
Runtime Analysis of Selection Hyper-heuristics with
Classical Learning Mechanisms

Fawaz Alanazi, Per Kristian Lehre

Abstract—The term selection hyper-heuristics refers to a ran-
domised search technique used to solve computational problems
by choosing and executing heuristics from a set of pre-defined
low-level heuristic components. Selection hyper-heuristics have
been successfully employed in many problem domains. Never-
theless, a theoretical foundation of these heuristics is largely
missing. Gaining insight into the behaviour of selection hyper-
heuristics is challenging due to the complexity and random
design of these heuristics. This paper is one of the initial
studies to analyse rigorously the runtime of selection hyper-
heuristics with a number of the most commonly used learning
mechanisms; namely, simple random, random gradient, greedy,
and permutation. We derive the runtime of selection hyper-
heuristic with these learning mechanisms not only on a classical
example problem, but also on a general model of fitness
landscapes. This in turn helps in understanding the behaviour
of hyper-heuristics. Our results show that all the considered
selections hyper-heuristics have roughly the same performance.
This suggests that the learning mechanisms do not necessarily
improve the performance of hyper-heuristics. A new learning
mechanism that improves the performance of hyper-heuristic
on our example problem is presented.

I. INTRODUCTION

HYper-heuristics are search strategies that for either
selecting or generating new heuristics based on a set of

pre-defined low-level heuristics. Unlike most other heuristic
search techniques, hyper-heuristics are not problem-specific
methods. This can be considered as one of the key features.
Recently, selection hyper-heuristics have become popular for
tackling some instances of NP-hard real-world problems [1].
A generic selection hyper-heuristic consists of two strategies;
namely, heuristic selection or so-called learning mechanism
and move acceptance strategy [2]. The former is used to
select a heuristic from a fixed set of low-level heuristics
(e.g. mutation heuristics, crossover heuristics) based on some
probability distributions. The second strategy is used once
the selected heuristic is applied on the candidate solution
to decide whether the new solution is accepted or discarded.
Several move acceptance methods were used within selection
hyper-heuristics frameworks. For example, the only improv-
ing method [3] accepts the new solution if and only if
it is better than the current candidate solution. This paper
considers only improving move acceptance method only.

Various learning mechanisms have been proposed in the
literature [4] [5]. However, there were no previous math-
ematical definitions of learning mechanisms. All learning
mechanisms can be defined as follows:

Fawaz Alanazi and Per Kristian Lehre are with ASAP Research Group,
The Department of Computer Science, The University of Nottingham, UK
(email: {fza, pkl}@cs.nott.ac.uk).

Definition 1: Let X be a finite search space and f :
X → R be a cost function. Let m be the number of low-
level heuristics, and h(t)j be the selected heuristics in iteration

t. Let p(h(t+1)
k) be the selection probability of heuristic k

in iteration t + 1. A learning mechanism within a selection
hyper-heuristic framework can be defined as a function �:

(

(h(i)j , f (xi))
)

i=1..t
�→

(

p(h(t+1)
k)

)

k=1..m

where ∑m
k=1 p(h(t+1)

k) = 1

Learning mechanisms are given the information about the
cost values of the solutions from the beginning until the
current iteration t, as well as the low-level heuristics that
were used in each iteration. Then they return probability
distribution over the set of low-level heuristics. On the one
hand, all learning mechanisms aim at selecting all low-level
heuristics based on some probability distributions. On the
other hand, different learning mechanisms have different
strategies. For example, some learning mechanisms update
the selection probability of low-level heuristics based on the
available information about their performance in previous
steps; whereas others choose heuristics with a fixed-selection
probability regardless of their performances.

Despite the great success of selection hyper-heuristics
in several problem domains, a theoretical analysis of such
heuristics is largely ignored [6] [7]. Runtime analysis refers
to theoretical studies that rigorously estimate the runtime and
success probability of randomised search heuristics, where
the success probability is the probability of a search heuristic
to find an optimal solution within a specified time. One of
the first runtime analysis of hyper-heuristics was presented
in [6]. The expected runtime of simple hyper-heuristics was
analysed. The authors conclude by that mixing low-level
heuristics is efficient with the appropriate parameter settings.
This study performs rigorous runtime analysis of selection
hyper-heuristics with several learning mechanisms; namely,
simple random, random gradient, greedy, and permutation.
The motivation is not only to examine whether the learning
schemes in these mechanisms can improve the performance
of selection hyper-heuristics, but also to compare the runtime
of selection hyper-heuristic with different characteristics on
both a general scenario and a classical example problem.

A. Notation

The following notation is used in this paper. For n > 0,
let n be the set of integers [n] = {1,2, ..,n}, usually n
is the bit-string length. The notation Xt denotes the state
of a solution in iteration t, e.g. in section III, it is the
number of non-leading one bits in iteration t. Let xmin and
xmax be the minimum and maximum value Xt can take,

2515

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

respectively. Standard notation for the runtime analysis, e.g.
big O notation, is used.

