updated at the end of
each generation as

)(mean .).1(FLFF Scc +−= μμ (11)

)(mean .).1(CRACRCR Scc +−= μμ (12)

where c is a positive constant between 0 and 1. The terms
meanA(.) and meanL(.) denote the arithmetic mean and
Lehmer mean [16], respectively. SF and SCR denote the sets of
mutation factors and crossover probabilities, respectively that
produced successful trial vectors in the previous generation.

During the past decade, hybridization of EAs has gained
significance, due to ability to complement each other’s
strengths and overcome the drawbacks of the individual
algorithms. In [31], the authors proposed a DE parameter
adaptation technique based on harmony search (HS)
algorithm in which a group of DE control parameter
combinations are randomly initialized. The randomly
initialized DE parameter combinations form the initial
harmony memory (HM) of the HS algorithm. Each
combination of the parameters present in the HM is evaluated
by testing on the DE population during the evolution. Based
on the effectiveness of the DE parameter combinations
present in HM, the HS algorithm evolves the parameter
combinations. At any given point of time during the evolution
of the DE population, the HM contains an ensemble of DE
parameters that suits the evolution process of the DE
population.

B. Gaussian Adaptation
Estimation of Distribution Algorithms (EDAs) such as

Covariance Matrix Adaptation (CMA) [17] and Gaussian
Adaptation (GaA) [18] belong to the class of optimization
algorithms that rely on probabilistic models and do not use
variation operators such as crossover or mutation. In EDAs,
the most promising solutions of the last generation are
selected and a probability distribution model is built using the
information provided by the promising solutions. The
solutions in the next solution are sampled from the built
model.

EDAs rely on the iterative random sampling and updating
the probability distribution model in order to approximate the
desired result. Therefore, the process in which the random
samples are generated plays a crucial role. In continuous
spaces, typical EDAs employ a multivariate Gaussian
distribution as the probability density model [32]. Continuous
optimization methods, such as, GaA [18], and Evolution

1762

Strategies (ES) [17] use Gaussian sampling to generate
candidate solutions from the target distribution and evaluates
the target distribution at these sample points.

 Covariance Matrix Adaptation (CMA-ES) [6] and GaA
algorithm [18] constantly adapt the covariance matrix of the
sampling distribution based on the previously accepted
samples. In CMA-ES covariance adaptation is employed to
increase the likelihood of generating successful mutations
while GaA adapts the covariance to maximize the entropy of
the search distribution under the constraint that acceptable
search points are found with a predefined, fixed hitting
probability.

Gaussian Adaptation (GaA) is a stochastic process that
adapts a Gaussian distribution to a region or set of feasible
points in parameter space. As a result of the adaptation, GaA
becomes a maximum dispersion process extending the
sampling over the largest possible volume in parameter space
while keeping the probability of finding feasible points at a
suitable level. GaA is based on the principle of maximum
entropy and tries to maximize the entropy H of a multivariate
Gaussian distribution N(m,C) given the mean (m) and the
covariance (C) information.

)det()2(log(CeH Dπ= (13)

From eq. (13), it can be observed that the entropy can be
maximized by maximizing the determinant of the covariance
matrix.

The GaA algorithm starts with mean of a multivariate
Gaussian distribution (m(0)) and an initial point (x(0)). In
iteration (g + 1), a new solution is sampled as:

)()()()()1(ggggg Qrmx η+=+ (14)

where η(g) ∼ N(0, I). Q(g) is the normalized square root of C(g)
and is obtained by following decomposition.

TggTggg QQrQrQrC))(().)(.()()(2)()()(== (15)

where r is the scalar step size.

In order to minimize a real-valued objective function f(x),
GaA uses a fitness dependent acceptance threshold cT which
is monotonically lowered until some convergence criteria are
met. If the objective value of the newly sampled solution in
eq. (14) is less than cT, then the mean (m), covariance (C) and
the scale factor (r) are updated as follows

)1()()1(1)11(++ +−= g

m

g

m

g x
N

m
N

m (16)

 T

C

g

C

g xx
N

C
N

C))((1)11()()1(ΔΔ+−=+ (17)

)()1(. g

e
g rfr =+ (18)

where
fe > 1 is the expansion factor.

