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Abstract—Most network optimization problems are 
studied under a static scenario in which connectivity of the 
network and weights associated with the links of the 
networks are assumed to be fixed. However, in practice, they 
are likely to change with time and if the network is to be 
used over time under dynamic conditions, they need to be re-
optimized as soon as there is a change. Since optimization 
process requires some finite time, there is a need for a 
efficient dynamic optimization strategy for solving such 
problems. In this study, we extend a previously proposed 
“Frozen-time” algorithm to network optimization by which 
new and optimized networks can be obtained in a 
computationally fast manner. We propose three different 
variations of the optimization strategies and show proof-of-
principle simulation results on a 20-node network having 190 
different source-destination paths. The results are interesting 
and suggest a viable further research. 

Keywords—Network optimization, dynamic optimization, 
on-line optimization. 

I.  INTRODUCTION 
Finding a number of optimal paths between a set of source 
and destination nodes in a network is one of the most 
important design issues that has a significant impact on a 
network’s performance [5]. The shortest-path problem is a 
graph problem appears in many applications such as 
routing in a road network, routing data harvesting in 
sensor networks [18]. In real-life applications, there is an 
industrial demand for computing the shortest on dynamic 
large-scale network such as road network and sensor 
network whose edges are dynamically changed with the 
traffic for the first and in inefficiently working sensor for 
the second network [18]. Networks used for internet 
communication, road, etc. have common entities such as 
nodes, edges, and weights. In this study, we attempt to 
find the optimal paths for every source-destination pair in 
the network taking into a consideration the actual time of 
finding the optimal paths. In practice, network 
optimization problem is a dynamic one, simply because 
the weights associated with the edges often change with 
time. Also, certain connections may fail and the network 
connectivity itself can be changing with time. Since the 
computational time for finding optimal paths for all 
source-destination pairs increases exponentially with an 
increase in number of nodes in the network, in general, 
the dynamic network optimization problem becomes a 
computationally challenging task.  

 
 Finding optimal paths in a changing network has 
always been the goal, but the computational time needed 
to achieve an optimal network as soon as there is a change 
in the network is also an important matter, which has not 
received much attention. There is a clear trade-off 
between these two entities. If a large computational time 
is needed to find a new set of optimal paths in a network, 
by the time an algorithm is able to find the optimal paths, 
the network may have changed to a different one, which 
was not used at the start of the optimization. Thus, in real 
practice, one may have to settle down for a compromise 
time for optimization and a desired upper limit on 
inefficiency introduced due to non-optimal nature of 
network paths. The important question then to ask is “how 
much inefficiencies one should tolerate to still have a 
reasonably working network under dynamic conditions?”. 
It is difficult to answer this question in the absence of any 
further trade-off information about the network and its 
change pattern. In this paper, we discuss a viable off-line 
optimization based “frozen-time” methodology to find 
such a compromise error limit on optimal paths. The 
procedure we adopt here is similar to a dynamic 
optimization methodology suggested by the second author 
earlier [8] in the context of a power dispatch problem and 
modify the method for network optimization.  
 
Although the idea is used here for a single-objective 
dynamic network optimization problems, it can potentially 
be applied to multi-objective dynamic network 
optimization problems. Since the concept is practical, 
such a study is highly pragmatic and implementable. 
Moreover, the approach is potentially capable of handling 
faults or “jamming” in a network as a changed scenario 
and the proposed method will handle different kinds of 
changes or faults in a network in a unified manner.  
 

In the reminder of the paper, we present a brief 
overview of existing studies of dynamic network 
optimization in Section 2. Thereafter, in Section 3, we 
present our proposed methodology and adaptation of the 
“frozen-time” algorithm for network optimization. Three 
different optimization methodologies are suggested as 
potential optimization algorithms for finding all optimal 
paths in a network. Section 4 presents simulation results on 
a 20-node network with changes in its connection weights 
with time. Extensive results are shown with three different 
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optimization methods. The procedure is choosing a 
compromise frozen-time from an analysis of the error 
versus frozen-time trade-off is presented. Finally, 
conclusions of this study and a number of immediate 
future extensions are discussed. 

