
 
 

 
 

 

  
 

Abstract—For a successful business model the efficient 
development and design of a comprehensive product family 
plays a crucial part in many real world applications. A product 
family as it occurs, e.g., in the automotive domain consists of a 
product platform which covers the commonalities of product 
variants and the derived product variants. While product 
variants need to be fast and flexibly adjusted to market needs, 
from manufacturing and development point of view an 
underlying product platform with a large number of common 
parts is required to increase cost efficiency. 

For the design and evaluation of optimization methods for 
product family development, in the present paper the universal 
electric motor (UEM) family problem is considered, as it 
provides a fair trade-off between complexity and computational 
costs compared to real world application scenarios in the 
automotive domain. Since especially solving this problem 
without usage of pre-knowledge comes with high computational 
costs, a cascaded evolutionary multi-objective optimization 
based on NSGA-II with concatenation of product Pareto fronts 
is proposed in the present paper to efficiently reduce 
computational time. Besides providing sets of Pareto solutions to 
the unbiased UEM family problem the effects of considering 
solutions of prior platform optimizations as starting point for 
follow-up optimizations under changing requirements are 
evaluated.  

I. INTRODUCTION 
HE efficient specification of a successful product family 
which is comprised of a set of products sharing a 
common platform, i.e. some common parts, components, 

modules, or physical dimensions, is a key strategic issue for 
many companies [1]-[3]. The automotive industry derives 
different car types, i.e. products, based on one common 
physical platform to minimize development and 
manufacturing costs. The target of a platform optimization is 
to provide a high diversity within the product family while 
maintaining a large set of common parts and dimensions. 
Within the family, each product is derived from the platform 
with an individual instantiation of the non-platform 
parameters [1]. The number of shared parameters is called 
commonality. 

Product families are distinguished into scale-based 
families, module-based families, and a combination of both 
[4]-[6]. Personal computers, e.g., are module-based families 
since they allow for a specific equipment line a combination 
of fixed parts like mainboards, power supply and casing, and 
individual parts like CPU or hard drive. Scale-based product 
families share a set of parameters instead of modules. A 
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family of electric motors may share as platform the same 
values for the diameter of the motor and the cross sectional 
area of the winding wires but vary in the length of the 
produced motors to fulfill different needs like torque output. 
Of course, many real world applications as in the automotive 
industry combine a module- and scale-based strategy.  

The economic benefits of product families are obvious. 
Components have to be developed only once and are utilized 
in multiple products. Similar products which share 
dimensions are manufactured on the same machines [3]. The 
challenging part of product family development is to define 
the optimal platform which requires a combined optimization 
of product and platform parameters. Hence, product family 
optimization usually yields a huge set of optimization 
parameters and additional flags for common parameters. By 
utilizing the commonality as an additional objective, 
multi-objective optimization approaches are applicable which 
result in Pareto sets of optimal solutions allowing the user to 
select the optimal platform and product parameters. With 
respect to commonality, two extremes exist which are called 
total platform with maximum commonality, i.e. all 
parameters are the same for all products, and null platform 
with no commonality, i.e. all parameters are optimal for each 
product. Of course the total platform provides minimal 
manufacturing costs but offers lowest performance for the 
product family, while the null platform provides the best 
performance for the product family but with highest costs [7], 
[8].  

In the literature, one-stage or two-stage optimization 
approaches are proposed which either consider pre-defined 
platform parameters or collect platform parameters in the post 
processing of an optimization [6]. Because of the above 
mentioned optimization requirements of high parameter 
number and stochastic search for the global Pareto front, 
evolutionary computation is advantageous to offer solutions 
to this framework. Taking also into account that products and 
their specifications usually change over time, these 
optimizations may also be termed robust dynamic 
optimization or optimization under uncertainty. In the ideal 
case, a superior platform allows a future integration of 
products with presently unknown exact specifications.   

In order to prepare the development, evaluation, and 
comparison of multi-objective approaches for optimization 
under uncertainty, we consider the Universal Electric Motor 
(UEM) family problem [6], [9], [10]-[12], since it provides a 
fair trade-off between complexity and computational cost. 
Since the model is based on physical equations which are well 
described in literature, the runtime of one motor evaluation is 
fast. Nevertheless, despite the fast single motor runtime, the 
generation of acceptable results for an unbiased optimization 
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in reasonable time is challenging for standard multi-objective 
optimization frameworks.  

