

Network Path Optimization Under Dynamic
Conditions

Yaser Ali Enaya and Kalyanmoy Deb

Computational Optimization and Innovation (COIN) Laboratory
Department of Electrical and Computer Engineering

Michigan State University, East Lansing, USA
{enayayas, kdeb}@msu.edu

http://www.egr.msu.edu/~kdeb/reports.shtml

Abstract—Most network optimization problems are
studied under a static scenario in which connectivity of the
network and weights associated with the links of the
networks are assumed to be fixed. However, in practice, they
are likely to change with time and if the network is to be
used over time under dynamic conditions, they need to be re-
optimized as soon as there is a change. Since optimization
process requires some finite time, there is a need for a
efficient dynamic optimization strategy for solving such
problems. In this study, we extend a previously proposed
“Frozen-time” algorithm to network optimization by which
new and optimized networks can be obtained in a
computationally fast manner. We propose three different
variations of the optimization strategies and show proof-of-
principle simulation results on a 20-node network having 190
different source-destination paths. The results are interesting
and suggest a viable further research.

Keywords—Network optimization, dynamic optimization,
on-line optimization.

I. INTRODUCTION
Finding a number of optimal paths between a set of source
and destination nodes in a network is one of the most
important design issues that has a significant impact on a
network’s performance [5]. The shortest-path problem is a
graph problem appears in many applications such as
routing in a road network, routing data harvesting in
sensor networks [18]. In real-life applications, there is an
industrial demand for computing the shortest on dynamic
large-scale network such as road network and sensor
network whose edges are dynamically changed with the
traffic for the first and in inefficiently working sensor for
the second network [18]. Networks used for internet
communication, road, etc. have common entities such as
nodes, edges, and weights. In this study, we attempt to
find the optimal paths for every source-destination pair in
the network taking into a consideration the actual time of
finding the optimal paths. In practice, network
optimization problem is a dynamic one, simply because
the weights associated with the edges often change with
time. Also, certain connections may fail and the network
connectivity itself can be changing with time. Since the
computational time for finding optimal paths for all
source-destination pairs increases exponentially with an
increase in number of nodes in the network, in general,
the dynamic network optimization problem becomes a
computationally challenging task.

 Finding optimal paths in a changing network has
always been the goal, but the computational time needed
to achieve an optimal network as soon as there is a change
in the network is also an important matter, which has not
received much attention. There is a clear trade-off
between these two entities. If a large computational time
is needed to find a new set of optimal paths in a network,
by the time an algorithm is able to find the optimal paths,
the network may have changed to a different one, which
was not used at the start of the optimization. Thus, in real
practice, one may have to settle down for a compromise
time for optimization and a desired upper limit on
inefficiency introduced due to non-optimal nature of
network paths. The important question then to ask is “how
much inefficiencies one should tolerate to still have a
reasonably working network under dynamic conditions?”.
It is difficult to answer this question in the absence of any
further trade-off information about the network and its
change pattern. In this paper, we discuss a viable off-line
optimization based “frozen-time” methodology to find
such a compromise error limit on optimal paths. The
procedure we adopt here is similar to a dynamic
optimization methodology suggested by the second author
earlier [8] in the context of a power dispatch problem and
modify the method for network optimization.

Although the idea is used here for a single-objective
dynamic network optimization problems, it can potentially
be applied to multi-objective dynamic network
optimization problems. Since the concept is practical,
such a study is highly pragmatic and implementable.
Moreover, the approach is potentially capable of handling
faults or “jamming” in a network as a changed scenario
and the proposed method will handle different kinds of
changes or faults in a network in a unified manner.

In the reminder of the paper, we present a brief
overview of existing studies of dynamic network
optimization in Section 2. Thereafter, in Section 3, we
present our proposed methodology and adaptation of the
“frozen-time” algorithm for network optimization. Three
different optimization methodologies are suggested as
potential optimization algorithms for finding all optimal
paths in a network. Section 4 presents simulation results on
a 20-node network with changes in its connection weights
with time. Extensive results are shown with three different

2977

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

optimization methods. The procedure is choosing a
compromise frozen-time from an analysis of the error
versus frozen-time trade-off is presented. Finally,
conclusions of this study and a number of immediate
future extensions are discussed.