Nm and NC are the weighting factors
Δx = (x(g+1) − x(g))

If the objective value of the newly sampled solution x(g+1) is

greater than the threshold then the mean and covariance are
not adapted but the step size is reduced as

)()1(. g

c
g rfr =+ (19)

where fc < 1 is the contraction factor.

In order to use GaA for optimization, the acceptance
threshold cT is continuously lowered as follows.

)(1)11()1()()1(++ +−= g

T

g
T

T

g
T xf

N
c

N
c (20)

where NT is the weighting factor. The fitness-dependent
update of cT makes the algorithm invariant to the linear
transformations in the objective function.

 TABLE III: Gaussian Adaptation Algorithm
Step 1 Set generation number G = 0. Initialize m, C, r and

cT.

Step 2 WHILE stopping criterion is not satisfied

DO

 Step 2.1 Sample a new solution using eq. (14)

 Step 2.2 Evaluate and Check if the objective value of

the newly sampled solution is less the threshold cT

 Step 2.3 Update m, C, r and cT

 Step 2.4 Increment the generation count G = G + 1

Step 3 END WHILE

III. GAUSSIAN ADAPTATION BASED PARAMETER
ADAPTATION FOR DIFFERENTIAL EVOLUTION (GAPADE)

As highlighted in the previous section, depending on the
nature of problem (unimodal or multimodal) and available
computation resources, different optimization problems
require different mutation and crossover strategies combined
with different parameter values to obtain optimal
performance. In addition, to solve a specific problem,
different mutation and crossover strategies with different
parameter settings may be better during different stages of the
evolution than a single set of strategies with unique parameter
settings as in the conventional DE. Motivated by these
observations, many adaptive and self-adaptive parameter
adaptive techniques have been proposed [10-16]. However,
most of the adaptive techniques try to adapt the control
parameters (F and CR) individually. For instance, in JADE
[16], the mutation factors and crossover probabilities are
evolved based on their historical record of success. F and CR

1763

values corresponding to the individuals in the current
generation are generated from a corresponding mean values
using Cauchy and Gaussian distributions, respectively. After
the selection process, the F and CR values that were able to
produce successful trial vectors are collected. Then the
respective mean values of F and CR are updated using
Lehmer and arithmetic means respectively. In other words,
the F and CR are generated (see eq. (9) and (10)) and adapted
(see eq. (11) and (12)) individually. Therefore, JADE does
not consider the inter-correlation between the two parameters.

However, in [10], it has been demonstrated that
performance of DE depends on the combination of F and CR.
In other words, the parameters F and CR on which the
performance of DE depends are inter-correlated. Therefore,
adapting the two parameters individually may not result in the
optimal performance of the DE algorithm.

In this paper, we present a parameter adaptation technique
which considers the inter-correlation between the two
parameters. The parameters evolve based on the Gaussian
adaptation process which is used for parameter optimization.

As most of the adaptation algorithms, the proposed
GaAPADE adapts the scale factor F and the crossover
probability CR which mainly affect the performance of DE.
In GaAPADE, we employ GaA on the bi-dimensional
continuous space composed by F and CR. Therefore, the data
structures employed by GaAPADE are the mean vector m
and the covariance matrix C. The mean vector (m) comprises
of the mean values of F and CR while the covariance matrix
(C) comprises the inter-dependencies between the two
parameters.

 As in JADE [16], every DE individual is assigned with a
personal version of the parameters, i.e. there is a couple Fi,
CRi for each individual i sampled using eq. (14). In other
words, every time that these parameters are needed (for
mutation and crossover in DE), they are sampled from the
multivariate Gaussian distribution identified by m and C. In
the current work, the mean vector m is initialized to [0.5, 0.5]
and covariance matrix (C) is set to an identity matrix.
 During every generation of the DE evolution, the Fi and
CRi values corresponding to the individuals in the population
are generated using the mean (m) and the covariance matrix
(C) using equation (14). Each individual in the DE algorithm
uses the Fi and CRi values to produce the mutation vectors
and consequently trial vectors. The combination of Fi and CRi
values that resulted in an offspring that produces maximum
improvement is used to update the mean (m) and the
covariance (C). The continuous updating of m and C by the
parameter combinations that produced better solutions will
help the parameter search to move to the regions where more
suitable combination of the parameters can be generated. The
limits of the F and CR are set to be (0, 1.0] and [0, 1.0],
respectively.