In the present paper, we propose a cascaded evolutionary 
multi-objective optimization which utilizes a practical 
approach for product Pareto front concatenation to solve the 
unbiased UEM problem in acceptable runtime. We provide 
the results of a three-objective UEM optimization with static 
environment and with a change of product specifications.  

The paper is structured as follows. In section II, the 
underlying UEM scenario is described. Section III provides 
details on the implementation of the proposed optimization 
framework followed by a result section for the static 
environment. Effects of changes in product specifications are 
explained in section V. Concluding remarks are given in 
section VI. 

II. UNIVERSAL ELECTRIC MOTOR OPTIMIZATION 
The UEM optimization problem is widely used for product 

platform and product family optimization [6], [9], [11], [12]. 
It is based on the motor development of Black & Decker back 
in 1970 [1]. Due to regulation changes the company decided 
to reduce the amount of different electric motors for hand 
driven tools drastically. Furthermore, the motors were 
standardized to allow the production of all motor variants on a 
single production line resulting in a reduction of development 
and production costs. Inspired by the work of Black & 
Decker, Simpson et al. [9] developed a scale-based UEM 
family of 10 motors. In Fig. 1, the cross section of a UEM and 
the geometric parameterization are exemplary shown.  

 
 

Fig. 1. Cross section of a physical model of UEMi  [9] 
 
Each motor UEMi with i א  ሾ1,10ሿ consists of 8 parameters 

which are either common across the motors of the family or 
differ from motor to motor. The only strict difference 
between the motors is the torque requirement Ti. Detailed 
physical equations and parameter constraints are provided in 
[6] and [9]. The constrained optimization problem for a single 
motor UEMi is given following [6]: 

 
Find: ݔ ൌ ൛ ܰ, , ௦ܰ, , ,௪.ܣ ,௪,ܣ ,,ݎ ,ݐ ܫ ,  ൟ (1)ܮ
 
Min: ݂ሺݔሻ ൌ ሼݏݏܽܯ, െߟሽ (2) 
 

s.t.: ܪሺݔሻ  5000 ·௧௨௦  (3) 
 
 ,௧  1 (4) 
 
ሻݔሺݏݏܽܯ   2 ݇݃ (5) 
 
ሻݔሺߟ   15% (6) 
 
 ܲሺݔሻ ൌ 300 ܹ (7) 
 

 ܶሺݔሻ ൌ ሼ0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5ሽ ܰ݉  (8) 
 

The two objectives Massi and efficiency ηi of each motor 
are calculated based on the following 8 parameters: 

Nc,i, Ns,i  Number of windings for the armature and the 
stator [-] 

Awa,i, Awf,i  Cross-sectional area of the armature and field 
wire [mm2] 

ro,i, ti    Stator dimensions [mm]  
Ii     Electric current [A] 
Li     Length of motor [mm] 

 

Thus, the parameter set of the 10 motors optimization 
problem consists of 80 parameters in total subject to 
60 constraints. Nevertheless, the result of a complete product 
family optimization also requires to include the specification 
of the common set of parameters across motors. Hence, the 
performance so far calculated by mass and efficiency has to 
be extended by a fitness value which reflects the commonality 
between the products/motors inside the family. Commonality 
is handled, e.g., by a generalized commonality [6], [11], a 
product family penalty function (PFPF) [6], [7] or a simple 
count of platform variables per family [14]. Alternatively, the 
commonality is included as an additional objective which of 
course increases the dimensionality of the problem.  

III. IMPLEMENTATION OF THE UEM OPTIMIZATION 

A. NSGA-II with product family penalty function  
In [6], Simpson et al. proposed and evaluated four 

principles to solve the UEM family problem which differ in 
when platform parameters are specified, a priori or a 
posteriori, and in the realization of the optimization 
framework, two-stage or single stage approach. If prior 
knowledge is accessible, the number and/or values of the 
platform variables can be specified before the optimization. 
Of course, an a priori definition of the search space 
accelerates the optimization on the one side but might fail to 
find the desired global optima. In contrast to prior 
specification, motor families are initialized with free platform 
parameters and proper solutions are determined during the 
post processing of the optimization which nevertheless might 
contain a reasonable large set of different solutions. Thus, the 
a posteriori process requires a higher computational effort 
which is needed to produce the set of solutions while it 
maintains the attractive benefit of a higher chance to find 
globally optimal solutions.  
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With respect to implementing an optimization framework, 
two-stage or single stage approaches are distinguished. In the 
two-stage approach the values of the platform variables are 
optimized first. The optimal numbers of the variables which 
are not common between motors are neglected during this 
step and are separately optimized afterwards. In contrast, the 
single stage approach optimizes platform and individual 
parameters at once.   