II. EXISTING STUDIES ON DYNAMIC NETWORK
OPTIMIZATION

The existing dynamic network optimization methods
do not consider the weight changing aspect which can
happen with time. However, there are many studies that
consider deletion and insertion of edges and vertices after
dynamic changes [2]. Also, the dynamic optimal path
computation methods include answering queries for the
dynamic connectivity problem, for example, a query “if
there is exciting edge between two nodes in a graph, the
answer will be True or False” [4]. The insertion can be
divided in two types, random or non-random and in [4]
they try to find the fastest algorithms for both types. In
[16], they classified a dynamic shortest-path algorithm to
a batch and non-batch algorithms which mean that if the
dynamic algorithm is able to handle graph changes that
consist of multiple edge updates at a time, then it is a
batch algorithm and if it is not, then it is a non-batch
algorithm. Therefore, according to this classification, our
approach in this paper is a batch algorithm. But we use a
different classification that is more related to applications
in real life.

Based on the growing literature in dynamic network

optimization, we classify the most important dynamic
path application methods into three categories. Due to
multi-criterion nature of network optimization problems,
some studies choose multiple objectives, but constitutes a
single objective by combining them in certain manner.
First, a neural network is used to find the functional
relationship between the desired responses and control
factor values and then either a simulated annealing or a
genetic algorithm is applied to determine an optimal
combination of control factors [6]. To avoid getting stuck
in a local minimum, authors propose integrating a
hierarchical genetic algorithm and a multiple objective
evolutionary algorithm to optimize the dynamic parameter
design problem. Second, using a dynamic graph for
wireless networks (such as in a mobile ad-hoc network
where the nodes are mobile), the network topology may
change rapidly and unpredictably over time [14, 15].
Dynamic graph solutions are used to solve such problems.
In the third category, simplified versions of network
connections are continuously being added to make the
overall network bigger and bigger to have an overall
effect of different parts of the network. Social networks is
a real example of this category. Social networks contain
information about the relations between people or entities.
With continuously adding nodes and edges, the social
network graphs become bigger and bigger [10]. In [11,
12], a dynamic algorithm is applied to solve the dynamic
traffic management (DTM) problem. Because of spatial
correlations DTM has predefined set that may not contain
well-performing strategies. To select a DTM strategy,
they should be performed on several network measures,
including externalities. In water distribution network the
dynamic design is used which it is capable of introducing

cheaper and more reliable long-term designs in
comparison with normal initial design and rehabilitation
[13].

Damping strategies are used to re-route a connection

whenever there is a fault in some links [21]. Such
dynamic adjustments in a network make it stable. In this
paper, we do not consider such drastic changes of faults in
connection links, but the frozen-time approach we discuss
here is capable of handling such faults as well.

Although different network application problems
address different aspects of the changing aspects with
time, none of the existing studies suggest any unified
approach to different vagaries of the network changes. In
this paper, we propose a methodology that has the
potential to be one such unified approach.

III. PROPOSED METHODOLOGY

A. Frozen-Time Algorithm
Many search and optimization problems in practice
change with time and therefore must be treated as on-line
(or dynamic) optimization problems [8]. The change
usually occurs in some parameters associated with the
objective function, constraint functions, or in its variable
bounds. In the case of a network optimization for finding
optimal paths for all possible source-destination nodes,
the change in one or more weights in the network or
addition-deletion of some connections or any other minor
changes with time will affect some of these optimal paths.
With more and significant changes, more such source-
destination pairs will get affected every time there is a
change, hence requiring more computational time to find
optimal paths for all possible source-destination pairs.

