
 
 

 

  

Abstract— Differential Evolution (DE), a global optimization 
algorithm based on the concepts of Darwinian evolution, is 
popular for its simplicity and effectiveness in solving numerous 
real-world optimization problems in real-valued spaces. The 
effectiveness of DE is due to the differential mutation operator 
that allows DE to automatically adjust between the 
exploration/exploitation in its search moves. However, the 
performance of DE is dependent on the setting of control 
parameters such as the mutation factor and the crossover 
probability. Therefore, to obtain optimal performance 
preliminary tuning of the numerical parameters, which is quite 
timing consuming, is needed. Recently, different parameter 
adaptation techniques, which can automatically update the 
control parameters to appropriate values to suit the 
characteristics of optimization problems, have been proposed. 
However, most of the adaptation techniques try to adapt each of 
the parameter individually but do not take into account 
interaction between the parameters that are being adapted. In 
this paper, we introduce a DE self-adaptive scheme that takes 
into account the parameters dependencies by means of a 
multivariate probabilistic technique based on Gaussian 
Adaptation working on the parameter space. The performance 
of the DE algorithm with the proposed parameter adaptation 
scheme is evaluated on the benchmark problems designed for 
CEC 2014.  
 

I. INTRODUCTION 
IFFRENTIAL Evolution (DE) [1], is one of the most 
successful stochastic search technique for numerical 
optimization. Similar to most of the stochastic 

algorithms that are based on the principles of Darwinian 
evolution, DE makes use of genetic operators such as 
mutation, crossover and selection. However, the effectiveness 
of DE can be attributed to the differential mutation operator 
through which the algorithm can self-adapt its search to suit 
the landscape of the optimization problem at hand. The 
effectiveness of DE has been demonstrated in many 
application fields such as mechanical engineering [1], 
communication [2], optics [3], pattern recognition [4], signal 
processing [5] and power systems [6].  
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However, experimentally [7, 8] and theoretically [9] it has 
been demonstrated that the performance of DE is sensitive to 
the mutation strategy, crossover strategy and control 
parameters such as population size (NP), crossover rate (CR) 
and scale factor (F). In other words, the best combination of 
strategies and their associated control parameters can be 
different for different optimization problems. In addition, for 
the same optimization problem the best combination can vary 
depending on the available computational resources and 
accuracy requirements [10]. Therefore, to successfully solve 
a specific optimization problem, it is necessary to perform 
trial-and-error search for the most appropriate combination of 
strategies and their associated parameter values. However, 
the trial-and-error search process is time-consuming and 
incurs high computational costs. Therefore, to overcome the 
time consuming trial-and-error procedure different adaptation 
schemes [11-15] have been proposed in the literature.  

From the different adaptive or self-adaptive parameter 
control techniques proposed [11-15], it can be observed that 
a well-designed parameter adaptation scheme can enhance 
the robustness of an algorithm by dynamically adapting the 
parameters to the characteristic of different fitness 
landscapes. In other words, a well-designed parameter 
adaptation technique can effectively solve various 
optimization problems without the need for the trial and 
error process of parameter tuning. In addition, the 
convergence rate can be improved if the control parameters 
are adapted to appropriate values at different evolution 
stages of a specific problem. 

Most of the DE parameter adaptation techniques [11-15] 
employ explorative mutation strategies to obtain better 
performance. However, in [16], the authors proposed a 
parameter adaptation method with a greedy mutation strategy 
and binomial crossover strategy as search basis. The greedy 
mutation strategy ‘‘DE/current-to-pbest’’ utilizes the 
information of multiple best solutions to balance the 
greediness of the mutation and diversity of the population. 
The parameter adaptation technique is implemented by 
evolving the mutation factors and crossover probabilities 
based on their historical record of success. The authors claim 
the parameter adaptation to increase the convergence rate 
while maintaining the reliability of the algorithm at a high 
level.  

From the experimental [7, 8] and theoretical [9], it has been 
found that the performance of the DE algorithm depends on 
the appropriate combination of the mutation scale factor and 
the crossover probability. However, most of the parameter 
adaptation techniques proposed in the literature [11-16], 
consider the adaptation of the two different parameter 
individually but do not consider the interaction between the 
two parameters. In other words, they do not take into account 
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the side effects introduced by changing the values of the 
parameters individually. 

Estimation of Distribution Algorithms (EDAs) such as 
Covariance Matrix Adaptation (CMA) [17] and Gaussian 
Adaptation (GaA) [18], based on probabilistic models, 
consider the dependencies between the different variables 
during the evolution. In other words, CMA and GaA are good 
at handling the inter-correlations among the problem 
variables.  

In this paper, we propose a parameter adaptation technique 
based on GaA to manage the dependencies between the two 
parameters (mutation scale factor, F and the crossover 
probability, CR) considered. The proposed adaptation 
technique is used to improve the performance of DE 
algorithm and is referred to as GaAPADE. 