II. PRELIMINARIES

A number of analytical techniques were investigated in
the runtime analysis of randomised search heuristics. Drift
analysis is one of the most popular among these techniques.
It is centred on the analysis of a randomised search heuristic
behaviour in a single step. This process is performed by
measuring the progress of a function, a so-called distance
function, which assigns each state of the search heuristic to
a non-negative number reflecting the distance between that
state and the optimal solution. A range of drift theorems have
been presented in the literature (see for example [8] [9]).
Very recently, a general drift theorem that can be considered
to be a generalisation of most of the existing drift theorems
is introduced in [10].

Theorem 1: [10]
Let (Xt)t≥0 be a stochastic process over some state
space S ⊆ {0} ∪ [xmin,xmax], where xmin > 0. Let
h : [xmin,xmax]→ R

+ be an integrable function and define
g : 0∪ [xmin,xmax]→ R

≥0 by g(x) = xmin
h(xmin)

+
∫ x

xmin
1

h(y)dy for
x≥ xmin and g(0) = 0. Then, the following statements holds
for the first hitting time T = min{t|Xt = 0}.

• If E[Xt − Xt+1|Xt ≥ xmin] ≥ h(Xt) and E[g(Xt) −
g(Xt+1)|Xt ≥ xmin]≥ δ , then:

E[T |X0]≤ g(X0)

δ
.

• If E[Xt − Xt+1|Xt ≥ xmin] ≤ h(Xt) and E[g(Xt) −
g(Xt+1)|Xt ≥ xmin]≤ α , then:

E[T |X0]≥ g(X0)

α
.

According to [10], the first statements of this theorem can
be simplified as follows:

Corollary 1: If E[Xt − Xt+1|Xt ≥ xmin] ≥ h(Xt) and
h′(x)≥ 0, then δ ≥ 1 and hence: E[T |X0]≤ g(X0).

The artificial fitness levels technique was one of the first
techniques developed to analyse the runtime of randomised
search heuristics [11]. In this technique, the search space
must be divided into a number of fitness-levels depending
on the fitness function value of that particular fitness-level,
where the solution quality in fitness-level j must be better
than that in fitness-level i for all i< j. This implies that the
optimal solution is always in the last fitness-level. The arti-
ficial fitness levels technique is defined precisely as follows
[11].

Definition 2: Let S be a finite search space, and
(S1,S2, ..,Sn) be the fitness levels partition of a function
f : S→ R, then it must hold:

• f (Si)< f (S j), for any fitness level i< j.

• Si∩S j = φ , for all i, j.

• The optimal solution is always in the last fitness
level.

Theorem 2: [11]
Let S be a finite search space, and (S1, ..,Sn) be the fitness-
levels partition of a function f : S → R. If pi is a lower
bound on the probability to leave fitness-level i towards a
higher fitness-level, then the expected time to reach Sn is at
most:

E[T]≤
n−1

∑
i=1

1
pi

III. RUNTIME ANALYSIS OF SELECTION
HYPER-HEURISTICS

Generic selection hyper-heuristics work on low-level
heuristics and search spaces. However, they monitor a single
objective function representing the quality of the solution at
hand. Algorithm 1 presents a pseudo-code of generic selec-
tion hyper-heuristics. This section shows the runtime analysis

Algorithm 1 Selection Hyper-heuristic

Let:
• S be a finite search space
• H be a set of low-level heuristics
• f : S→ R

+ be a cost function
s∼Uni f (S)
while stopping conditions not satisfied do

h j ← �(H) //a learning mechanism � is used to choose
a heuristic from H.
s′ = h j(s) //execute the selected heuristic
if f (s′)> f (s) then

s = s′
end if

end while

of selection hyper-heuristics with various learning mecha-
nisms. We consider both a general model of fitness land-
scapes as well as the specific test problem LEADINGONES,
which is a well-known test problem in runtime analysis.
LEADINGONES counts the number of consecutive, leading
one-bits:

LEADINGONES(x) =
n

∑
i=1

i

∏
j=1

x j

We analyse the runtime of selection hyper-heuristic on
LEADINGONES based on the following assumptions:

• It is assumed that all the bits in the initial bit-string
are distributed uniformly at random. In order for the
LEADINGONES function to be improved, at least the
left-most 0-bit must be flipped and the leading one
bits remain the same.

• Drift analysis is used as runtime analysis technique.
We set xmin = 2, X0 = n−1, and let Xt be the number
of non-leading one-bits in iteration t.

• We use two mutation operators as low-level heuris-
tics:

1) The first mutation operator (1OP) flips one
randomly chosen bit position. The success
probability of this operator at state Xt is
p(Xt) =

1
n , where n is the length of the bit-

string.