Ideally, such a dynamic network optimization problem
must be solved instantly at every time instant, or
whenever there is a change. However, an optimization
task requires a finite amount of computational time to
arrive a solution that is reasonably close to the true
optimum. In such dynamic problems, there are two time
frames which are intertwined: (i) computational time
involved in the optimization process in arriving at a
solution, and (ii) the real time in which the problem
undergoes a change. Here, we shall assume equivalence of
both time frames and any time spent in one frame affects
the same amount in the other time frame. The relevance
and accuracy of the obtained optimum in the current
context largely depends on the rate at which the problem
changes with time [8]. The basic idea from [9] is
discussed in the next paragraph.

 Let us assume that each optimization run requires a
finite time G to execute and find an optimal or a near-
optimal solution. Here, we assume that the problem does
not change (or assumed to be constant) within a time
interval tT, and G tT. We choose α = G/tT to be a small
value (say 0.25 or so), such that after the optimized
solution is found, (1 - α)tT time is spent on using the
outcome for the remaining time. Figure 1 illustrates this
dynamic optimization implementation procedure. The
optimization problem is reformulated after every tT time.

2978

 Fig. 1: The on-line optimization procedure for one
objective (taken from [8]).

Fig. 2: The presence of a knee on the trade-off curve
makes a natural choice of the cut-off value of tT.
The on-line optimization procedure for one
objective (taken from [8]).

The shaded region indicates the duration of

optimization and the white space added with next shaded
region indicate the time for which the optimized solution
will be implemented and used. During the tT time window
the problem is considered frozen, hence we name the
procedure as the “frozen-time” approach. The extent of
frozen time tT is an important matter to fix for any
problem. If we allow a large value of tT (allowing a large
number of optimization iterations to complete the
optimization run, thereby allowing a near-optimal solution
to be found), then, the frequency of reformulation of the
optimization problem will be less. This may make a large
change in the problem before the next reformulation is
considered. On the other hand, if we choose a small value
of tT, a frequent change in the problem is considered
(which approximates the real scenario more closely), but a
lesser number of iterations are then allowed to track new
optimal solutions for a problem which has also undergone
a small change. Obviously, there lies a lower limit to tT
below which, albeit a small change in the problem, the
number of iterations are not enough for an algorithm to
track the new optimal solutions adequately. Such a
limiting tT will depend on the nature of the dynamic
problem and the chosen algorithm, but importantly allows
the best scenario (and closest approximation to the
original problem) which an algorithm can achieve. We
modify this idea from [8] and [9] and apply the frozen
time approach to solve the optimal networking problem.

B. Optimization Algorithms
In this paper, we only consider weight changes, although
the proposed procedure can be applied to other kinds of
network changes as well.

 Let us say that there are K different source-
destination pairs possible. Let us also assume that we have
a symmetric network for which the weights are the same
in both forward and backward directions for any
connection. So actually, we have K/2 different paths
rather than a total of K paths. In our proposed approach,
we first find all K/2 paths using Dijkstra’s algorithm [7]
for the given network and for the given set of initial
weights (at t=0). For our calculaton purpose, we consider

that a fixed proportion of the weights are changed with
time in a sinusoidal manner, as shown below:

Wt = Wo + r sin (2πt/100 + �),

where Wt is the new weight, Wo is the initial weight. The
parameter r is a random number in the range 0 to 2.5 and
� is an angle in the range -π to π. The parameter t is the
time index.

 With all paths found optimally at the beginning, the
network always works at its best for the first frozen-time
window. Thereafter, after tT time, the changed weights are
considered and a new optimization problem is
reformulated. Let us say that c% of the weights (chosen
randomly) are changed every time there is an alteration in
the problem. Thus, ideally all K/2 paths needs to be found
again using an optimization procedure. If the frozen-time
tT is large enough to complete the optimization run fully,
all paths can be re-optimized correctly; however, if the
chosen frozen-time tT is smaller than the time required to
find all K/2 optimal paths, we need an optimization
strategy to find as many new optimal paths as possible.
Since all optimal paths will not be possible to be found in
such a case, this may introduce some non-optimal and
longer paths between certain source-destination pairs.
Thus, considering a trade-off between the extent of non-
optimal paths and frozen-time, we can arrive at a
compromise value of the frozen time tT. Figure 2
illustrates the concept. There can be two different
scenarios with the trade-off curve. Figure 2 illustrates the
scenario for which there is a “knee” region on the trade-
off curve [19]. A knee region becomes a natural choice of
a cut-off value of tT, as choosing any other value does not
make the trade-off worthwhile.