The reminder of this paper is organized as follows: Section 
II presents a literature survey on 1) DE and different adaptive 
DE variants, and 2) Gaussian Adaptation. Section III presents 
the proposed GaAPADE algorithm. Section IV presents the 
experimental results and discussions while Section V 
concludes the paper. 

II. LITERATURE REVIEW 

A. Differential Evolution 
Differential Evolution (DE) is a real-coded global 

optimization algorithm over continuous spaces [19].  DE, a 
parallel direct search method, utilizes NP D-dimensional 
parameter vectors, { } NPixx D

GiGiGi ,...,1 , ,...,X ,
1
,, ==  to encode 

the candidate solutions. The initial set of parameter vectors 
referred to as population are uniformly sampled within the 
search space constrained by the minimum and maximum 
parameter bounds { } ,...,X min

1
minmin

Dxx=  and { } ,...,X max
1
maxmax

Dxx= .  

1) Mutation operation: During every generation G, 
corresponding to each individual Xi,G in the current 
population, referred to as target vector,  a mutant vector Vi,G is 
produced by the mutation operation. The most commonly 
employed mutation strategies are:  
 
“DE/best/1” [20]   )XX.(XV

21 ,Gr,Grbest,Gi,G iiF −+=                (1) 

“DE/best/2 [20] )XX.()XX.(XV
4321 ,Gr,Gr,Gr,Grbest,Gi,G iiii FF −+−+=    (2) 

“DE/rand/1” [20]: )XX.(XV
321 ,Gr,Gr,Gri,G iii F −+=     (3) 

“DE/rand/2”[13] )XX.()XX.(XV
54321 ,Gr,Gr,Gr,Gr,Gri,G iiiii FF −+−+=       (4) 

“DE/current-to-rand/1” [21] 
   )XX.()XX.(XU

321 ,Gr,Gri,G,Gri,Gi,G iii FK −+−+=         (5)
                                      

 

The indices iiiii rrrrr 54321 ,,,,  are mutually exclusive integers 
randomly generated within the range [1, NP] and are different 
from the index i. The scale factor F is a positive value for 
scaling the difference vector while K is randomly chosen 
within the range [0, 1]. Xbest,G is the individual vector with the 
best fitness value in the population at generation G.  

2) Crossover operation: After mutation, crossover operation 
is applied to each pair of the target vector Xi,G and its 

corresponding mutant vector Vi,G to generate a trial vector 
Ui,G. In DE, the most commonly used crossover is the 
binomial (uniform) crossover defined as follows [19]: 
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In (6), the crossover rate CR is a user-specified constant 
within the range [0, 1] while randj  is a randomly chosen 
integer in the range [1, D].  

3) Selection operation: After the crossover, the trial vectors 
are evaluated to obtain the objective function and selection 
operation is performed. The objective function value of each 
trial vector f(Ui,G) is compared to that of its corresponding 
target vector f(Xi,G) in the current population. If the trial 
vector is better than the corresponding target vector, the trial 
vector will replace the target vector and enter the population 
of the next generation. In a minimization problem, the 
selection operation can be expressed as follows: 
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In DE, mutation, crossover and selection are repeated 
generation after generation until a termination criterion is 
satisfied. The algorithmic description of DE is summarized in 
Table I.  

            TABLE I: Differential Evolution Algorithm  
Step 1 Set the generation number G = 0, and randomly 

initialize a population of NP individuals. 

Step 2 WHILE stopping criterion is not satisfied  

DO 

         Step 2.1 Mutation  

 Step 2.2 Crossover 

         Step 2.3 Selection 

         Step 2.4 Increment the generation count G = G + 1 

Step 3 END WHILE 

 
Recently, DE has attracted much attention and has been 

successfully applied to solve many real-world problems 
[1-6]. However, the performance of the conventional DE 
algorithm depends on the chosen mutation strategy and the 
associated control parameters. In addition, as complexity of 
the optimization problem increases the performance of DE 
algorithm becomes more sensitive to the strategy and the 
associated parameter values [7]. Therefore, inappropriate 
choice of mutation and crossover strategies and their 
associated parameters may lead to premature convergence, 
stagnation or wastage of computational resources [7, 14, 
22-24]. In literature, various empirical guidelines were 
suggested for choosing the appropriate strategies and control 
parameter settings depending on the characteristics of the 
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optimization problems [7, 19, 20, 25, 26]. However, 
depending on the complexity of the optimization problem, 
choosing an appropriate mutation strategy and control 
parameters is not straight forward due to the complex 
interaction of control parameters with the DE’s performance 
[11]. In addition, the manual setting and/or tuning of DE 
strategies and parameters based on the guidelines result in 
various conflicting conclusions, which lack sufficient 
justifications. Therefore, to avoid the tuning of parameters by 
trial-and-error procedure, various adaptive techniques have 
been proposed [14, 22, 27-29].  