2516

2) The second mutation operator (2OP) flips
two bits chosen uniformly at random. Its
success probability is q(Xt) =

2Xt−2
n2 .

Furthermore, we consider a general model of fitness land-
scapes that is suitable for any function that satisfies the con-
ditions of the artificial fitness levels technique as described
in section II. The following subsections present the expected
runtime of selection hyper-heuristics on LEADINGONES and
for all general functions.

A. Simple Random

Simple random selection hyper-heuristics choose a
heuristic from a set of low-level heuristics uniformly at
random in every iteration [3]. It does not use any available
feedback; hence, each heuristic has an equal opportunity of
being chosen in every iteration.

Lemma 1: Algorithm 1 with simple random on
LEADINGONES has drift

n+2Xt −2
2n2 ≤ E[Xt −Xt+1|Xt ≥ xmin]≤ n+2Xt −2

n2 .

Proof: Let K be the number of consecutive 1-bits after
the left-most 0-bit (so-called “free riders”). Since every bit
after the left-most 0-bit is a 1-bit with probability 1/2, the
expected value of K is:

E[K | Xt] =
Xt−1

∑
i=1

i ·
(

1
2

)i+1

=
1
2

Xt−1

∑
i=1

i ·
(

1
2

)i

=
1
2

(

(Xt −1)(1/2)Xt+1−Xt(1/2)Xt +(1/2)
1/4

)

= 1−2−Xt (Xt +1).

Because 2 ≤ Xt ≤ n− 1, it holds that 0 ≤ E[K | Xt] ≤ 1,
so, the expected progress in an improving step is at least 1
and at most 2. Simple random chooses a mutation operator
uniformly at random in every iteration. The expected change
in distance is bounded from below by

E[Xt −Xt+1|Xt ≥ xmin]≥ 1
2
(p(Xt)+q(Xt))

and from above by

E[Xt −Xt+1|Xt ≥ xmin]≤ p(Xt)+q(Xt)

where p(Xt) = 1/n, and q(Xt) = 2(Xt −1)/n2.

Theorem 3: The expected runtime of Algorithm 1 with
simple random, and H = {1OP,2OP}, on LEADINGONES is:

E[T |X0] = n2 ln(3)+O(n).

Proof: From Lemma 1, it follows that

E [Xt −Xt+1|Xt > xmin]≥ n+2Xt −2
2n2 =: h(Xt).

Since h′(x) = 1/n2 > 0, the expected runtime of Algorithm 1
is by Theorem 1

E [T |X0]≤ xmin

h(xmin)
+

∫ X0

xmin

1
h(y)

dy

≤ 4n2

n+2
+

∫ n−1

2

2n2

n+2y−2
dy

≤ n2
(

4
n+2

+ ln
(

3n−4
n+2

))

.

The result now follows by noting that 4
n+2 = O(1/n) and

ln(3n−4
n+2)≤ ln(3).

Theorem 4: The expected runtime of Algorithm 1 with
simple random, and H = {1OP,2OP}, on LEADINGONES is
at least:

E [T |X0]≥ n2

6
ln(3).

Proof: By Lemma 1,

E [Xt −Xt+1|Xt > xmin]≤ n+2Xt

n2 =: h(Xt)

Hence,

E[g(Xt)−g(Xt+1)|Xt ≥ xmin]≤
∫ Xt

Xt+1

1
h(y)

dy

≤ n2

2
ln
(

n+2Xt

n+2Xt+1

)

≤ n2

2
ln
(

1+
2(Xt −Xt+1)

n+2Xt+1

)

≤ n2

2
· 2

n
·E[Xt −Xt+1|Xt]

≤ n(n+2Xt)

n2 ≤ 3,

because the largest value Xt can take is n−1. The theorem
now follows by the second statement in Theorem 1 with
α = 3.

E [T |X0]≥ g(X0)

3
where,

g(X0) =
2n2

n+2
+

∫ n−1

2

n2

n+2y−2
dy

≥ n2

2
ln
(

3n−4
n+2

)

≥ n2

2
ln(3).

B. Random Gradient

Initially random gradient chooses a low-level heuristic
uniformly at random. Then it applies the selected heuris-
tic iteratively as long as an improvement in the objective
function is obtained [5]. Although this mechanism tracks
the historical performance of low-level heuristics, where it
calls the heuristic that improved the solution in the previous
step, the gathered information about the performance of these
heuristics is lost as soon as the chosen heuristic fails to

2517

improve the candidate solution. Therefore, we consider the
drift of two steps instead of single step, e.g. E[Xt −Xt+2].