II. EXISTING STUDIES ON DYNAMIC NETWORK 
OPTIMIZATION 

The existing dynamic network optimization methods 
do not consider the weight changing aspect which can 
happen with time. However, there are many studies that 
consider deletion and insertion of edges and vertices after 
dynamic changes [2]. Also, the dynamic optimal path 
computation methods include answering queries for the 
dynamic connectivity problem, for example, a query “if 
there is exciting edge between two nodes in a graph, the 
answer will be True or False” [4]. The insertion can be 
divided in two types, random or non-random and in [4] 
they try to find the fastest algorithms for both types. In 
[16], they classified a dynamic shortest-path algorithm to 
a batch and non-batch algorithms which mean that if the 
dynamic algorithm is able to handle graph changes that 
consist of multiple edge updates at a time, then it is a 
batch algorithm and if it is not, then it is a non-batch 
algorithm. Therefore, according to this classification, our 
approach in this paper is a batch algorithm. But we use a 
different classification that is more related to applications 
in real life.  

 
Based on the growing literature in dynamic network 

optimization, we classify the most important dynamic 
path application methods into three categories. Due to 
multi-criterion nature of network optimization problems, 
some studies choose multiple objectives, but constitutes a 
single objective by combining them in certain manner. 
First, a neural network is used to find the functional 
relationship between the desired responses and control 
factor values and then either a simulated annealing or a 
genetic algorithm is applied to determine an optimal 
combination of control factors [6]. To avoid getting stuck 
in a local minimum, authors propose integrating a 
hierarchical genetic algorithm and a multiple objective 
evolutionary algorithm to optimize the dynamic parameter 
design problem. Second, using a dynamic graph for 
wireless networks (such as in a mobile ad-hoc network 
where the nodes are mobile), the network topology may 
change rapidly and unpredictably over time [14, 15]. 
Dynamic graph solutions are used to solve such problems. 
In the third category, simplified versions of network 
connections are continuously being added to make the 
overall network bigger and bigger to have an overall 
effect of different parts of the network. Social networks is 
a real example of this category. Social networks contain 
information about the relations between people or entities. 
With continuously adding nodes and edges, the social 
network graphs become bigger and bigger [10]. In [11, 
12], a dynamic algorithm is applied to solve the dynamic 
traffic management (DTM) problem. Because of spatial 
correlations DTM has predefined set that may not contain 
well-performing strategies. To select a DTM strategy, 
they should be performed on several network measures, 
including externalities. In water distribution network the 
dynamic design is used which it is capable of introducing 

cheaper and more reliable long-term designs in 
comparison with normal initial design and rehabilitation 
[13].  

 
Damping strategies are used to re-route a connection 

whenever there is a fault in some links [21]. Such 
dynamic adjustments in a network make it stable. In this 
paper, we do not consider such drastic changes of faults in 
connection links, but the frozen-time approach we discuss 
here is capable of handling such faults as well.  

 

Although different network application problems 
address different aspects of the changing aspects with 
time, none of the existing studies suggest any unified 
approach to different vagaries of the network changes. In 
this paper, we propose a methodology that has the 
potential to be one such unified approach.  

III. PROPOSED METHODOLOGY 

A. Frozen-Time Algorithm 
Many search and optimization problems in practice 
change with time and therefore must be treated as on-line 
(or dynamic) optimization problems [8]. The change 
usually occurs in some parameters associated with the 
objective function, constraint functions, or in its variable 
bounds. In the case of a network optimization for finding 
optimal paths for all possible source-destination nodes, 
the change in one or more weights in the network or 
addition-deletion of some connections or any other minor 
changes with time will affect some of these optimal paths. 
With more and significant changes, more such source-
destination pairs will get affected every time there is a 
change, hence requiring more computational time to find 
optimal paths for all possible source-destination pairs.   
    