Among the three parameters (NP, F and CR), most of the 
parameter adaptive techniques except  [30], set the population 
size (NP) to a predefined value based on the dimensionality of 
the problem. In [13], a self-adaptive DE algorithm (SaDE) 
was proposed in which the mutation strategies and the 
respective control parameter (CR) are self-adapted based on 
their previous experiences of generating promising solutions. 
The scale factor, F was randomly generated with a mean and 
standard deviation of 0.5 and 0.3 respectively. In [12], the 
authors introduced a self-adaptation scheme (SDE) in which 
CR is generated randomly for each individual using a normal 
distribution N(0.5,0.15), while scale factor F is adapted 
analogous to the adaptation of crossover rate CR in [27].  
Therefore, SaDE [13] considers the adaptation of crossover 
probability (CR) only while SDE [12] considers the 
adaptation of scale factor (F) only. 

In [28], the authors proposed FADE in which the control 
parameters F and CR are adapted based on fuzzy logic 
controllers whose inputs are the relative function values and 
individuals of successive generations. FADE outperformed 
the conventional DE on higher dimensional problems. In 
[11], a self-adaptation scheme (JDE) was proposed, in which 
control parameters F and CR are encoded into the individuals 
and  are adjusted depending on the parameters 1τ  and 2τ . In 
JDE, F and CR are initially assigned to 0.5 and 0.9, 
respectively. In the consecutive iterations, F and CR are 
reinitialized if a uniformly generated random number rand is 
less than 1τ  and 2τ  respectively.  

Among the different adaptive DE variants, adaptive 
differential evolution proposed in [16], referred to as JADE, 
is good in terms of convergence speed and robustness on a 
variety of optimization problems. JADE [16] implements a 
mutation strategy “DE/current-to-pbest” as a generalization 
to the classic “DE/current-to-best” strategy. Unlike the 
classic mutation strategy which uses the current best 
individual, “DE/current-to-pbest” utilizes the information 
present in p fitter individuals of the current population. The 
use of multiple solutions helps in balancing the greediness of 
the mutation and the diversity of the population. In JADE, the 
control parameters (F and CR) are updated in an adaptive 
manner in order to alleviate the trial and error search. In 
JADE, using the “DE/current-to-pbest”, a mutation vector 
corresponding to the individual Xi in generation G is 
generated as: 

 
      )XX()XX(XV

,2,1,,,, GrGriGi
p

GbestiGiGi FF −+−+=        (8) 

where Xr1,G, Xr2,G and Xp
best,G are selected from the current 

population. At each generation, the scale factor Fi and 
crossover probability CRi of each individual Xi is 
independently generated as  
 
                      )1.0,(randc FiiF μ=                                   (9) 

                    )1.0,(randn CRiiCR μ=                                  (10) 

As shown in eqns. (9) and (10), the parameters F and CR 
corresponding to each individual are sampled using Cauchy 
and Normal distributions, respectively. Then mean values μF 
and μCR are initialized to 0.5 and are updated at the end of 
each generation as 
 
                )(mean .).1( FLFF Scc +−= μμ                  (11) 

                 )(mean .).1( CRACRCR Scc +−= μμ                (12) 

where c is a positive constant between 0 and 1.  The terms 
meanA(.) and meanL(.) denote the arithmetic mean and 
Lehmer mean [16], respectively. SF and SCR denote the sets of 
mutation factors and crossover probabilities, respectively that 
produced successful trial vectors in the previous generation. 

During the past decade, hybridization of EAs has gained 
significance, due to ability to complement each other’s 
strengths and overcome the drawbacks of the individual 
algorithms.  In [31], the authors proposed a DE parameter 
adaptation technique based on harmony search (HS) 
algorithm in which a group of DE control parameter 
combinations are randomly initialized. The randomly 
initialized DE parameter combinations form the initial 
harmony memory (HM) of the HS algorithm. Each 
combination of the parameters present in the HM is evaluated 
by testing on the DE population during the evolution. Based 
on the effectiveness of the DE parameter combinations 
present in HM, the HS algorithm evolves the parameter 
combinations. At any given point of time during the evolution 
of the DE population, the HM contains an ensemble of DE 
parameters that suits the evolution process of the DE 
population. 

B. Gaussian Adaptation 
Estimation of Distribution Algorithms (EDAs) such as 

Covariance Matrix Adaptation (CMA) [17] and Gaussian 
Adaptation (GaA) [18] belong to the class of optimization 
algorithms that rely on probabilistic models and do not use 
variation operators such as crossover or mutation. In EDAs, 
the most promising solutions of the last generation are 
selected and a probability distribution model is built using the 
information provided by the promising solutions. The 
solutions in the next solution are sampled from the built 
model.  

EDAs rely on the iterative random sampling and updating 
the probability distribution model in order to approximate the 
desired result. Therefore, the process in which the random 
samples are generated plays a crucial role. In continuous 
spaces, typical EDAs employ a multivariate Gaussian 
distribution as the probability density model [32]. Continuous 
optimization methods, such as, GaA [18], and Evolution 
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Strategies (ES) [17] use Gaussian sampling to generate 
candidate solutions from the target distribution and evaluates 
the target distribution at these sample points.  