Lemma 2: The expected two steps drift of Algorithm 1
with random gradient:
If Xt ≤ n

2 +1

E[Xt −Xt+2|Xt ≥ xmin]≥ n(n−2)+Xt(2n−1)−1
2n3

and
E[Xt −Xt+2|Xt ≥ xmin]≤ 6n+4(Xt −1)

2n2

If Xt >
n
2 +1

E[Xt −Xt+2|Xt ≥ xmin]≥ 3n+2Xt −2
2n2

and

E[Xt −Xt+2|Xt ≥ xmin]≤ n(n−2)+Xt(2n−1)−1
n3

Proof: Random gradient changes the probability distri-
bution over the low-level heuristics based on the outcome
of the previous iteration, thus we considered all the possible
drift in two steps.
Case 1: An operator is chosen uniformly at random.

E[Xt −Xt+2|Xt ≥ xmin]

=

(

1− p(Xt)+q(Xt)

2

)(

p(Xt)+q(Xt)

2

)

+
p(Xt)(1− p(Xt+1))

2
+

q(Xt)(1−q(Xt+1))

2

+
2p(Xt)p(Xt+1)

2
+

2q(Xt)q(Xt+1)

2

=
(n+2Xt −2)(4n2−n−2Xt +2)

4n4 = h1(Xt)

Case 2: The first operator is chosen with probability one.

E[Xt −Xt+2|Xt ≥ xmin] = p(Xt)(1− p(Xt+1))

+(1− p(Xt))
p(Xt)+q(Xt)

2
+2p(Xt)p(Xt+1)

=
3n+2Xt −2

2n2 = h2(Xt)

Case 3: The second operator is chosen with probability one.

E[Xt −Xt+2|Xt ≥ xmin] = q(Xt)(1−q(Xt+1))

+(1−q(Xt))
p(Xt)+q(Xt)

2
+2q(Xt)q(Xt+1)

=
n(n−2)+Xt(2n−1)−1

2n3 = h3(Xt)

The expected progress in an improving step is at least 1 and
at most 2 as proved in Lemma 1, then E[Xt−Xt+2|Xt ≥ xmin]
if Xt ≤ n

2 +1:

h3(Xt)≤ E[Xt −Xt+2|Xt ≥ xmin]≤ 2h2(Xt)

Otherwise,

h2(Xt)≤ E[Xt −Xt+2|Xt ≥ xmin]≤ 2h3(Xt)

Theorem 5: The expected optimisation time of random
gradient selection hyper-heuristic, with H = {1OP,2OP}, on
LEADINGONES is at most:

E [T |X0] = 2n2 (ln(5/2)+o(1))

Proof: As long as Xt ≤ n+2
2 the expected drift is:

E[Xt −Xt+2|Xt ≥ xmin]

≥ n(n−2)+Xt(2n−1)−1
2n3 = h1(Xt)

Otherwise, the expected drift is at least:

E[Xt −Xt+2|Xt ≥ xmin]≥ 3n+2Xt −2
2n2 = h2(Xt)

Since h′1(x) and h′2(x) are larger than zero, the expected
runtime of Algorithm 1 is by Theorem 1

E [T |X0]≤ xmin

h1(xmin)
+

∫ n
2+1

xmin

1
h1(y)

dy+
∫ n−1

n
2+2

1
h2(y)

dy

≤ 4n2

n+2
+

∫ n
2+1

2

2n3

n(n−2)+ y(2n−1)−1
dy

+
∫ n−1

n
2+2

2n2

3n+2y−2
dy

≤ n2
(

4
n+2

+ ln(
5n−4
4n+2

)+ ln(
−4n2 +n+4
−2n2−4n+6

)

)

where,

−4n2 +n+4
−2n2−4n+6

=
4n2−n−4
2n2 +4n−6

=
2n2 +4n−6
2n2 +4n−6

+
2n2−5n+2
2n2 +4n−6

= 1+
2n2−5n+2
2n2 +4n−6

< 2

and since ln(5n−4
4n+2)≤ ln(5

4), then

E [T |X0] = n2 (ln(2)+ ln(5/4)+o(1))

Since we used the drift of two steps, then the expected
runtime of Algorithm 1:

E [T |X0] = 2n2 (ln(5/2)+o(1))

Theorem 6: The expected runtime of random gradi-
ent selection hyper-heuristic, with H = {OP1,OP2}, on
LEADINGONES is at least:

E[T |X0]≥ n2

9
(4+3 · ln(10/3))

Proof: Let Xt = n−1, then the expected drift of Algo-
rithm 1 is at most:

E[Xt −Xt+2|Xt ≥ xmin]≤ n(n−2)+Xt(2n−1)−1
n3

2518

E[g(Xt)−g(Xtt +1)|Xt ≥ xmin]≤
∫ Xt

Xt+1

2n3

2n(n−2)+2y(2n−1)−2
dy

≤ n2

2

(

ln(
n2 +2n(Xt −1)

n2 +2n(Xt+1−1)
)