Results show that the a posteriori, single stage approach is 
most promising in terms of generating highly varying Pareto 
optimal solutions [6]. The findings are based on an 
evolutionary optimization framework which implements the 
NSGA-II algorithm [13] for optimizing the motor families. In 
addition to the 8 design parameters of each motor the search 
parameter string is further extended with 8 binary switches to 
define whether a design variable is a platform or an individual 
variable across the family of motors [6]. 

Hence, the optimization problem for the family of motors 
UEMi, i א  ሾ1,10ሿ described in section II changes to: 

 
Find: ݔ ൌ ൛ ܰ, , ௦ܰ, , ,௪.ܣ ,௪,ܣ ,,ݎ ,ݐ ܫ ,  ൟ (9)ܮ
 
ݔ  ൌ ൛ݔ,ൟ (10) 
 
xcc is the vector of parameters xcc,j, j א  ሾ0,7ሿ for controlling 

the commonality of the motors. In order to include the 
commonality in the optimization, the fitness function is 
extended to 

 
Min: ݂ሺݔሻ ൌ ሼ∑ ݏݏܽܯ , ∑ െߟ ,  ሽ (11)ܨܲܨܲ
 
where PFPF is a function to reflect commonality across the 

family. The function not only rewards exact same values for 
one search design parameter across the family but also the 
similarity of the values. In [6], more details on the PFPF 
set-up are given. Fig. 2 illustrates the representation for the 
NSGA-II algorithm which is based on 88 parameters. The 
binary values in the commonality controlling gene define 
whether a parameter is a platform variable or product 
variable. If a parameter xcc,j equals 1, parameter j maintains 
the same value across all products. If the parameter xcc,j 
equals 0, each motor may have a different value. 

 
Fig. 2. NSGA-II representation as described in [6] 

 
Following the optimization framework proposed in [6], our 

initial reimplementation showed high computational costs as 
well as convergence problems. As an example, a simplified 
optimization neglecting the commonality controlling genes, 
i.e. a null platform optimization with 80 search design 

variables, took about 1.5 billion evaluations to produce an 
acceptable Pareto front for the total mass and total efficiency, 
see Fig. 3.  

 
 Fig. 3. Null platform optimization after 1.5 billion evaluations 

 
Of course, efficient seeding of the optimization with 

feasible solutions as proposed in [10] would be advantageous 
with respect to optimization time but may provide 
pre-converged solutions and local optima. Hence, for solving 
the unbiased optimization problem in reasonable 
computational time, we developed a cascaded evolutionary 
multi-objective optimization approach. In section B, the 
framework hierarchy and parameter distribution is described 
while section C details the fitness calculation by 
concatenation of product Pareto fronts.  

B. Cascaded multi-objective optimization framework 
The cascaded optimization approach which finds the 

Pareto front without the need of seeding required an 
adaptation of the optimization setup which is illustrated in 
Fig. 4. The optimization is split into an outer platform/product 
family optimization, called outer optimization loop, and 
multiple inner optimization loops for each motor. 

For the outer platform optimization the problem is now 
given as: 

 
Find: ݔ ൌ ൛ ܰ, ௦ܰ, ,௪ܣ ,௪ܣ ,ݎ ,ݐ ,ܫ  ൟ (12)ܮ
 
ݔ  ൌ ൛ݔ,ൟ (13) 
 
Min: ݂ሺݔሻ ൌ ൛∑ ݏݏܽܯ , െ ∑ ߟ , െ ∑  ,ൟ. (14)ݔ
 
The two objectives inner optimization problem subject to 

the constraints (3) to (8) is given as: 
 
Find: ݔ ൌ ൛ ܰ, , ௦ܰ, , ,௪,ܣ ,௪,ܣ ,,ݎ ,ݐ ܫ ,  ൟ (15)ܮ
 
Min: ݂ሺݔሻ ൌ ሼݏݏܽܯ, െߟሽ (16) 
 