 Covariance Matrix Adaptation (CMA-ES) [6] and GaA 
algorithm [18] constantly adapt the covariance matrix of the 
sampling distribution based on the previously accepted 
samples. In CMA-ES covariance adaptation is employed to 
increase the likelihood of generating successful mutations 
while GaA adapts the covariance to maximize the entropy of 
the search distribution under the constraint that acceptable 
search points are found with a predefined, fixed hitting 
probability.  

Gaussian Adaptation (GaA) is a stochastic process that 
adapts a Gaussian distribution to a region or set of feasible 
points in parameter space. As a result of the adaptation, GaA 
becomes a maximum dispersion process extending the 
sampling over the largest possible volume in parameter space 
while keeping the probability of finding feasible points at a 
suitable level. GaA is based on the principle of maximum 
entropy and tries to maximize the entropy H of a multivariate 
Gaussian distribution N(m,C) given the mean (m) and the 
covariance (C) information. 

 

           )det()2(log( CeH Dπ=                       (13) 
 

From eq. (13), it can be observed that the entropy can be 
maximized by maximizing the determinant of the covariance 
matrix.  

The GaA algorithm starts with mean of a multivariate 
Gaussian distribution (m(0)) and an initial point (x(0)). In 
iteration (g + 1), a new solution is sampled as: 
 
                     )()()()()1( ggggg Qrmx η+=+                 (14) 

 
where η(g) ∼ N(0, I). Q(g) is the normalized square root of C(g) 
and is obtained by following decomposition. 

 
TggTggg QQrQrQrC ))(().)(.( )()(2)()()( ==      (15) 

 
where r is the scalar step size.  

In order to minimize a real-valued objective function f(x), 
GaA uses a fitness dependent acceptance threshold cT which 
is monotonically lowered until some convergence criteria are 
met. If the objective value of the newly sampled solution in 
eq. (14) is less than cT, then the mean (m), covariance (C) and 
the scale factor (r) are updated as follows 

        )1()()1( 1)11( ++ +−= g

m

g

m

g x
N

m
N

m            (16) 

   T

C

g

C

g xx
N

C
N

C ))((1)11( )()1( ΔΔ+−=+           (17) 

 
                                )()1(  . g

e
g rfr =+                             (18)  

where   
fe  > 1 is the expansion factor.  

Nm and NC are the weighting factors 
Δx = (x(g+1) − x(g)) 

 
If the objective value of the newly sampled solution x(g+1) is 

greater than the threshold then the mean and covariance are 
not adapted but the step size is reduced as  
 
                               )()1(  . g

c
g rfr =+                             (19) 

 
where fc < 1 is the contraction factor. 

In order to use GaA for optimization, the acceptance 
threshold cT is continuously lowered as follows. 

 

)(1)11( )1()()1( ++ +−= g

T

g
T

T

g
T xf

N
c

N
c               (20) 

 
where NT is the weighting factor. The fitness-dependent 
update of cT makes the algorithm invariant to the linear 
transformations in the objective function. 
 

            TABLE III: Gaussian Adaptation Algorithm  
Step 1 Set generation number G = 0. Initialize m, C, r and 

cT. 

Step 2 WHILE stopping criterion is not satisfied  

DO 

         Step 2.1 Sample a new solution using eq. (14) 

 Step 2.2 Evaluate and Check if the objective value of 

the newly sampled solution is less the threshold cT 

         Step 2.3 Update m, C, r and cT 

         Step 2.4 Increment the generation count G = G + 1 

Step 3 END WHILE 

 

III. GAUSSIAN ADAPTATION BASED PARAMETER 
ADAPTATION FOR DIFFERENTIAL EVOLUTION (GAPADE) 

 
As highlighted in the previous section, depending on the 
nature of problem (unimodal or multimodal) and available 
computation resources, different optimization problems 
require different mutation and crossover strategies combined 
with different parameter values to obtain optimal 
performance. In addition, to solve a specific problem, 
different mutation and crossover strategies with different 
parameter settings may be better during different stages of the 
evolution than a single set of strategies with unique parameter 
settings as in the conventional DE. Motivated by these 
observations, many adaptive and self-adaptive parameter 
adaptive techniques have been proposed [10-16]. However, 
most of the adaptive techniques try to adapt the control 
parameters (F and CR) individually. For instance, in JADE 
[16], the mutation factors and crossover probabilities are 
evolved based on their historical record of success. F and CR 
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values corresponding to the individuals in the current 
generation are generated from a corresponding mean values 
using Cauchy and Gaussian distributions, respectively. After 
the selection process, the F and CR values that were able to 
produce successful trial vectors are collected. Then the 
respective mean values of F and CR are updated using 
Lehmer and arithmetic means respectively. In other words, 
the F and CR are generated (see eq. (9) and (10)) and adapted 
(see eq. (11) and (12)) individually. Therefore, JADE does 
not consider the inter-correlation between the two parameters. 