)

≤ n2

2

(

ln(
n+2Xt

n+2Xt+1
)

)

≤ n2

2

(

2
n
·E[Xt −Xt+1|Xt]

)

≤ n · 6n2−4n
2n3 = 3

Then the expected runtime of this algorithm on
LEADINGONES is at least:

E[T |X0]≥ 2(
g(X0)

3
)

≥ 2
3
.
(2n

3
+

∫ n
2+1

2

2n2

6n+4(y−1)
dy

+
∫ n−1

n
2+2

2n3

2n(n−2)+2y(2n−1)−2
dy
)

≥ n2

9

(

4+3(ln(
5n+2
3n+2

)+ ln(
6n2−10n

4n2 +3n−6
))

)

where,

6n2−10n
4n2 +3n−6

=
4n2−3n−6
4n2 +3n−6

+
2n2−7n+6
4n2 +3n−6

≤ 2

then,

E[T |X0]≥ n2

9
(4+3(ln(5/3)+ ln(2))

≥ n2

9
(4+3 · ln(10/3))

We now consider general model of fitness landscapes for
any function as described in section II is also considered.
Lehre and Ozcan in [6] presented the runtime of simple
random hyper-heuristic in this scenario (see Theorem 2 in
[6]). The following theorem presented the expected runtime
of Algorithm 1 by using random gradient as learning mecha-
nism for any function that satisfies the artificial fitness levels
conditions.

Theorem 7: Let S be a finite search space divided into
a number of fitness-levels (S1,S2, ..,Sn). Given any objective
function f : S → R

+. Let m be the number of low-level
heuristics and p(k)j be the smallest success probability of the

jth heuristic at fitness-level k. If ∀ j ∈ m p(a)j = p(b)j for all
fitness level a,b ∈ n, then the expected runtime of random
gradient selection hyper-heuristic is:

E [T]≤ (n−1)

(

1+
m

∑m
j=1 p j

(1− ∑m
j=1 p2

j

∑m
j=1 p j

)

)

Proof: We prove by induction that for all k ∈ [1,n]:

Pr(S(k)j = 1) =
p(k)j

∑m
i=1 p(k)i

(1)

where Pr(S(k)j = 1) is the success probability of the jth

heuristic in fitness level k.
base case: when k = 1, Since random gradient chooses a
heuristic uniformly at randomly at the beginning, the success
probability of the jth heuristic in fitness level S(1) is:

Pr(S(2)j = 1) =
p(1)j

∑m
i=1 p(1)i

(2)

Induction step: Let Rk be a random variable that takes one
when the selected heuristic fails to improve the candidate
solution, and zero otherwise. Suppose k = z, Then by the
law of total probability:

Pr(S(z+1)
j = 1)

= R(z)(
p(z)j

∑m
i=1 p(z)i

)+(1−R(z))Pr(S(z)j = 1)

= R(z)(
p(z)j

∑m
i=1 p(z)i

)+(1−R(z))(
p(z)j

∑m
i=1 p(z)k

)

=
p(z)j

∑m
i=1 p(z)i

(R(z) +1−R(z))

=
p(z)j

∑m
i=1 p(z)i

(3)

By induction, (1) is true for all k ∈ [1,n]. Thus by the law
of the total expectation:

E[R(k)] =
m

∑
j=1

Pr(S(k)j = 1)E[R(k) | S(k)j = 1]

=
m

∑
j=1

p(k)j

∑m
i=1 p(k)i

(1− p(k)j)

=
1

∑m
i=1 p(k)i

(m

∑
j=1

p(k)j (1− p(k)j)
)

Once the selected heuristic fails to improve the candidate
solution, random gradient chooses a heuristic uniformly at
random. The expected waiting time to reach a higher fitness
level by selecting a heuristic uniformly at random is:

E[Tk] =
1

1
m ∑m

j=1 p(k)j

Since this mechanism needs one iteration to examine the
chosen heuristic, the expected runtime of random gradient
hyper-heuristic is at most:

E[TAlg2]≤
n−1

∑
k=1

1+E[R(k)](
m

∑m
j=1 p(k)j

)

≤ (n−1)
(

1+
m

∑m
j=1 p j

− m∑m
j=1 p2

j

(∑m
j=1)

2

)

2519

C. Greedy

The greedy learning mechanism applies all low-level
heuristics to the same candidate solution then determinis-
tically chooses the heuristic that achieves the best change
in the objective function [3]. This mechanism learns noth-
ing from the historical performance of low-level heuristics,
where the probability distribution over the heuristics space
is changed based on the performance of these heuristics on
the current search stage.