TABLE III: Outline of GaAPADE
Step 1 Set the generation count G = 0, and randomly

initialize a population of NP individuals. Initialize m, C,
r and cT.

Step 2 WHILE stopping criterion is not satisfied

DO
Step 2.1 Sample new parameter combinations using
eq. (14)

 Step 2.2 Mutation
 Step 2.3 Crossover

 Step 2.4 Selection
 Step 2.5 Check if the improvement by the best
parameter combination is greater than the threshold cT
 Step 2.6 Update m, C, r and cT
 Step 2.7 Increment the generation count G = G + 1

Step 3 END WHILE

IV. EXPERIMENTAL SETUP AND RESULTS
We evaluated the performance of the proposed GaAPADE

algorithm on a set of 30 test problems designed for CEC 2014
[33]. Out of the 30 benchmark problems, problems 1-3 are
unimodal functions, 4-16 are multimodal functions, 17-22 are
hybrid functions and 22-30 are composite functions. Each of
the 30 test problems is scalable. The algorithm is tested on the
10D, 30D, 50D and 100D versions of the test problems.
However, in the current version the results of 10D and 30D
are presented. The evaluation criteria and testing environment
are as follows:

Test Problems: 30 Minimization Problems

Dimensions: D = 10, 30, 50, 100

Search Range: [-100,100]D

Runs / problem: 51

Maximum Number of Function Evaluations: 10000*D

(100000 for 10D; 300000 for 30D; 500000 for 50D; 1000000

for 100D)

Termination Criteria: When maximum number of function

evaluations is reached.

 In the present work, we employ the DE/current-to-pbest
mutation strategy along with the binomial crossover. As
mentioned above, the proposed adaptation scheme works in
the bi-dimensional parametric space (F and CR). In the
proposed algorithm, we initially sample 20D solution vectors,
out of which 100 individuals are selected as the population
members at the start of every generation. After the generation
the solution vectors are replaced. In addition to the
parameters of the DE algorithms, the parameters of the GaA
algorithm are set to the same values that are proposed in [18].

Tables IV and V show the performances of the proposed
GaAPADE algorithm on 10D and 30D versions of the
benchmark problems, respectively. The performance of the
algorithm on each instance of the test problem is reported in
terms of best, worst, median, mean and standard deviation
values of the errors between the true optimal value and the
obtained objective value.

1764

From the results, we could observe that, for 10D problems,
the proposed GaAPADE algorithm can find the global
optimal solution for unimodal functions 1-3 with 100%
success rate. The algorithm is also able to solve the
multimodal function 8 with 100% success rate. In case of
multimodal functions 4, 6 and 7, the algorithm is able to reach
the optimal solution in only few instances.
 In the case of 30D problems, as well the proposed
algorithm can solve the unimodal function with100% success
rate. In the case of multimodal problems, functions 4, 6 and 7
can be solved during some of runs. However, the algorithm
fails to solve the 30D version of the multimodal function 8.
 However, the algorithm fails to find the optimal solution
over the 51 runs for the 10D and 30D versions of functions 5
and 9 – 30 due to the high multi-modality and parameter
dependencies.

The algorithm complexity is calculated for 10D, 30D, 50D
and 100D versions of function 18 based on the criteria
provided in the technical report [33]. The algorithmic
complexity increases with the increase in the problem
dimensionality as shown in Table VI. The proposed
algorithm is simulated in the Matlab environment and is
implemented on system with the following configuration.

System Configuration

Intel ® Core ™ i5-3570 CPU 3.40 GHz
8.00 GB RAM

Windows 7 Enterprise
Language: Matlab

V. CONCLUSION
In this paper, we proposed a Gaussian Adaptation based

parameter adaptation technique for DE. In the proposed
GaAPADE, GaA works on the bi-dimensional parameter
space (F and CR). The use of a multivariate probability
distribution for the learning/sampling of DE parameters
allows discovering and managing the parameters
inter-correlations in a natural way. The proposed adaptation
technique is evaluated on the benchmark problem set
designed for CEC 2014.