Ideally, such a dynamic network optimization problem 
must be solved instantly at every time instant, or 
whenever there is a change. However, an optimization 
task requires a finite amount of computational time to 
arrive a solution that is reasonably close to the true 
optimum. In such dynamic problems, there are two time 
frames which are intertwined: (i) computational time 
involved in the optimization process in arriving at a 
solution, and (ii) the real time in which the problem 
undergoes a change. Here, we shall assume equivalence of 
both time frames and any time spent in one frame affects 
the same amount in the other time frame. The relevance 
and accuracy of the obtained optimum in the current 
context largely depends on the rate at which the problem 
changes with time [8]. The basic idea from [9] is 
discussed in the next paragraph.  
 
 Let us assume that each optimization run requires a 
finite time G to execute and find an optimal or a near-
optimal solution. Here, we assume that the problem does 
not change (or assumed to be constant) within a time 
interval tT, and G  tT. We choose α = G/tT to be a small 
value (say 0.25 or so), such that after the optimized 
solution is found, (1 - α)tT time is spent on using the 
outcome for the remaining time. Figure 1 illustrates this 
dynamic optimization implementation procedure. The 
optimization problem is reformulated after every tT time.  
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   Fig. 1:  The on-line optimization procedure for one        
objective (taken from [8]). 

Fig. 2: The presence of a knee on the trade-off curve 
makes a natural choice of the cut-off value of tT. 
The on-line optimization procedure for one    
objective (taken from [8]). 

 

 
 
 

  
The shaded region indicates the duration of 

optimization and the white space added with next shaded 
region indicate the time for which the optimized solution 
will be implemented and used. During the tT time window 
the problem is considered frozen, hence we name the 
procedure as the “frozen-time” approach. The extent of 
frozen time tT is an important matter to fix for any 
problem. If we allow a large value of tT (allowing a large 
number of optimization iterations to complete the 
optimization run, thereby allowing a near-optimal solution 
to be found), then, the frequency of reformulation of the 
optimization problem will be less. This may make a large 
change in the problem before the next reformulation is 
considered. On the other hand, if we choose a small value 
of tT, a frequent change in the problem is considered 
(which approximates the real scenario more closely), but a 
lesser number of iterations are then allowed to track new 
optimal solutions for a problem which has also undergone 
a small change. Obviously, there lies a lower limit to tT 
below which, albeit a small change in the problem, the 
number of iterations are not enough for an algorithm to 
track the new optimal solutions adequately. Such a 
limiting tT will depend on the nature of the dynamic 
problem and the chosen algorithm, but importantly allows 
the best scenario (and closest approximation to the 
original problem) which an algorithm can achieve. We 
modify this idea from [8] and [9] and apply the frozen 
time approach to solve the optimal networking problem. 
 

B. Optimization Algorithms 
In this paper, we only consider weight changes, although 
the proposed procedure can be applied to other kinds of 
network changes as well.  
 
 Let us say that there are K different source-
destination pairs possible. Let us also assume that we have 
a symmetric network for which the weights are the same 
in both forward and backward directions for any 
connection. So actually, we have K/2 different paths 
rather than a total of K paths. In our proposed approach, 
we first find all K/2 paths using Dijkstra’s algorithm [7] 
for the given network and for the given set of initial 
weights (at t=0). For our calculaton purpose, we consider 

that a fixed proportion of the weights are changed with 
time in a sinusoidal manner, as shown below: 

 
Wt = Wo + r sin (2πt/100 + �), 

 
where Wt is the new weight, Wo is the initial weight. The 
parameter r is a random number in the range 0 to 2.5 and 
� is an angle in the range -π to π. The parameter t is the 
time index. 
  
 With all paths found optimally at the beginning, the 
network always works at its best for the first frozen-time 
window. Thereafter, after tT time, the changed weights are 
considered and a new optimization problem is 
reformulated. Let us say that c% of the weights (chosen 
randomly) are changed every time there is an alteration in 
the problem. Thus, ideally all K/2 paths needs to be found 
again using an optimization procedure. If the frozen-time 
tT is large enough to complete the optimization run fully, 
all paths can be re-optimized correctly; however, if the 
chosen frozen-time tT is smaller than the time required to 
find all K/2 optimal paths, we need an optimization 
strategy to find as many new optimal paths as possible. 
Since all optimal paths will not be possible to be found in 
such a case, this may introduce some non-optimal and 
longer paths between certain source-destination pairs. 
Thus, considering a trade-off between the extent of non-
optimal paths and frozen-time, we can arrive at a 
compromise value of the frozen time tT. Figure 2 
illustrates the concept. There can be two different 
scenarios with the trade-off curve. Figure 2 illustrates the 
scenario for which there is a “knee” region on the trade-
off curve [19]. A knee region becomes a natural choice of 
a cut-off value of tT, as choosing any other value does not 
make the trade-off worthwhile.  
 