Lemma 3: Greedy selection hyper-heuristic with H =
{1OP,2OP} has drift:

E[Xt −Xt+1|Xt ≥ xmin]≥ 2Xt(n−2)+n(n−2)+2
n3

and

E[Xt −Xt+1|Xt ≥ xmin]≤ 4Xt(n−2)+2n(n−2)+4
n3

Proof: Greedy applies both mutation operators to the
same candidate solution in every step; hence, the success
probability is at least:

E[Xt −Xt+1|Xt ≥ xmin]≥ 1− (1− p(Xt))(1−q(Xt))

≥ 2Xt(n−2)+n(n−2)+2
n3

The second statement can be proved in symmetrical way to
the first statement taking into account the lower and upper
expected progress in an improving step.

Theorem 8: The expected runtime of Algorithm 1 with
greedy, and H = {1OP,2OP}, on LEADINGONES is at most:

E [T |X0] = n2(ln(3)+o(1))

Proof:

E[Xt −Xt+1]≥ 2Xt(n−2)+n(n−2)+2
n3

The expected runtime of Algorithm 1 is by Theorem 1

E [T |X0]≤ 2n2

n+2
+

∫ n−1

2

n3

2y(n−2)+n(n−2)+2
dy

≤ n2

2

(

4
n+2

+ ln(
3n2−8n+6
n2 +2n−6

)

)

where,

3n2−8n+6
n2 +2n−6

=
n2 +2n−6
n2 +2n−6

+
2n2−10n+12

n2 +2n−6

= 1+2 · (n2−5n+6
n2 +2n−6

)

≤ 1+2 · (1) = 3

Since greedy applies both operators in every step, it holds:

E [T |X0]≤ 2
(

n2

2
(

4
n+2

+ ln(3))
)

≤ n2(ln(3)+o(1))

Theorem 9: The expected runtime of Algorithm 1 with
greedy learning mechanism, and H = {1OP,2OP}, on
LEADINGONES is at least:

E [T |X0]≥ n2

6
(ln(3)+o(1))

Proof: From Lemma 3, the expected drift of this algo-
rithm is at most 4Xt (n−2)+2n(n−2)+4

n3 .

E[g(Xt)−g(Xt+1)|Xt ≥ xmin]≤
∫ Xt

Xt+1

n3

4y(n−2)+2n(n−2)+4
dy

≤ n2

4

(

ln(
4Xt(n−2)+2n(n−2)+4

4Xt+1(n−2)+2n(n−2)+4
)

)

≤ n2

4

(

ln(
4Xt ·n+2n2

4Xt+1 ·n+2n2)

)

≤ n2

4

(

ln(1+
4n(Xt −Xt+1)

2n2)

)

≤ n2

4

(

4n
2n2 .

4Xt(n−2)+n(n−2)+4
n3

)

where Xt ≤ n−1, then:

E[g(Xt)−g(Xt+1)|Xt ≥ xmin]≤ n
2
.
6n2−10n

n3 = 3

The expected runtime of Algorithm 1 on LEADINGONES is,
therefore, at least:

E [T |X0]≥ 2
(

g(X0)

3

)

≥ 2
3

(

n2

n+2
+

∫ n−1

2

n3

4y(n−2)+2n(n−2)+4
dy
)

≥ 2
3

(

n2

4
(

8
n+2

+ ln(
3n2−8n+6
n2 +2n−6

))

)

Since 3n2−8n+6
n2+2n−6 ≤ 3 as proved in Theorem 8, it follows that:

E [T |X0]≥ 2
3

(

n2

4
(ln(3)+o(1))

)

≥ n2

6
(ln(3)+o(1))

We now drive the runtime of greedy selection hyper-heuristic
on any function that satisfies the artificial fitness levels
technique conditions.

Theorem 10: Let S be a finite search space divided into
a number of fitness-levels (S1,S2, ..,Sn). Given any objective
function f : S → R

+. Let m be the number of low-level
heuristics and p(k)j be the smallest success probability of the
jth heuristic at fitness-level k. Then the expected runtime of
greedy selection hyper-heuristic is:

E [T]≤ m(n−1)+
n−1

∑
k=1

1

1−∏m
j=1(1− p(j)

k)

2520

Proof: Greedy requires m iterations to apply all low-
level heuristics to the same candidate solution. Employ
Theorem 2 with success probability p(k), where p(k) ∀ fitness-
level k ∈ S
is at least:

p(k) ≥ 1−
(m

∏
j=1

(1− p(k)j)
)

Then the expected time to leave fitness level k towards a
higher fitness level is at most:

E[Tk] = m+
1

1−
(

∏m
j=1(1− p(k)j)

)

Hence,

E[T]≤
n−1

∑
k=1

m+
1

1−
(

∏m
j=1(1− p(k)j)

)

D. Permutation

The permutation mechanism generates a random order
of all low-level heuristics, then in every iteration the next
heuristic in the prepared order is applied [5].