ACKNOWLEDGMENT
This research was supported by the Original Technology

Research Program for Brain Science through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2013034988)

The research was supported by 'Software Convergence
Technology Development Program', through the Ministry of
Science, ICT and Future Planning (S1002-13-1014).

REFERENCES

[1] R. Joshi and A. C. Sanderson, "Minimal representation multisensor
fusion using differential evolution," IEEE Transactions on Systems,
Man, and Cybernetics Part A:Systems and Humans., vol. 29, pp. 63-76,
1999.

[2] R. Mallipeddi, J. P. Lie, S. G. Razul, P. N. Suganthan, and C. M. S. See,
"Robust Adaptive Beamforming Based on Covariance Matrix

Reconstruction for Look Direction Mismatch," Progress in
Electromagnetic Research Letters, vol. 25, pp. 37-46, 2011.

[3] M. K. Venu, R. Mallipeddi, and P. N. Suganthan, "Fiber Bragg grating
sensor array interrogation using differential evolution,"
Optoelectronics and Advanced Materials - Rapid Communications,
vol. 2, pp. 682-685, 2008.

[4] S. Das and A. Konar, " Automatic image pixel clustering with an
improved differential evolution " Applied Soft Computing, vol. 9, pp.
226-236 JAN 2009

[5] R. Storn, "Differential evolution design of an IIR-filter " presented at
the IEEE International Conference on Evolutionary Computation 1996.

[6] R. Mallipeddi, S. Jeyadevi, P. N. Suganthan, and S. Baskar, "Efficient
constraint handling for optimal reactive power dispatch problems,"
Swarm and Evolutionary Computation, vol. 5, pp. 28-36, 2012.

[7] R. Gämperle, S. D. Müller, and P. Koumoutsakos, "A Parameter Study
for Differential Evolution," presented at the Advances in Intelligent
Systems, Fuzzy Systems, Evolutionary Computation, Interlaken,
Switzerland, 2002.

[8] J. Liu and J. Lampinen, "On setting the control parameter of the
differential evolution method," in Proc. 8th Int, Conf. Soft Computing
(MENDEL 2002), 2002, pp. 11-18.

[9] Z. Jingqiao and A. C. Sanderson, "An approximate gaussian model of
Differential Evolution with spherical fitness functions," in
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 2007,
pp. 2220-2228.

[10] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
"Differential evolution algorithm with ensemble of parameters and
mutation strategies," Applied Soft Computing, vol. 11, pp. 1679-1696,
2011.

[11] J. Brest, S. Greiner, B. Boscovic, M. Mernik, and V. Zumer,
"Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems," IEEE
Transactions on Evolutionary Computation, vol. 10 pp. 646-657 DEC
2006 2006.

[12] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, "Self-adaptive
Differential Evolution," in Computational Intelligence and Security,
PT 1, Proceedings Lecture Notes in Artificial Intelligence, 2005, pp.
192-199.

[13] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential Evolution
Algorithm with Strategy Adaptation for Global Numerical
Optimization," IEEE Transactions on Evolutionary Computation, vol.
13, pp. 398-417, April 2009.

[14] D. Zaharie, "Control of Population Diversity and Adaptation in
Differential Evolution Algorithms," In: Proceedings of the 9th
International Conference on Soft Computing, Brno 41-46, 2003.

[15] J. Tvrdik, "Adaptation in differential evolution: A numerical
comparison," Applied Soft Computing, vol. 9, pp. 1149-1155 JUN
2009.

[16] J. Zhang, "JADE: Adaptive Differential Evolution with Optional
External Archive," IEEE Transactions on Evolutionary Computation,
vol. 13, pp. 945-958, October 2009.

[17] A. Auger and N. Hansen, "A Restart CMA Evolution Strategy With
Increasing Population Size," presented at the IEEE Congress on
Evolutionary Computation, 2005.

[18] C. Müller and I. Sbalzarini, "Gaussian Adaptation Revisited – An
Entropic View on Covariance Matrix Adaptation," in Applications of
Evolutionary Computation. vol. 6024, C. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcazar, C.-K. Goh, J. Merelo, F. Neri,
M. Preuß, J. Togelius, and G. Yannakakis, Eds., ed: Springer Berlin
Heidelberg, 2010, pp. 432-441.