 The outer loop maintains the common platform 

parameters, i.e. the number (xcc) and values (xc) of platform 
parameters. The inner loops inherit the common platform 
parameters and optimize the non-common parameters of xi 
for each of the 10 motors to result in 10 sets of Pareto 
solutions for mass and efficiency. Following the definitions 

1 1 1 1 1 1 0 0 1062 54 0.38 0.24 2.59 6.66 3.39 0.86

1062 54 0.38 0.24 2.59 6.66 3.62 1.53 1062 54 0.38 0.24 2.59 6.66 5.82 2.95… 

Commonality controlling ݔ  Design variables ݔଵ of UEM1 

Design variables ݔଶ of UEM2 Design variables ݔଵ of UEM10
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given in [6], the complete cascaded optimization is a 
single-stage, a posteriori approach. The advantage of the 
cascaded optimization is the decoupling of the search 
parameters. The outer loop maintains 16 search parameters, 
while the inner loops have a maximum of 8 parameters for 
each single motor. 

The commonality fitness values are calculated in the outer 
loop by a negative sum of the elements of the commonality 
controlling genes vector ݔ  in a strict binary approach [14]. 
In difference to the product family penalty function in [6] this 
calculation rewards commonality across all products of a 
family.  

Of course, depending on the commonality controlling gene 
in the outer loop the number of search parameters for the 
inner loop may become less than 8, i.e. reduced by all 
parameters j where xcc,j = 1. In the extreme case of a total 
platform, i.e. where xcc = {1,1,1,1,1,1,1,1}, the inner 
optimization is not executed at all, because all values are 
inherited from the corresponding platform, i.e. xi = xc. 

In contrast to the benefit of fewer search parameters in the 
inner optimizations, a huge amount of independent inner 
optimizations has to be executed. Nevertheless, experiments 
have shown that this approach produces product families 
close to the optimal Pareto front quicker than an approach 
which optimizes all parameters for each motor at once. This is 
especially true for product families with a small amount of 
common platform variables. Product families with a platform 
coming close to the total platform need more time to converge 
to the optimal Pareto front, because the outer platform 
optimization has to find feasible platform parameters sets 

first. The adapted representation is shown in Fig. 5. In 
contrast to [11] a restricted commonality is applied. 

 
Fig. 5. Representation of the cascaded optimization approach 

 
Outer and inner loops are based on the NSGA-II algorithm 

with standard operators for simulated binary crossover and 
polynomial mutation. Besides platform design variables the 
outer loop contains also parameters determining 
commonality, i.e. the commonality controlling gene. 

The implementation of NSGA-II is based on the Shark 2.3 
library [15]. Since the implementation supports continuous 
parameters only, the binary commonality switches and the 
integer motor parameters are stored as continuous parameters. 
The binary switch parameters determining commonality are 
corrected to 0 or 1 after each mutation. If a mutation of a 
commonality parameter is detected during optimization the 
commonality parameter is switched to its opposite value. Our 

Commonality controlling ݔ  

Outer Optimization loop

1 1 1 1 1 1 0 0 1062 54 0.38 0.24 2.59 6.66 3.39

1062 54 0.38 0.24 2.59 6.66 3.62 1.53

1062 54 0.38 0.24 2.59 6.66 5.82 2.95

Platform design variables ݔ 

Design variables ݔଵ of UEM1: 

Design variables ݔଵ of UEM10:

Inner Optimization loops for each motor 

0.86

Fig. 4. Cascaded evolutionary multi-objective optimization for the UEM product family problem 
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experiments showed that this method in combination with the 
polynomial mutation [16] leads to a reasonable switching 
rate. The integer values are always stored as floats and 
rounded before the motor calculations.  

C.  Product Pareto front concatenation 
In section B, the first part of the proposed cascaded 

evolutionary multi-objective optimization approach has been 
described which splits the optimization in an outer and an 
inner loop and distributes the parameters accordingly. For a 
given platform, Pk, 10 inner loops are executed which 
optimize mass and efficiency for each torque specification Ti. 
Hence, the inner loops result in 10 Pareto fronts, one for each 
UEMi, exemplary illustrated by blue lines in Fig. 6. To 
provide the result for Pk, these 10 Pareto fronts need to be 
accumulated into one Pareto front. Since the accumulation by 
a full combinatorial search is extremely expensive, we 
suggest two practical approaches for Pareto front 
concatenation to get a set of families which is close to the 
global Pareto front of all theoretic possible combinations. 