Lemma 4: The expected drift of permutation selection
hyper-heuristic on LEADINGONES is:

E[Xt −Xt+2|Xt ≥ xmin]≥ n+2Xt −2
n2

and

E[Xt −Xt+2|Xt ≥ xmin]≤ 2n+4(Xt −1)
n2

Proof: We consider the drift of two steps for more
accurate runtime analysis:
Case 1: If the first mutation operator is in the top of the list.

E[Xt −Xt+2|Xt ≥ xmin] = p(Xt)(1−q(Xt+1))

+(1− p(Xt))q(Xt)+2p(Xt)q(Xt+1)

=
n+2Xt −2

n2

Case 2: If the second mutation operator is in the top of the
list.

E[Xt −Xt+2|Xt ≥ xmin] = q(Xt)(1− p(Xt+1))

+(1−q(Xt))p(Xt)+2q(Xt)p(Xt+1)

=
n+2Xt −2

n2

It can be seen that the drift in both cases are the same,
then the expected drift of E[Xt −Xt+2|Xt ≥ xmin] is at least
(n+2Xt−2

n2) and at most (2n+4(Xt−1)
n2).

Theorem 11: The expected runtime of permutation
hyper-heuristic, with H = {1OP,2OP}, on LEADINGONES
is at most:

E [T |X0] = n2 (ln(3)+o(1))

Proof:

E[Xt −Xt+2|Xt ≥ xmin]≤ n+2Xt −2
n2 = h(Xt)

Since we used the drift of two steps,

E [T |X0]≤ 2
(

2n2

n+2
+

∫ n−1

2

n2

n+2y−2
dy
)

≤ n2
(

4
n+2

+ ln(
3n−4
n+2

)

)

Since 3n−4
n+2 ≤ 3, E [T |X0]≤ n2 (ln(3)+o(1))

Theorem 12: The expected runtime of permutation
hyper-heuristic, with H = {1OP,2OP}, on LEADINGONES
is at least:

E [T |X0]≥ n2

6
(ln(3)+o(1))

Proof: From Lemma 4:

E[Xt −Xt+2|Xt ≥ xmin]≤ 2n+4(Xt −1)
n2 = h(Xt)

E[g(Xt)−g(Xt+1)|Xt ≥ xmin]≤
∫ Xt

Xt+1

n2

2n+4(y−1)
dy

≤ n2

4

(

ln(
n+2Xt −2

n+2Xt+1−2
)

)

≤ n2

4

(

ln(1+
2(Xt −Xt+1)

n2)

)

≤ n2

4

(

2
n
.
2n+4Xt −4

n2

)

Where Xt ≤ n−1,

E[g(Xt)−g(Xt+1)|Xt ≥ xmin]≤ n
2
.
6n
n2 = 3

Since we used the drift of two steps, then:

E [T |X0]≥ 2
3

(

n2

n+2
+

∫ n−1

2

n2

2n+4(y−1)
dy
)

≥ 2
3

(

n2

4
(

4
n+2

+ ln(
3n−4
n+2

))

)

≥ n2

6
(ln(3)+o(1))

IV. EXPERIMENTS

In addition to the theoretical analysis, a group of experi-
ments were conducted. All the presented hyper-heuristics are
used to optimise LEADINGONES function with settings as
specified in section III. A run is continued until the optimal
solution is found (1n bit-string). Various lengths of the bit-
string are considered, and for each length, 1000 instances
are generated randomly. In each instance, these algorithms
are run simultaneously on the same initial solution. The
experimental results are summarised in the following charts
(see Figure 1).

It can be seen that the performance of hyper-heuristics
with the presented learning mechanisms is almost the same as

2521

10 610 1410 2310 3210 4110

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Simple Random

n

F
un

ct
io

n
ev

al
ua

tio
ns

.

10 610 1410 2310 3210 4110

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Random Gradient

n

F
un

ct
io

n
ev

al
ua

tio
ns

.

10 610 1410 2310 3210 4110

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Greedy

n

F
un

ct
io

n
ev

al
ua

tio
ns

.

10 610 1410 2310 3210 4110

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Permutation

n

F
un

ct
io

n
ev

al
ua

tio
ns

.

Fig. 1: Runtime of hyper-heuristics with simple random, random gradient, greedy, and permutation mechanisms on
LEADINGONES.

shown in Figure 1. The learning schemes in random gradient
and greedy mechanisms do not improve the performance of
hyper-heuristic on our example problem compared to the
other mechanisms that do not learn. The success probability
of typical low-level heuristics is very small. Therefore, learn-
ing mechanisms that have learning schemes approximately
choose low-level heuristics uniformly at random.