Although in this paper we have considered Dijkstra’s 
algorithm as an optimization algorithm for finding 
multiple routes, an evolutionary optimization algorithm 
can also be used for a more difficult network path 
optimization problem, such as for handling multiple 
conflicting objectives, fault in connection links, and 
constrained network optimization problems. Here, we 
illustrate the frozen-time approach for handling 
dynamically changing problems.  

t tT

Error

Cut off solution

Frozen
time

Obtained
error

Trade off  response

Chosen
T  
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   Fig. 3: The absence of a knee on the trade-off curve 
requires to choose a cut-off error value.  

On the other hand, in some problems, there may not be a 
clear knee on the trade-off curve. In such a scenario, a cut-
off value on the error can be assumed and a suitable cut-
off time window tT can be chosen from the curve, as 
shown in Figure 3. 
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 The above procedure of arriving at a compromise 
frozen-time will depend on the algorithm used in choosing 
source-destination pairs that are to be re-optimized and 
also the computational complexity of the optimization 
algorithm used for the purpose. We describe a few such 
algorithms used in this study.  
 
 The concept of using the above time-varying equation 
is to keep weight changes within a specific range and 
repeat them periodically after every sine cycle. In a real-
world application, of course, such changes will be 
recorded after every tT time and the corresponding 
optimization problem will be reformulated instantly. To 
find the number of errors (deviation from true optimal 
path with changed weights) for each frozen-time with a 
complete sinusoidal cycle, we apply each frozen-time step 
many times (iterations) and then calculate the average 
error for all iterations of that frozen-time window. We 
applied Dijkstra’s algorithm [7] to find the optimal paths 
between all nodes of the network.  
 
We apply three optimization techniques to find the 
minimum frozen-time window, which we discuss in the 
following paragraphs. 
 
  1) Method 1: The first method is to find the optimal 
paths just for those source-destination pairs for which 
their optimal paths from the last optimization run are 
impacted by the new weight changes. In this update 
method, we also ignore those source-destination pairs 
which are not impacted by the weight change. The idea 
came from the fact that the probability of a definite 
change in optimal path of a source-destination pair that 
involves an affected weight is more. However, we also 
realize that sources and destinations which are not 
included in the list of weights in a particular optimal path 
may also be impacted by the change in a weight, simply 
because the surrounding weights may offer a better path 
from source to destination. This may introduce some error 

(or deviation) in the new paths from their new optimal 
paths. But, the implementation of the above strategy is 
simple and we use this our first optimization method for 
quickly finding a new set of paths after every tT time. 
 
  2) Method 2: Method 1 is computationally fast, but 
may introduce a large error, since it was concerned only 
on finding optimal paths for those sources and 
destinations that involved in changes in their weights and 
ignored the others. In Method 2, we try to improve this 
approach by using the rest of the allowable optimization 
time to find the optimal paths for those paths that are not 
involved with a weight change as long as it is allowed. 
Here we use the complete time (G= tT) or α =1 for 
optimization. 
 
  3) Method 3: In this method, we associate a probability 
with a path based on its length, since the long paths have 
more probability to be impacted by a change in weight 
than the short paths. Thus, in this method, we apply those 
source-destination pairs that have longer paths first. Also, 
instead of sorting all paths, we use a dynamic 
programming approach [17] by saving the index of long 
paths. By that, we reduce the actual running time before 
even starting the probability method since the regular way 
to find the optimal paths between all sources and 
destinations needs O(n2) computations [17]. Here, we use 
a matrix to save all the nodes in the network and by that 
we just applied one loop instead of expensive nested 
loops. We apply this method “on time” which means that 
every iteration depends on the optimal paths from the 
previous iteration which had an error percentage. 
 
  We are now ready to present some results using our 
proposed frozen-time approach. 