However, in [10], it has been demonstrated that 
performance of DE depends on the combination of F and CR. 
In other words, the parameters F and CR on which the 
performance of DE depends are inter-correlated. Therefore, 
adapting the two parameters individually may not result in the 
optimal performance of the DE algorithm. 

In this paper, we present a parameter adaptation technique 
which considers the inter-correlation between the two 
parameters. The parameters evolve based on the Gaussian 
adaptation process which is used for parameter optimization. 

As most of the adaptation algorithms, the proposed 
GaAPADE adapts the scale factor F and the crossover 
probability CR which mainly affect the performance of DE. 
In GaAPADE, we employ GaA on the bi-dimensional 
continuous space composed by F and CR. Therefore, the data 
structures employed by GaAPADE are the mean vector m 
and the covariance matrix C. The mean vector (m) comprises 
of the mean values of F and CR while the covariance matrix 
(C) comprises the inter-dependencies between the two 
parameters. 

 As in JADE [16],  every DE individual is assigned with a 
personal version of the parameters, i.e. there is a couple Fi, 
CRi for each individual i sampled using eq. (14). In other 
words, every time that these parameters are needed (for 
mutation and crossover in DE), they are sampled from the 
multivariate Gaussian distribution identified by m and C. In 
the current work, the mean vector m is initialized to [0.5, 0.5] 
and covariance matrix (C) is set to an identity matrix.  
 During every generation of the DE evolution, the Fi and 
CRi values corresponding to the individuals in the population 
are generated using the mean (m) and the covariance matrix 
(C) using equation (14). Each individual in the DE algorithm 
uses the Fi and CRi values to produce the mutation vectors 
and consequently trial vectors. The combination of Fi and CRi 
values that resulted in an offspring that produces maximum 
improvement is used to update the mean (m) and the 
covariance (C). The continuous updating of m and C by the 
parameter combinations that produced better solutions will 
help the parameter search to move to the regions where more 
suitable combination of the parameters can be generated. The 
limits of the F and CR are set to be (0, 1.0] and [0, 1.0], 
respectively.  
 

TABLE III: Outline of GaAPADE 
Step 1 Set the generation count G = 0, and randomly 

initialize a population of NP individuals. Initialize m, C, 
r and cT. 

Step 2 WHILE stopping criterion is not satisfied  

DO 
Step 2.1 Sample new parameter combinations using 
eq. (14) 

         Step 2.2 Mutation  
 Step 2.3 Crossover 

         Step 2.4 Selection 
         Step 2.5 Check if the improvement by the best 
parameter combination is greater than the threshold cT 
         Step 2.6 Update m, C, r and cT 
         Step 2.7 Increment the generation count G = G + 1 

Step 3 END WHILE 
 

IV. EXPERIMENTAL SETUP AND RESULTS 
We evaluated the performance of the proposed GaAPADE 

algorithm on a set of 30 test problems designed for CEC 2014 
[33]. Out of the 30 benchmark problems, problems 1-3 are 
unimodal functions, 4-16 are multimodal functions, 17-22 are 
hybrid functions and 22-30 are composite functions. Each of 
the 30 test problems is scalable. The algorithm is tested on the 
10D, 30D, 50D and 100D versions of the test problems. 
However, in the current version the results of 10D and 30D 
are presented. The evaluation criteria and testing environment 
are as follows:  
 
Test Problems: 30 Minimization Problems 

Dimensions: D = 10, 30, 50, 100  

Search Range: [-100,100]D 

Runs / problem: 51  

Maximum Number of Function Evaluations: 10000*D 

(100000 for 10D; 300000 for 30D; 500000 for 50D; 1000000 

for 100D) 

Termination Criteria: When maximum number of function 

evaluations is reached. 

 In the present work, we employ the DE/current-to-pbest 
mutation strategy along with the binomial crossover. As 
mentioned above, the proposed adaptation scheme works in 
the bi-dimensional parametric space (F and CR). In the 
proposed algorithm, we initially sample 20D solution vectors, 
out of which 100 individuals are selected as the population 
members at the start of every generation. After the generation 
the solution vectors are replaced. In addition to the 
parameters of the DE algorithms, the parameters of the GaA 
algorithm are set to the same values that are proposed in [18]. 

Tables IV and V show the performances of the proposed 
GaAPADE algorithm on 10D and 30D versions of the 
benchmark problems, respectively. The performance of the 
algorithm on each instance of the test problem is reported in 
terms of best, worst, median, mean and standard deviation 
values of the errors between the true optimal value and the 
obtained objective value. 
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From the results, we could observe that, for 10D problems, 
the proposed GaAPADE algorithm can find the global 
optimal solution for unimodal functions 1-3 with 100% 
success rate. The algorithm is also able to solve the 
multimodal function 8 with 100% success rate. In case of 
multimodal functions 4, 6 and 7, the algorithm is able to reach 
the optimal solution in only few instances.   
 In the case of 30D problems, as well the proposed 
algorithm can solve the unimodal function with100% success 
rate. In the case of multimodal problems, functions 4, 6 and 7 
can be solved during some of runs. However, the algorithm 
fails to solve the 30D version of the multimodal function 8. 
 However, the algorithm fails to find the optimal solution 
over the 51 runs for the 10D and 30D versions of functions 5 
and 9 – 30 due to the high multi-modality and parameter 
dependencies.   