Although in this paper we have considered Dijkstra’s
algorithm as an optimization algorithm for finding
multiple routes, an evolutionary optimization algorithm
can also be used for a more difficult network path
optimization problem, such as for handling multiple
conflicting objectives, fault in connection links, and
constrained network optimization problems. Here, we
illustrate the frozen-time approach for handling
dynamically changing problems.

t tT

Error

Cut off solution

Frozen
time

Obtained
error

Trade off response

Chosen
T

2979

 Fig. 3: The absence of a knee on the trade-off curve
requires to choose a cut-off error value.

On the other hand, in some problems, there may not be a
clear knee on the trade-off curve. In such a scenario, a cut-
off value on the error can be assumed and a suitable cut-
off time window tT can be chosen from the curve, as
shown in Figure 3.

Cut off error

tT

Error

Frozen
time

Trade off response

Chosen
Tt

Obtained
error

Cut off solution

 The above procedure of arriving at a compromise
frozen-time will depend on the algorithm used in choosing
source-destination pairs that are to be re-optimized and
also the computational complexity of the optimization
algorithm used for the purpose. We describe a few such
algorithms used in this study.

 The concept of using the above time-varying equation
is to keep weight changes within a specific range and
repeat them periodically after every sine cycle. In a real-
world application, of course, such changes will be
recorded after every tT time and the corresponding
optimization problem will be reformulated instantly. To
find the number of errors (deviation from true optimal
path with changed weights) for each frozen-time with a
complete sinusoidal cycle, we apply each frozen-time step
many times (iterations) and then calculate the average
error for all iterations of that frozen-time window. We
applied Dijkstra’s algorithm [7] to find the optimal paths
between all nodes of the network.

We apply three optimization techniques to find the
minimum frozen-time window, which we discuss in the
following paragraphs.

 1) Method 1: The first method is to find the optimal
paths just for those source-destination pairs for which
their optimal paths from the last optimization run are
impacted by the new weight changes. In this update
method, we also ignore those source-destination pairs
which are not impacted by the weight change. The idea
came from the fact that the probability of a definite
change in optimal path of a source-destination pair that
involves an affected weight is more. However, we also
realize that sources and destinations which are not
included in the list of weights in a particular optimal path
may also be impacted by the change in a weight, simply
because the surrounding weights may offer a better path
from source to destination. This may introduce some error

(or deviation) in the new paths from their new optimal
paths. But, the implementation of the above strategy is
simple and we use this our first optimization method for
quickly finding a new set of paths after every tT time.

 2) Method 2: Method 1 is computationally fast, but
may introduce a large error, since it was concerned only
on finding optimal paths for those sources and
destinations that involved in changes in their weights and
ignored the others. In Method 2, we try to improve this
approach by using the rest of the allowable optimization
time to find the optimal paths for those paths that are not
involved with a weight change as long as it is allowed.
Here we use the complete time (G= tT) or α =1 for
optimization.

 3) Method 3: In this method, we associate a probability
with a path based on its length, since the long paths have
more probability to be impacted by a change in weight
than the short paths. Thus, in this method, we apply those
source-destination pairs that have longer paths first. Also,
instead of sorting all paths, we use a dynamic
programming approach [17] by saving the index of long
paths. By that, we reduce the actual running time before
even starting the probability method since the regular way
to find the optimal paths between all sources and
destinations needs O(n2) computations [17]. Here, we use
a matrix to save all the nodes in the network and by that
we just applied one loop instead of expensive nested
loops. We apply this method “on time” which means that
every iteration depends on the optimal paths from the
previous iteration which had an error percentage.