In the first approach, the motors of each UEMi Pareto front 
are sorted with respect to one objective. Due to the 
characteristics of Pareto optimal solutions the second 
objective is then sorted counter wise. The first motor family is 
calculated by adding the first motor of each front. The second 
family inherits each second motor and so on. This approach is 
limited to a two dimensional objective space and assumes an 
equal number of Pareto solutions on each front. 

A second approach called fan approach chooses motors for 
each family based on a geometric method. First, two families 
are generated by combining the motors of each UEMi Pareto 
front which either have the maximum or minimum 
performance in one objective. Based on these two families a 
reference point is computed, (-0.4, 1.9) in Fig. 6. This 
reference point allows the calculation of a fan like structure. 
For each ray, the closest motor of each Pareto front is chosen 
to be part of the family represented by the corresponding ray. 

 
Fig. 6. Product Pareto front concatenation. The family values are averaged 

by the number of motors per family. 
 
In Fig. 6, the results of approach 1 (*) and approach 2 (o) 

are evaluated against a large set of solutions (●) which are 

based on combinations of 10 motors randomly chosen from 
each front. Both approaches are very close to the best front 
spanned by the randomly chosen motors. The fan approach 
delivers a slightly better distribution along the Pareto front 
especially in the lower right part where the distribution of 
solutions of the UEMi is not very well balanced. 
Nevertheless, experiments have shown that the sort approach 
is sufficient for the present UEM optimization and has been 
chosen due to its lower computational costs. 

Of course, after the step of product Pareto front 
concatenation for each platform Pk, which has been used to 
trigger the inner loops, a set of families is now available, i.e. 
the number of candidates which form the selection pool has 
increased. Thus, to avoid early dominance of a single 
platform the ratio between the total number of candidates and 
the candidates per platform has to be sufficiently high, from 
our experience greater than 10.  

All sets of families which have been created by Pareto front 
concatenation for each Pk in the current generation are 
collected in a single solution set and have been assigned a 
third fitness value reflecting the commonality. This set is then 
used for the standard NSGA-II selection step in the outer 
loop. The comparison between the cascaded approach and the 
approach proposed in [6] shows that the individual motor 
parameters are decoupled from the platform parameters. The 
cascaded approach generates new parameter values in each 
iteration of the outer loop. This follows the idea that products 
are instantiations of the scaling variables and therefore should 
be reinitialized and optimized for each platform separately. 

IV. OPTIMIZATION RESULTS 
Based on the proposed optimization set-up described in 

section III we conducted a cascaded evolutionary 
three-objective optimization of the unbiased UEM family 
problem. The size of the parent population of the outer loop 
has been initialized with µfam = 80 while the offspring 
population was chosen by λfam = 180 respectively. For the 
inner loop, we set µprod = 12 and λprod = 20 respectively. Thus, 
the ratio between the total number of candidates and the 
candidates per platform is given by 

 
           

ఒೌఓೝ ൌ 15  (17) 

 
Fig. 7 illustrates the results of the optimization run. It can 

be seen that solutions close to the Pareto front are found very 
fast. As long as less than 7 platform parameters are fixed for 
the family products, the inner optimizations are capable of 
producing reasonably good solutions using the remaining 
individual product parameters. In case of 6 fixed platform 
variables and 2 remaining individual variables, the 6 fixed 
variables already need to be optimized to reasonable values in 
the outer optimization. The total platform with 8 fixed 
platform variables of course never produces valid solutions 
because all UEMi are identical and at least 9 motors violate 
the torque constraint Ti. 

Fig. 7 shows the Pareto front (●) produced with 500 outer 
generations and 10000 generations for each single motor 
optimization. The results for a commonality of 7 and 8 are not 
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shown, because of the bad fitness values resulting from 
constraint violations as explained above.  

One remarkable result of the optimization is the dominance 
of solutions with a commonality between 3 and 5. Even 
solutions with a higher commonality provide similar fitness 
values for mass and efficiency compared to solutions with a 
lower commonality. Thus, there is a high chance that they 
dominate solutions with a lower commonality. This is due to 
the fact that the corresponding single motor optimizations 
have to deal with less search variables if the commonality is 
high, while the number of generations is kept constant. To 
overcome this domination and achieve a well-balanced Pareto 
front, we suggest to couple the number of search variables of 
the inner optimizations to the number of generations in future 
optimizations. As a consequence, single motor optimizations 
with lower commonality are given more iterations for 
convergence. Thus, more solutions are found which are 
compatible during the Pareto sorting of the NSGA-II. 