The algorithm complexity is calculated for 10D, 30D, 50D 
and 100D versions of function 18 based on the criteria 
provided in the technical report [33].  The algorithmic 
complexity increases with the increase in the problem 
dimensionality as shown in Table VI.  The proposed 
algorithm is simulated in the Matlab environment and is 
implemented on system with the following configuration.  

 
System Configuration 

Intel ® Core ™ i5-3570 CPU 3.40 GHz 
8.00 GB RAM 

Windows 7 Enterprise  
Language: Matlab 

 

V. CONCLUSION 
In this paper, we proposed a Gaussian Adaptation based 

parameter adaptation technique for DE. In the proposed 
GaAPADE, GaA works on the bi-dimensional parameter 
space (F and CR). The use of a multivariate probability 
distribution for the learning/sampling of DE parameters 
allows discovering and managing the parameters 
inter-correlations in a natural way. The proposed adaptation 
technique is evaluated on the benchmark problem set 
designed for CEC 2014. 

ACKNOWLEDGMENT 
This research was supported by the Original Technology 

Research Program for Brain Science through the National 
Research Foundation of Korea (NRF) funded by the Ministry 
of Education, Science and Technology (2013034988) 

The research was supported by 'Software Convergence 
Technology Development Program', through the Ministry of 
Science, ICT and Future Planning (S1002-13-1014). 

REFERENCES 
 

[1] R. Joshi and A. C. Sanderson, "Minimal representation multisensor 
fusion using differential evolution," IEEE Transactions on Systems, 
Man, and Cybernetics Part A:Systems and Humans., vol. 29, pp. 63-76, 
1999. 

[2] R. Mallipeddi, J. P. Lie, S. G. Razul, P. N. Suganthan, and C. M. S. See, 
"Robust Adaptive Beamforming Based on Covariance Matrix 

Reconstruction for Look Direction Mismatch," Progress in 
Electromagnetic Research Letters, vol. 25, pp. 37-46, 2011. 

[3] M. K. Venu, R. Mallipeddi, and P. N. Suganthan, "Fiber Bragg grating 
sensor array interrogation using differential evolution," 
Optoelectronics and Advanced Materials - Rapid Communications, 
vol. 2, pp. 682-685, 2008. 

[4] S. Das and A. Konar, " Automatic image pixel clustering with an 
improved differential evolution " Applied Soft Computing, vol. 9, pp. 
226-236   JAN 2009  

[5] R. Storn, "Differential evolution design of an IIR-filter " presented at 
the IEEE International Conference on Evolutionary Computation 1996. 

[6] R. Mallipeddi, S. Jeyadevi, P. N. Suganthan, and S. Baskar, "Efficient 
constraint handling for optimal reactive power dispatch problems," 
Swarm and Evolutionary Computation, vol. 5, pp. 28-36, 2012. 

[7] R. Gämperle, S. D. Müller, and P. Koumoutsakos, "A Parameter Study 
for Differential Evolution," presented at the Advances in Intelligent 
Systems, Fuzzy Systems, Evolutionary Computation, Interlaken, 
Switzerland, 2002. 

[8] J. Liu and J. Lampinen, "On setting  the control parameter of the 
differential evolution method," in Proc. 8th Int, Conf. Soft Computing 
(MENDEL 2002), 2002, pp. 11-18. 

[9] Z. Jingqiao and A. C. Sanderson, "An approximate gaussian model of 
Differential Evolution with spherical fitness functions," in 
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 2007, 
pp. 2220-2228. 

[10] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren, 
"Differential evolution algorithm with ensemble of parameters and 
mutation strategies," Applied Soft Computing, vol. 11, pp. 1679-1696, 
2011. 

[11] J. Brest, S. Greiner, B. Boscovic, M. Mernik, and V. Zumer, 
"Self-adapting control parameters in differential evolution: A 
comparative study on numerical benchmark problems," IEEE 
Transactions on Evolutionary Computation, vol. 10   pp. 646-657  DEC 
2006   2006. 

[12] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, "Self-adaptive 
Differential Evolution," in Computational Intelligence and Security, 
PT 1, Proceedings Lecture Notes in Artificial Intelligence, 2005, pp. 
192-199. 

[13] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential Evolution 
Algorithm with Strategy Adaptation for Global Numerical 
Optimization," IEEE Transactions on Evolutionary Computation, vol. 
13, pp. 398-417, April 2009. 

[14] D. Zaharie, "Control of Population Diversity and Adaptation in 
Differential Evolution Algorithms," In: Proceedings of the 9th 
International Conference on Soft Computing, Brno 41-46, 2003. 