IV. RESULTS 
 To illustrate the working of the frozen-time algorithm 
and to compare the performance of three optimization 
methods proposed above, we consider a specific network 
shown in Figure 4 having 20 nodes with certain initial 
weights marked on the figure. This network is extended 
from the original one with 6 nodes from [7] to 20 nodes.  

Fig. 4: Network with 20 nodes and initial weights. 
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Fig.6: 25% weight-changes with 150 iterations for Method 2. 

There are K=380 different source-destination pairs 
possible. Since the weights are the same in both forward 
and backward directions, there are 190 different paths that 
we would consider in our optimization process. 
 
A. Results from Method 1 
  
 The computational time to find all 190 paths take 
0.097 sec on a specific computer used for this purpose. 
First, we consider c=50% changes in the weights after 
every tT time steps. However, the fast nature of Method 1 
requires around 0.080 sec in subsequent iterations. After 
every time steps, weights are changed and Method 1 is 
applied to find new paths. These paths are then compared 
with true optimal paths (obtained for the changed 
network) and the number of differences in their paths is 
used as an error measure. This process is continued 150 
times and the error value is averaged. As shown in Figure 
3, the error percentages are high. Another frozen tT time is 
then considered and the procedure is repeated and the 
respective error percentage is computed. Figure 3 is then 
plotted with the corresponding tT and error pair.  
 
 We can conclude from the figure that with those 
frozen times that are larger than 0.016 sec there is not a 
big change in the average error value. This can be 
explained as follows. When a large enough time is 
allowed for optimization, the algorithm gets enough time 
to find most critically changed paths and hence the 
average error reduces.   
 The shape of the variation of tT and error is 
interesting to analyze and find a suitable frozen time tT for 
actual implementation. With 50% changes in weights, it 
seems that the error continuously reduced with an increase 
in tT. Thus, a choice of a suitable tT will depend on the 
choice of an allowable error for operating the network. 
This can be achieved as follows.  First, a suitable 
acceptable average error value (say 20% or 25%) can be 
chosen beforehand. Thereafter, when an offline study is 
performed and a response such as in Figure 5 is obtained, 
the actual frozen time can be obtained by using the chosen 
average error value from the graph.  
 
                         

 
 
 

B. Results from Method 2 

 Next, we apply Method 2 with two different weight 
changes. Figure 6 is plotted for c=25% weight changed 
percentage of all weights in the network. We notice an 
important insight in this figure. With an increase in tT, the 
error percentage reduces sharply, but after around tT=48 
m-sec, the change in error is small. Such a “knee|” 
behavior [19] of tT and error trade-off is interesting and 
provides a natural cut-off value for tT. 
 
 Figure 7 is obtained with c=50% changes in weights.  
Here too, a cut-off tT value of 50 m-sec is observed. What 
a knee behavior means is that a frozen time smaller than 
the cut-off time makes the error to be increasing at a fast 
rate, but beyond this cut-off time, the error stabilizes and 
does not change much. Thus, this cut-off time may make a 
natural choice for its implementation in practice.  
 

C. Results from Method 3 
  
 Like in Method 2, we also apply Method 3 with two 
different weight changes – 25% and 50%. Figure 8 shows 
the trade-off variation between tT and error with 25%   
weight changes. Figure 9 shows the same with 50%  
weight changes. The results are similar to that observed 
with Method 2. The optimal frozen time tT for 25% and 
50% weight changes is found to be approximately 47.5 m-
sec and 49 m-sec, respectively.  
 
 The step-like behavior in some of these trade-off 
curves occurs due to that fact that although a fixed time tT 
is set, when a particular source-destination pair is started 
to optimize the process cannot be stopped until the 
optimization task is completed. Since the pairs are chosen 
at random (or according to the length), a significant 
change in tT is needed to observe a substantial change in 
the average error value.  

 

 
 

 
 Fig. 5: 50% weight-changes with 150 iterations for Method 1. 
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Fig. 9: 50% weight-changes with 150 iterations for Method 3. 

Fig. 7: 50% weight-changes with 150 iterations for Method 2. 
 