 
Fig. 7. Optimization results. Each dot marks one of approx.40.000 product 

family solutions. Red dots mark the Pareto dominant solutions.  
Com.: 0 to Com.: 6 show cross sections of the 3D Pareto front 

 
The results shown in Fig. 7 are based on 1.5 billion 

evaluations. Compared to the initial set-up explained in 
section III the number is the same, but now the complete 

commonality part is also added and thus the complexity is 
higher and the search space much larger. Besides that, the 
optimization has reached the optimal Pareto front a lot faster 
and used the evaluations to spread along the front. The total 
computation time using 5 CPUs with 2.4GHz is about 8 hours 
if the families consist of all 10 motors. 

V. VARIATION OF PRODUCT SPECIFICATIONS 
In real world product family development the complete 

product portfolio is usually unknown at the time of platform 
optimization. The introduction of newly designed products or 
products with updated specifications requires a re-design of 
the underlying platform. As a solution to this dynamic 
process, the platform optimization can either be restarted 
from scratch or using the solutions of a prior optimization. 
The expected benefit of former results usage is a reduced 
optimization time which is especially important if 
computational costly simulations are required to determine 
the product performance as, e.g., finite element analysis or 
computation fluid dynamic simulations for structural or 
aerodynamic design problems. On the contrary, the chances 
of pre-convergence to a local optimum increase especially if 
the variation of the new/updated product specification is 
large. To evaluate both effects in the UEM problem, 
experiments using the cascaded optimization framework have 
been carried out to study the difference in convergence 
behavior for optimizations from scratch and optimizations 
based on prior results. 

A. Problem set-up 
The original UEM problem comprises 10 single motors 

distinguished by the torque requirements. These torque 
values Ti are 

 ܶିଽ ൌ ൜0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5 ൠNm.  (18) 
 
We extended the framework to allow an optimization of a 

subset of these motors. The subset of motors is specified by a 
vector containing the requested torque values. For example, if 
only UEM1, UEM2 and UEM3 are considered, the torque 
requirements vector reduces to 

 
 ଵܶିଷ ൌ ሼ0.1, 0.125, 0.15ሽNm. (19) 
 
For simplicity, we call this set-up UEM123 for which an 

initial set of Pareto solutions is computed using the cascaded 
optimization approach for 500 iterations. This set UEM123500 
defines the initial solution which is used to initialize 
follow-up optimizations with modified specifications. The 
idea behind the follow-up optimizations is to extend the initial 
motor specification UEM123 by two additional motors D and 
E. By changing the number of products the specifications 
change because the platforms UEM123500 which are optimal 
for UEM123 need to be adapted to satisfy the additional 
constraints. The modified specifications are called 
UEM123+DE or short 123+DE. So an experiment with 
additional motors 6 and 7 is called 123+67. As explained 
above, each additional experiment is carried out in two ways. 
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On the one hand we optimized from scratch for 1000 
generations and called these experiments with the extension 
_1000. On the other hand we utilized an initialization with the 
UEM123 platform solution set UEM123500 and optimized for 
another 500 iterations to have the same overall generation 
number. These experiments are tagged with _restart. All 
optimization runs were executed 50 times with different 
random seeds to allow statistical analysis. The statistical 
analysis has been carried out using a t-test at a 5% 
significance level. 

To evaluate the optimization progress and the convergence 
behavior, the S-Metric-Hypervolume [17] is calculated for 
each generation. The reference point is set manually to 100 
for each objective and kept constant for all setups. It is 
important to note that the absolute values of the 
hypervolumes are only comparable between set-ups 
consisting of the same motors, i.e. 123+45_1000 is only 
comparable to 123+45_restart, since the sum of efficiency 
and sum of mass of course differs depending on the chosen 
specification.  