 We are now ready to present some results using our
proposed frozen-time approach.

IV. RESULTS
 To illustrate the working of the frozen-time algorithm
and to compare the performance of three optimization
methods proposed above, we consider a specific network
shown in Figure 4 having 20 nodes with certain initial
weights marked on the figure. This network is extended
from the original one with 6 nodes from [7] to 20 nodes.

Fig. 4: Network with 20 nodes and initial weights.

2980

Fig.6: 25% weight-changes with 150 iterations for Method 2.

There are K=380 different source-destination pairs
possible. Since the weights are the same in both forward
and backward directions, there are 190 different paths that
we would consider in our optimization process.

A. Results from Method 1

 The computational time to find all 190 paths take
0.097 sec on a specific computer used for this purpose.
First, we consider c=50% changes in the weights after
every tT time steps. However, the fast nature of Method 1
requires around 0.080 sec in subsequent iterations. After
every time steps, weights are changed and Method 1 is
applied to find new paths. These paths are then compared
with true optimal paths (obtained for the changed
network) and the number of differences in their paths is
used as an error measure. This process is continued 150
times and the error value is averaged. As shown in Figure
3, the error percentages are high. Another frozen tT time is
then considered and the procedure is repeated and the
respective error percentage is computed. Figure 3 is then
plotted with the corresponding tT and error pair.

 We can conclude from the figure that with those
frozen times that are larger than 0.016 sec there is not a
big change in the average error value. This can be
explained as follows. When a large enough time is
allowed for optimization, the algorithm gets enough time
to find most critically changed paths and hence the
average error reduces.
 The shape of the variation of tT and error is
interesting to analyze and find a suitable frozen time tT for
actual implementation. With 50% changes in weights, it
seems that the error continuously reduced with an increase
in tT. Thus, a choice of a suitable tT will depend on the
choice of an allowable error for operating the network.
This can be achieved as follows. First, a suitable
acceptable average error value (say 20% or 25%) can be
chosen beforehand. Thereafter, when an offline study is
performed and a response such as in Figure 5 is obtained,
the actual frozen time can be obtained by using the chosen
average error value from the graph.

B. Results from Method 2

 Next, we apply Method 2 with two different weight
changes. Figure 6 is plotted for c=25% weight changed
percentage of all weights in the network. We notice an
important insight in this figure. With an increase in tT, the
error percentage reduces sharply, but after around tT=48
m-sec, the change in error is small. Such a “knee|”
behavior [19] of tT and error trade-off is interesting and
provides a natural cut-off value for tT.

 Figure 7 is obtained with c=50% changes in weights.
Here too, a cut-off tT value of 50 m-sec is observed. What
a knee behavior means is that a frozen time smaller than
the cut-off time makes the error to be increasing at a fast
rate, but beyond this cut-off time, the error stabilizes and
does not change much. Thus, this cut-off time may make a
natural choice for its implementation in practice.

C. Results from Method 3

 Like in Method 2, we also apply Method 3 with two
different weight changes – 25% and 50%. Figure 8 shows
the trade-off variation between tT and error with 25%
weight changes. Figure 9 shows the same with 50%
weight changes. The results are similar to that observed
with Method 2. The optimal frozen time tT for 25% and
50% weight changes is found to be approximately 47.5 m-
sec and 49 m-sec, respectively.

 The step-like behavior in some of these trade-off
curves occurs due to that fact that although a fixed time tT
is set, when a particular source-destination pair is started
to optimize the process cannot be stopped until the
optimization task is completed. Since the pairs are chosen
at random (or according to the length), a significant
change in tT is needed to observe a substantial change in
the average error value.

 Fig. 5: 50% weight-changes with 150 iterations for Method 1.

2981

Fig. 9: 50% weight-changes with 150 iterations for Method 3.

Fig. 7: 50% weight-changes with 150 iterations for Method 2.