V. DISCUSSION

Our experimental and theoretical results have shown that
the performance of selection hyper-heuristics with these
learning mechanisms is almost the same in the specified
settings. Table 1 summaries the theoretical runtime analysis
results. It can be seen from the theoretical analysis that the

first mutation operator (1OP) is preferable if the distance
(Xt) is less than or equal to (n

2 + 1); otherwise, the second
operator (2OP) is superior. This, in fact, suggests a very
important finding that the performance of low-level heuristics
vary from one search stage to another. In addition, our
theoretical analysis have also shown that the success prob-
ability of the used low-level heuristics, as the typical low-
level heuristics, is very small. Consequently, we developed a
new learning mechanism called improved random gradient.
Our new learning mechanism is similar to random gradient
except that it applies the successful heuristic iteratively for a
specified number of iterations regardless the success of the
selected heuristic. In our experiment, we set the time for
improved random gradient to be from the beginning until
(Xt =

n
2 +1), and then until the selection hyper-heuristic find

2522

10 610 1410 2310 3210 4110

0e
+

00
4e

+
06

8e
+

06

Improved Random Gradient

n

F
un

ct
io

n
ev

al
ua

tio
ns

.

Fig. 2: Runtime of hyper-heuristic with the new learning
mechanism on LEADINGONES.

Mechanism Upper Bound Lower Bound

Simple Random n2 ln(3)+O(n) n2
6 ln(3)

Random Gradient 2n2(ln(5/2)+o(1)) n2
9 (4+3 · ln(10/3))

Greedy n2(ln(3)+o(1)) n2
6 (ln(3)+o(1))

Permutation n2(ln(3)+o(1)) n2
6 (ln(3)+o(1))

TABLE I: Runtime of Hyper-heuristics with Various
Learning Mechanisms on LEADINGONES

the optimal solution. Our results showed that hyper-heuristics
with improved random gradient outperformed all the other
learning mechanisms on LEADINGONES as presented in
Figure 2. Furthermore, this also led us to a very interesting
finding that the performance of selection hyper-heuristics
is improved with the right probability distribution over the
low-level heuristics search space. The success probability of
low-level heuristics is a very important factor that affect
the performance of selection hyper-heuristics. It can also
be deduced that learning schemes does not improve the
performance of selection hyper-heuristics if the low-level
heuristics have the same performance.

VI. CONCLUSION

This study is one of the initial studies on the run-
time analysis of selection hyper-heuristics. The runtime of
a generic selection hyper-heuristic with different learning
mechanisms was investigated. The results have shown that
the learning schemes in the presented learning mechanisms
do not improve the performance of selection hyper-heuristics
with the specified settings. A new learning mechanism that
improved the performance of selection hyper-heuristic on

our example problem is introduced. It can also be seen that
specifying the most appropriate probability distribution over
the heuristics space improve the performance of selection
hyper-heuristics significantly. To conclude, hyper-heuristic is
an area in which the theoretical background is still quite
unexplored. For future work, a rigorous analysis of hyper-
heuristics on more complex problems and learning mecha-
nisms should be considered.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the British Engineering and Physical Science Research
Council (EPSRC) grant no EP/F033214/1 (LANCS).

REFERENCES

[1] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu,
“Hyper-heuristics: A survey of the state of the art,” Journal of the
Operational Research Society, 2010.

[2] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, “A classification of hyper-heuristic approaches,” in
Handbook of Metaheuristics. Springer, 2010, pp. 449–468.

[3] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” in Practice and Theory of Automated
Timetabling III. Springer, 2001, pp. 176–190.

[4] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement
learning-great-deluge hyper-heuristic for examination timetabling,”
International Journal of Applied Metaheuristic Computing (IJAMC),
vol. 1, no. 1, pp. 39–59, 2010.

[5] P. Cowling, G. Kendall, and E. Soubeiga, “Hyperheuristics: A tool
for rapid prototyping in scheduling and optimisation,” in Applications
of Evolutionary Computing. Springer, 2002, pp. 1–10.

[6] P. K. Lehre and E. Özcan, “A runtime analysis of simple hyper-
heuristics: to mix or not to mix operators,” in Proceedings of the
twelfth workshop on Foundations of genetic algorithms XII. ACM,
2013, pp. 97–104.

[7] J. He, W. Hou, H. Dong, and F. He, “Mixed strategy may outperform
pure strategy,” arXiv preprint arXiv:1303.3154, 2013.

[8] P. K. Lehre, “Negative drift in populations,” in Parallel Problem
Solving from Nature, PPSN XI. Springer, 2010, pp. 244–253.

[9] J. E. Rowe and D. Sudholt, “The choice of the offspring population
size in the (1, λ) ea,” in Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference.
ACM, 2012, pp. 1349–1356.

[10] P. K. Lehre and C. Witt, “General drift analysis with tail bounds,”
arXiv preprint arXiv:1307.2559, 2013.

[11] I. Wegener, Theoretical aspects of evolutionary algorithms. Springer,
2001.

2523