[19] R. Storn and K. Price, "Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1997.

[20] R. Storn, "On the Usage of Differential Evolution for Function
Optimization " presented at the Biennial Conference of the North
American Fuzzy Information Processing Society (NAFIPS), Berkeley,
1996.

[21] A. Iorio and X. Li, "Solving Rotated Multi-objective Optimization
Problems Using Differential Evolution," presented at the Australian
Conference on Artificial Intelligence, Cairns, Australia., 2004.

[22] S. Das, A. Konar, and U. K. Chakraborty, "Two Improved Differential
Evolution Schemes for Faster Global Search," Proceedings of the 2005
conference on Genetic and evolutionary computation, pp. 991-998,
2005.

1765

[23] J. Lampinen and I. Zelinka, "On Stagnation of the Differential
Evolution Algorithm," Proceedings of MENDEL 2000, 6th
International Mendel Conference on Soft Computing, pp. 76-83, 2000.

[24] K. V. Price, R. M. Storn, and J. A. Lampinen, Eds., Differential
Evolution : A Practical Approach to Global Optimization (Natural
Computing Series. Berlin: Springer, 2005, p.^pp. Pages.

[25] R. Storn and K. Price, "Differential Evolution : A Simple Evolution
Strategy for Fast Optimization," Dr. Dobb's Journal, vol. 22, pp. 18-24,
April 1997.

[26] J. Rönkkönen, S. Kukkonen, and K. V. Price, "Real-parameter
optimization with differential evolution," in 2005 IEEE Congress on
Evolutionary Computation, IEEE CEC 2005. Proceedings, 2005, pp.
506-513.

[27] H. A. Abbass, "The Self-Adaptive Pareto Differential Evolution
Algorithm," Proceedings of the IEEE Congress on Evolutionary
Computation (CEC2002), vol. 1, pp. 831-836, 2002.

[28] J. Liu and J. Lampinen, "A fuzzy adaptive differential evolution
algorithm," Soft Computing, vol. 9, pp. 448-462, Jun 2005.

[29] D. Zaharie and D. Petcu, "Adaptive Pareto differential evolution and its
parallelization," in Proc. of 5th International Conference on Parallel
Processing and Applied Mathematics, Czestochowa, Poland, 2003, pp.
261-268.

[30] J. Teo, "Exploring dynamic self-adaptive populations in differential
evolution," Soft Computing, vol. 10, pp. 673-686, 2006.

[31] R. Mallipeddi, "Harmony Search Based Parameter Ensemble
Adaptation for Differential Evolution," Journal of Applied
Mathematics, vol. 2013, p. 12, 2013.

[32] B. Yuan and M. Gallagher, "Experimental Results for the Special
Session on Real-Parameter Optimization at CEC 2005: A Simple,
Continuous EDA," presented at the IEEE Congress on Evolutionary
Computation, 2005.

[33] J. J. Liang, B. Y. Qu, and P. N. Suganthan, "Problem Definitions and
Evaluation Criteria for the CEC 2014 Special Session and Competition
on Single Objective Real-Parameter Numerical Optimization,"
Nanyang Techological University, Singapore2014.