V. CONCLUSIONS AND FUTURE WORK
 In this paper, we have addressed the issue of
dynamic optimization a changing network for generic
alterations. Although the simulations are performed for
weight changes only, the methodology is applicable for
other kinds of changes in a network as well. The idea
proposed here is pragmatic and implementable in practice.
Although the problem may change with time more
frequently, the “frozen-time” approach constitutes the
changed problem after every tT time steps and the
resulting problem is solved. If a small value of tT is used,
the change in the problem is expected to be small, but the
allowed time for a new optimization is also small. Based
on an error measure, the frozen-time approach suggests
finding a trade-off between frozen time tT and
corresponding error measure. Thereafter, an analysis of
the trade-off response has been suggested to choose a
suitable frozen time tT. In the event of a “knee” on the
trade-off curve, a natural choice to is to choose the cut-off
time tT from the knee region.

Following conclusions can be drawn from this study:

• Finding a set of optimal paths every time there is a

change in the network is not the best
computationally tractable strategy. The use of a re-
optimization in an efficient manner is needed. In
this study, we have used an earlier proposed “frozen-
time” algorithm with three different optimization
strategies. The task in the frozen-time algorithm is to
find minimum frozen-time to achieve a reasonably
accurate solution for a problem. The approach is a
simulation based off-line optimization strategy and is
needed to be applied on a case to case basis.

• The frozen time approach has been applied to a
network with 20 nodes having a total of 190
different source-destination paths with three different
optimization algorithms.

• To arrive statistically significant results, we have

simulated a dynamically changing problem for 150
iterations of the chosen frozen time.

• Methods 2 and 3 have shown to produce trade-off

curve between tT and error measure having a knee,
thereby allowing a natural choice for the critical
frozen time window.

Based on the success of the frozen-time approach to the
weight changed network optimization problem, we
propose the following future studies.

• For the future work, we plan to suggest further

improvements on optimization methods using the
dynamic programming method to reduce the time by
saving the weights and the paths that are impacted by
them in a matrix, so we can reach them directly
without using expensive loop based methods.

• Other optimization methodologies, such as a more
efficient population-based evolutionary approach,
will also be tried.

• The frozen-time approach will be compared with

other existing dynamic optimization approaches for Fig. 8: 25% weight-changes with 150 iterations for Method 3.

2982

finding advantages and disadvantages of different
methods.

• A multi-objective dynamic network optimization

problem will be formulated and solved using the
frozen time approach. Many applications, such as
audio, video conferencing or collaborative
environments and distributed interactive simulations
have multiple QoS requirements such as bandwidth,
packet delay, packet loss, cost etc. [3]. The method
of scalarizing an objective vector into a single
composite objective function is the way of
converting the multi-objective optimization problem
into a single objective optimization problem [3].
Since in a multi-objective problem, there will be
more than one performance measure, we need to
devise a single metric from multiple measures. For
this purpose, a hyper-volume metric [20] can be
used. The idea can be used for solving asymmetric
networks for which there are at least two weights for
each connection link resulting in multiple
performance measures that must be considered for
choosing a cut-off frozen time tT.

• In addition to weight changes considered in this

study, a dynamic change in the connectivity of the
network can also be tried. As a dynamic change,
new links can be added or an existing link can be
deleted, thereby simulating availability of new routes
or “jamming” of some existing links in a network.
The three algorithms described here can be used, but
new optimization algorithms need to be devised to
find reasonable solutions faster. The existing
literature for such optimization methods can be used
with the frozen-time approach.

The above changes for different kinds of dynamic changes
in a network and the use of single and multiple
performance measures will eventually make the whole
approach a unified approach. We are undertaking these
tasks as soon as possible, nevertheless, this first study on
the usefulness of the frozen-time approach with weight
changes only in a network shows promise and gives us
confidence for such a unified study.

REFERENCES

1. Annamaria Kiraly, Dynamic Multi-Objective
Synthesis of Companies’ Renewable Biomass and
Energy Supply-Networks, Chemical Engineering
Transacations. Vol. 35, 2013.