[15] J. Tvrdik, "Adaptation in differential evolution: A numerical 
comparison," Applied Soft Computing,  vol. 9, pp. 1149-1155   JUN 
2009. 

[16] J. Zhang, "JADE: Adaptive Differential Evolution with Optional 
External Archive," IEEE Transactions on Evolutionary Computation, 
vol. 13, pp. 945-958, October 2009. 

[17] A. Auger and N. Hansen, "A Restart CMA Evolution Strategy With 
Increasing Population Size," presented at the IEEE Congress on 
Evolutionary Computation, 2005. 

[18] C. Müller and I. Sbalzarini, "Gaussian Adaptation Revisited – An 
Entropic View on Covariance Matrix Adaptation," in Applications of 
Evolutionary Computation. vol. 6024, C. Chio, S. Cagnoni, C. Cotta, 
M. Ebner, A. Ekárt, A. Esparcia-Alcazar, C.-K. Goh, J. Merelo, F. Neri, 
M. Preuß, J. Togelius, and G. Yannakakis, Eds., ed: Springer Berlin 
Heidelberg, 2010, pp. 432-441. 

[19] R. Storn and K. Price, "Differential Evolution - A Simple and Efficient 
Heuristic for Global Optimization over Continuous Spaces," Journal of 
Global Optimization, vol. 11, pp. 341-359, 1997. 

[20] R. Storn, "On the Usage of Differential Evolution for Function 
Optimization " presented at the Biennial Conference of the North 
American Fuzzy Information Processing Society (NAFIPS), Berkeley, 
1996. 

[21] A. Iorio and X. Li, "Solving Rotated Multi-objective Optimization 
Problems Using Differential Evolution," presented at the Australian 
Conference on Artificial Intelligence, Cairns, Australia., 2004. 

[22] S. Das, A. Konar, and U. K. Chakraborty, "Two Improved Differential 
Evolution Schemes for Faster Global Search," Proceedings of the 2005 
conference on Genetic and evolutionary computation, pp. 991-998, 
2005. 

1765



 
 

 

[23] J. Lampinen and I. Zelinka, "On Stagnation of the Differential 
Evolution Algorithm," Proceedings of MENDEL 2000, 6th 
International Mendel Conference on Soft Computing, pp. 76-83, 2000. 

[24] K. V. Price, R. M. Storn, and J. A. Lampinen, Eds., Differential 
Evolution : A Practical Approach to Global Optimization (Natural 
Computing Series. Berlin: Springer, 2005, p.^pp. Pages. 

[25] R. Storn and K. Price, "Differential Evolution : A Simple Evolution 
Strategy for Fast Optimization," Dr. Dobb's Journal, vol. 22, pp. 18-24, 
April 1997. 

[26] J. Rönkkönen, S. Kukkonen, and K. V. Price, "Real-parameter 
optimization with differential evolution," in 2005 IEEE Congress on 
Evolutionary Computation, IEEE CEC 2005. Proceedings, 2005, pp. 
506-513. 

[27] H. A. Abbass, "The Self-Adaptive Pareto Differential Evolution 
Algorithm," Proceedings of the IEEE Congress on Evolutionary 
Computation (CEC2002), vol. 1, pp. 831-836, 2002. 

[28] J. Liu and J. Lampinen, "A fuzzy adaptive differential evolution 
algorithm," Soft Computing, vol. 9, pp. 448-462, Jun 2005. 

[29] D. Zaharie and D. Petcu, "Adaptive Pareto differential evolution and its 
parallelization," in Proc. of 5th International Conference on Parallel 
Processing and Applied Mathematics, Czestochowa, Poland, 2003, pp. 
261-268. 

[30] J. Teo, "Exploring dynamic self-adaptive populations in differential 
evolution," Soft Computing, vol. 10, pp. 673-686, 2006. 

[31] R. Mallipeddi, "Harmony Search Based Parameter Ensemble 
Adaptation for Differential Evolution," Journal of Applied 
Mathematics, vol. 2013, p. 12, 2013. 

[32] B. Yuan and M. Gallagher, "Experimental Results for the Special 
Session on Real-Parameter Optimization at CEC 2005: A Simple, 
Continuous EDA," presented at the IEEE Congress on Evolutionary 
Computation, 2005. 

[33] J. J. Liang, B. Y. Qu, and P. N. Suganthan, "Problem Definitions and 
Evaluation Criteria for the CEC 2014 Special Session and Competition 
on Single Objective Real-Parameter Numerical Optimization," 
Nanyang Techological University, Singapore2014. 