Table IV. Results for 10D

Function Best Worst Median Mean Std.
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 3.48E+01 3.48E+01 2.82E+01 1.35E+01
5 7.24E+00 2.00E+01 2.00E+01 1.96E+01 1.85E+00
6 0 1.83E+00 0 1.40E-01 3.64E-01
7 0 2.22E-02 1.92E-03 3.53E-03 4.41E-03
8 0 0 0 0 0
9 1.86E+00 5.18E+00 0 3.42E+00 8.75E-01
10 2.37E-02 1.21E+01 3.40E+00 6.00E-01 2.34E+00
11 2.40E+00 3.85E+02 1.38E+02 1.60E+02 1.10E+02
12 6.43E-02 2.37E-01 1.50E-01 1.47E-01 4.09E-02
13 3.05E-02 9.67E-02 6.57E-02 6.54E-02 1.34E-02
14 3.92E-02 2.06E-01 8.86E-02 9.32E-02 3.22E-02
15 3.78E-01 7.99E-01 5.76E-01 5.83E-01 9.74E-02
16 9.00E-01 2.50E+00 2.01E+00 2.01E+00 3.03E-01
17 2.64E+00 3.01E+01 8.50E+00 9.09E+00 4.79E+00
18 1.50E-02 5.45E-01 1.85E-01 2.09E-01 1.49E-01
19 8.90E-02 1.07E+00 2.20E-01 2.60E-01 1.52E-01
20 1.63E-01 8.44E-01 4.25E-01 4.33E-01 1.48E-01
21 2.89E-02 1.16E+00 4.50E-01 4.52E-01 2.41E-01
22 7.41E-01 5.66E+00 3.32E+00 3.18E+00 1.14E+00
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 0
24 1.00E+02 1.11E+02 1.09E+02 1.08E+02 2.08E+00
25 1.07E+02 2.01E+02 2.01E+02 1.68E+02 4.11E+01
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.74E-02
27 1.44E+00 4.00E+02 2.10E+00 9.56E+01 1.63E+02
28 3.69E+02 4.81E+02 3.69E+02 3.84E+02 3.36E+01
29 2.22E+02 2.24E+02 2.22E+02 2.22E+02 6.81E-01
30 4.54E+02 5.50E+02 4.62E+02 4.68E+02 1.90E+01

Table V. Results for 30D

1766

Function Best Worst Median Mean Std.
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 1.95E-02 0 3.82E-04 2.73E-03
5 2.00E+01 2.00E+01 2.00E+01 2.00E+01 4.26E-03
6 0 6.39E+00 1.79E-06 5.92E-01 1.06E+00
7 0 0 0 0 0
8 1.15E-03 4.33E+00 1.32E+00 1.28E+00 8.72E-01
9 1.18E+01 3.68E+01 1.72E+01 1.70E+01 3.90E+00
10 2.47E+00 4.53E+01 7.79E+00 1.00E+01 7.38E+00
11 1.20E+03 2.58E+03 1.99E+03 1.96E+03 3.41E+02
12 2.63E-02 4.99E-01 2.02E-01 2.10E-01 1.08E-01
13 8.55E-02 1.86E-01 1.40E-01 1.43E-01 2.14E-02
14 1.30E-01 2.65E-01 2.04E-01 2.03E-01 3.08E-02
15 2.51E+00 4.11E+00 3.03E+00 3.14E+00 4.14E-01
16 8.18E+00 1.08E+01 9.95E+00 9.83E+00 5.53E-01
17 3.98E+01 5.56E+02 1.60E+02 1.70E+02 1.19E+02
18 3.30E+00 2.31E+01 7.23E+00 8.77E+00 4.11E+00
19 2.36E+00 5.60E+00 3.95E+00 3.96E+00 7.67E-01
20 1.93E+00 1.84E+01 5.45E+00 5.95E+00 3.16E+00
21 1.47E+00 2.83E+02 1.35E+02 1.17E+02 8.26E+01
22 2.24E+01 1.57E+02 3.58E+01 7.40E+01 5.68E+01
23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 0
24 2.22E+02 2.26E+02 2.24E+02 2.24E+02 8.64E-01
25 2.03E+02 2.03E+02 2.03E+02 2.03E+02 7.19E-02
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.40E-02
27 3.00E+02 4.01E+02 3.00E+02 3.19E+02 3.46E+01
28 7.68E+02 8.94E+02 8.46E+02 8.38E+02 2.96E+01
29 7.13E+02 7.35E+02 7.16E+02 7.17E+02 3.99E+00
30 4.55E+02 4.47E+03 1.32E+03 1.52E+03 8.02E+02

Table VI. Computational Complexity

Dimension T0 T1 T’2 (T’2 – T1)/T0
D = 10 1.248E-01 2.3400E-01 2.4087E+00 1.7425E+01
D = 30 1.248E-01 9.3600E-01 7.2728E+00 5.0776E+01
D = 50 1.248E-01 2.0748E+00 1.6514E+01 1.1569E+02

D = 100 1.248E-01 6.5676E+00 2.3887E+01 1.3878E+02

1767