2. Camil Demetrescu, Dynamic Graph Algorithms,
Chapman & Hall/CRC, ISBN: 978-1-58488-822-2,
2010.

3. C. Chitra, Multi-objective Optimization Solution for

Shortest Path Routing Problem, International
Journal of Computer and Information Engineering,
Vol. 4, No. 2, 2010.

4. David Alberts, An empirical study of dynamic graph
algorithms, Journal of Experimental Algorithmics
(JEA) Vol. 2, 1997.

5. Fatimah Ismail, Self Organizing Multi-Objective
Optimization Problem, International Journal of
Innovative Computing Information Control, Vol. 7,
No. 1, 2011.

6. Hsin-Yi Ma, Applying Hierarchical Genetic

Algorithm based Neural Network and Multiple
Objective Evolutionary Algorithm to Optimize
Parameter Design with Dynamic Characteristics,
Journal of Quality, Vol. 17, No. 4, 2010.

7. James Kurose, Computer Networking: A Top-Down

Approach, Fifth Edition, Addison-Wesley, 2011.

8. Kalyanmoy Deb, Dynamic Multi-Objective

Optimization and Decision-Making Using Modified
NSGA-II: A Case Study on Hydro-Thermal Power
Scheduling, KanGAL Report Number 2006008,
2007.

9. Kalyanmoy Deb, Single and Multi-Objective

Dynamic Optimization: Two Tales from an
Evolutionary Perspective, KanGAL Report Number
2011004, 2011.

10. Keehyung Kim, Multiobjective Evolutionary

Algorithms for Dynamic Social Network Clustering,
Proceedings of the 12th annual conference on
Genetic and evolutionary computation. Pages 1179-
1186 ACM New York, NY, ISBN: 978-1-4503-
0072-8, 2010.

11. Luc Wismans, Accelerating solving the dynamic

multi-objective network design problem using
response surface methods, 2nd International
Conference on Models and Technologies for
Intelligent Transportation Systems 22-24 June, 2011,
Leuven, Belgium, 2011.

12. Luc Wismans, Towards Sustainable Dynamic Traffic

Management, http://doc.utwente.nl/81665/, 2012.

13. N. Ghajarnia, Multi-Objective Dynamic Design of

Urban Water Distribution Networks, Vol. 7, No. 4,
Winter 2012 (IR-WRR), 2012.

14. P. De, Dynamic Programming and Multi Objective

Linear Programming approaches, Applied
Mathematics & Information Sciences – An
International Journal, Vol. 5, No. 2, Pages 253–49,
2011.

15. P. Deepalakshmi, An Ant Colony Based Multi-

Objective Approach to Source-Initiated QoS
Multicasting Method for Ad Hoc Networks, Int. J.
Advance. Soft Comput. Appl., Vol. 3, No. 2, 2011
ISSN 2074-8523, 2011.

2983

16. Reinhard Bauer, Batch dynamic single-source
shortest-path algorithms: An experimental study.
Experimental Algorithms, Vol. 2, Pages 1–20, 2009.

17. Thomas Cormen, Introduction to Algorithms, Third
Edition, MIT Press, 2009.

18. Xueli Liu, Dynamic Graph Shortest Path Algorithm,

WAIM 2012, LNCS 7418, Pages 296–307, Springer-
Verlag, Berlin Heidelberg, 2012.

19. Kalyanmoy Deb and S. Gupta, Understanding Knee

Points in Bicriteria Problems and Their Implications
as Preferred Solution Principles, Engineering
Optimization, Vol. 43, No. 11, Pages 1175-1204,
2011.

20. Eckart Zitzler, Lother Thiele, Marco Laumanns and
Carlos M. Fonseca and V. G. Fonseca, Performance
assessment of multi-objective optimizers: An
analysis and review, IEEE Transactions on
Evolutionary Computation, Vol. 7, No. 2, Pages 117-
-132, 2003.

21. Zhuoqing Morley Mao, Ramesh Govindan, George

Varghese, and Randy H. Katz, Route Flap Damping
Exacerbates Internet Routing Convergence.
Proceedings of SIGCOMM’02, 2002.

2984