 
 

 
 
 

Table IV. Results for 10D  
 

Function Best Worst Median Mean Std. 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 3.48E+01 3.48E+01 2.82E+01 1.35E+01 
5 7.24E+00 2.00E+01 2.00E+01 1.96E+01 1.85E+00 
6 0 1.83E+00 0 1.40E-01 3.64E-01 
7 0 2.22E-02 1.92E-03 3.53E-03 4.41E-03 
8 0 0 0 0 0 
9 1.86E+00 5.18E+00 0 3.42E+00 8.75E-01 
10 2.37E-02 1.21E+01 3.40E+00 6.00E-01 2.34E+00 
11 2.40E+00 3.85E+02 1.38E+02 1.60E+02 1.10E+02 
12 6.43E-02 2.37E-01 1.50E-01 1.47E-01 4.09E-02 
13 3.05E-02 9.67E-02 6.57E-02 6.54E-02 1.34E-02 
14 3.92E-02 2.06E-01 8.86E-02 9.32E-02 3.22E-02 
15 3.78E-01 7.99E-01 5.76E-01 5.83E-01 9.74E-02 
16 9.00E-01 2.50E+00 2.01E+00 2.01E+00 3.03E-01 
17 2.64E+00 3.01E+01 8.50E+00 9.09E+00 4.79E+00 
18 1.50E-02 5.45E-01 1.85E-01 2.09E-01 1.49E-01 
19 8.90E-02 1.07E+00 2.20E-01 2.60E-01 1.52E-01 
20 1.63E-01 8.44E-01 4.25E-01 4.33E-01 1.48E-01 
21 2.89E-02 1.16E+00 4.50E-01 4.52E-01 2.41E-01 
22 7.41E-01 5.66E+00 3.32E+00 3.18E+00 1.14E+00 
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 0 
24 1.00E+02 1.11E+02 1.09E+02 1.08E+02 2.08E+00 
25 1.07E+02 2.01E+02 2.01E+02 1.68E+02 4.11E+01 
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.74E-02 
27 1.44E+00 4.00E+02 2.10E+00 9.56E+01 1.63E+02 
28 3.69E+02 4.81E+02 3.69E+02 3.84E+02 3.36E+01 
29 2.22E+02 2.24E+02 2.22E+02 2.22E+02 6.81E-01 
30 4.54E+02 5.50E+02 4.62E+02 4.68E+02 1.90E+01 

 
 

Table V. Results for 30D  
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Function Best Worst Median Mean Std. 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 1.95E-02 0 3.82E-04 2.73E-03 
5 2.00E+01 2.00E+01 2.00E+01 2.00E+01 4.26E-03 
6 0 6.39E+00 1.79E-06 5.92E-01 1.06E+00 
7 0 0 0 0 0 
8 1.15E-03 4.33E+00 1.32E+00 1.28E+00 8.72E-01 
9 1.18E+01 3.68E+01 1.72E+01 1.70E+01 3.90E+00 
10 2.47E+00 4.53E+01 7.79E+00 1.00E+01 7.38E+00 
11 1.20E+03 2.58E+03 1.99E+03 1.96E+03 3.41E+02 
12 2.63E-02 4.99E-01 2.02E-01 2.10E-01 1.08E-01 
13 8.55E-02 1.86E-01 1.40E-01 1.43E-01 2.14E-02 
14 1.30E-01 2.65E-01 2.04E-01 2.03E-01 3.08E-02 
15 2.51E+00 4.11E+00 3.03E+00 3.14E+00 4.14E-01 
16 8.18E+00 1.08E+01 9.95E+00 9.83E+00 5.53E-01 
17 3.98E+01 5.56E+02 1.60E+02 1.70E+02 1.19E+02 
18 3.30E+00 2.31E+01 7.23E+00 8.77E+00 4.11E+00 
19 2.36E+00 5.60E+00 3.95E+00 3.96E+00 7.67E-01 
20 1.93E+00 1.84E+01 5.45E+00 5.95E+00 3.16E+00 
21 1.47E+00 2.83E+02 1.35E+02 1.17E+02 8.26E+01 
22 2.24E+01 1.57E+02 3.58E+01 7.40E+01 5.68E+01 
23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 0 
24 2.22E+02 2.26E+02 2.24E+02 2.24E+02 8.64E-01 
25 2.03E+02 2.03E+02 2.03E+02 2.03E+02 7.19E-02 
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.40E-02 
27 3.00E+02 4.01E+02 3.00E+02 3.19E+02 3.46E+01 
28 7.68E+02 8.94E+02 8.46E+02 8.38E+02 2.96E+01 
29 7.13E+02 7.35E+02 7.16E+02 7.17E+02 3.99E+00 
30 4.55E+02 4.47E+03 1.32E+03 1.52E+03 8.02E+02 

 
 

Table VI. Computational Complexity 
 

Dimension T0 T1 T’2 (T’2 – T1)/T0 
D = 10 1.248E-01 2.3400E-01 2.4087E+00 1.7425E+01 
D = 30 1.248E-01 9.3600E-01 7.2728E+00 5.0776E+01 
D = 50 1.248E-01 2.0748E+00 1.6514E+01 1.1569E+02 

D = 100 1.248E-01 6.5676E+00 2.3887E+01 1.3878E+02 
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