 
 

V. CONCLUSIONS AND FUTURE WORK 
 In this paper, we have addressed the issue of 
dynamic optimization a changing network for generic 
alterations. Although the simulations are performed for 
weight changes only, the methodology is applicable for 
other kinds of changes in a network as well. The idea 
proposed here is pragmatic and implementable in practice. 
Although the problem may change with time more 
frequently, the “frozen-time” approach constitutes the 
changed problem after every tT time steps and the 
resulting problem is solved. If a small value of tT is used, 
the change in the problem is expected to be small, but the 
allowed time for a new optimization is also small. Based 
on an error measure, the frozen-time approach suggests 
finding a trade-off between frozen time tT and 
corresponding error measure. Thereafter, an analysis of 
the trade-off response has been suggested to choose a 
suitable frozen time tT. In the event of a “knee” on the 
trade-off curve, a natural choice to is to choose the cut-off 
time tT from the knee region. 

    

 
       
 

 
 

   
Following conclusions can be drawn from this study:  
 
• Finding a set of optimal paths every time there is a 

change in the network is not the best 
computationally tractable strategy. The use of a re-
optimization in an efficient manner is needed.  In 
this study, we have used an earlier proposed “frozen-
time” algorithm with three different optimization 
strategies. The task in the frozen-time algorithm is to 
find minimum frozen-time to achieve a reasonably 
accurate solution for a problem. The approach is a 
simulation based off-line optimization strategy and is 
needed to be applied on a case to case basis.  
 

• The frozen time approach has been applied to a 
network with 20 nodes having a total of 190 
different source-destination paths with three different 
optimization algorithms.  

 
• To arrive statistically significant results, we have 

simulated a dynamically changing problem for 150 
iterations of the chosen frozen time.  

 
• Methods 2 and 3 have shown to produce trade-off 

curve between tT and error measure having a knee, 
thereby allowing a natural choice for the critical 
frozen time window. 

 
Based on the success of the frozen-time approach to the 
weight changed network optimization problem, we 
propose the following future studies.  

  
• For the future work, we plan to suggest further 

improvements on optimization methods using the 
dynamic programming method to reduce the time by 
saving the weights and the paths that are impacted by 
them in a matrix, so we can reach them directly 
without using expensive loop based methods. 
 

• Other optimization methodologies, such as a more 
efficient population-based evolutionary approach, 
will also be tried. 

 
• The frozen-time approach will be compared with 

other existing dynamic optimization approaches for Fig. 8: 25% weight-changes with 150 iterations for Method 3. 
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finding advantages and disadvantages of different 
methods.  

 
• A multi-objective dynamic network optimization 

problem will be formulated and solved using the 
frozen time approach. Many applications, such as 
audio, video conferencing or collaborative 
environments and distributed interactive simulations 
have multiple QoS requirements such as bandwidth, 
packet delay, packet loss, cost etc. [3]. The method 
of scalarizing an objective vector into a single 
composite objective function is the way of 
converting the multi-objective optimization problem 
into a single objective optimization problem [3]. 
Since in a multi-objective problem, there will be 
more than one performance measure, we need to 
devise a single metric from multiple measures. For 
this purpose, a hyper-volume metric [20] can be 
used. The idea can be used for solving asymmetric 
networks for which there are at least two weights for 
each connection link resulting in multiple 
performance measures that must be considered for 
choosing a cut-off frozen time tT. 

 
• In addition to weight changes considered in this 

study, a dynamic change in the connectivity of the 
network can also be tried.  As a dynamic change, 
new links can be added or an existing link can be 
deleted, thereby simulating availability of new routes 
or “jamming” of some existing links in a network.  
The three algorithms described here can be used, but 
new optimization algorithms need to be devised to 
find reasonable solutions faster. The existing 
literature for such optimization methods can be used 
with the frozen-time approach.   

 
The above changes for different kinds of dynamic changes 
in a network and the use of single and multiple 
performance measures will eventually make the whole 
approach a unified approach. We are undertaking these 
tasks as soon as possible, nevertheless, this first study on 
the usefulness of the frozen-time approach with weight 
changes only in a network shows promise and gives us 
confidence for such a unified study. 
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