We suppose that a restart of the optimization with former 
optimization results is only beneficial if the new 
specifications are in a similar range to the initial UEM123 
setup. The similarity is estimated based on the torque 
requirements of each motor. If a similar motor is added to the 
family, we assume a restart with prior results is faster and 
produces better solutions within fewer generations. With 
decreasing similarity an optimization from scratch should 
become superior because if the added motors are too different 
from the initial setup, the restarted optimization will more 
likely converge to local optima. To increase the difference of 
the specifications we added two motors UEM10 and UEM11 
with torque requirements T10=0.75 and T11=1.0. Thus: 

 

 ܶିଵଵ ൌ ൜0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.75, 1.0 ൠNm. (20) 
 

B. Experimental results 
Fig. 8 provides an overview on the average performance 

over 50 runs of the different optimizations. Colored lines 
mark optimization runs from scratch while dashed lines mark 
optimization runs with UEM123500 initialized solutions. We 
added the dashed lines in two ways. One set starts at 
generation 0 to compare the initial optimization speed 
between both runs and one starts at generation 500 to 
compare the final values at generation 1000.  

The plot in Fig. 8 shows that the final results of runs 
123+45 to 123+89 are nearly identical for both set-ups. 
Optimization runs 123+45_restart up to 123+78_restart show 
a higher initial optimization speed since the initial solutions 
UEM123500 are already good initial estimations. With 
increasing difference of specifications, i.e. higher torque 
requirements, the initialization has no advantage. 
123+89_restart has a similar performance as 123+89_1000, 
while 123+910_restart and 123+1011_restart even perform 
poorly. Both runs seem to be stuck in local optima and lose 
drastically compared to the runs carried out from scratch. 

  

 
Fig. 8. Experimental results of the cascaded multi-objective optimization 

with and without pre-initialized solutions 
 

To improve the readability of the results, we normalized 
the averaged hypervolumes HVABC+DE_1000,ave,generation and 
HVABC+DE_restart,ave,generation of all runs. Thus, at first for each 
optimization set-up which had been started from scratch the 
hypervolumes at generation 0 have been averaged over all 50 
runs, and called HVABC+DE_1000,ave,0, i.e. HV123+45_1000,ave,0 for 
run 123+45. The idea is that these hypervolume values 
indicate a baseline quality which the Pareto solutions already 
provide just with randomly chosen initial parameters. For 
each set-up the averaged hypervolumes are now adjusted for 
each generation by 

 
HVABC+DE_1000,adj,generation =  
      HVABC+DE_1000,ave,generation – HVABC+DE_1000,ave,0          (21) 
 

HVABC+DE_restart,adj,generation =  
      HVABC+DE_restart,ave,generation – HVABC+DE_1000,ave,0      (22) 
 
Finally the performance is calculated by 
     
HVABC+DE,generation =  
      HVABC+DE_restart,adj,generation /HVABC+DE_1000,adj,generation  (23) 

 
TABLE I 

HVABC+DE,GENERATION 
 

 

123+45 1,06 1,03 1,02 1,02 1,02 1,02 1,02 1,02 1,01 1,01

123+56 1,09 1,05 1,04 1,03 1,02 1,01 1,01 1,01 1,01 1,00

123+67 1,07 1,03 1,02 1,01 1,01 1,01 1,01 1,01 1,01 1,01

123+78 1,09 1,05 1,05 1,04 1,03 1,03 1,03 1,03 1,03 1,02

123+89 1,00 1,00 0,99 0,99 0,99 1,00 1,00 1,00 1,00 1,00

123+910 0,84 0,84 0,84 0,84 0,84 0,83 0,83 0,83 0,83 0,84

123+1011 -0,36 -0,23 -0,18 -0,15 -0,13 -0,11 -0,10 -0,08 -0,07 -0,07

Generation 50 100 150 200 250 300 350 400 450 500
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Fig. 9. Optimization comparison of set-ups 123
 
The results are given in Table I and visu
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advantage of up to 9 %. From gene
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set-ups perform equally well. Initializin
reduces the performance by 20 % which i
123+1011. In this run the pre-initialized so
compared to just randomly chosen values. It
that both runs were stuck in local optima sin
not catch up to the optimization runs carried

VI. CONCLUSION 
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come with a high simulation cost which
development difficult. In particular, platfo
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computational runtime. Because of its p
platform optimization domain, it is an ad
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optimization approaches. We also think
interesting problem from the point of v
optimization by exchanging the motor sp
time. 

For solving the unbiased UEM proble
computational time, in the present pa
evolutionary multi-objective optimization i
features of the framework are the hierarch
loops for platform parameter optimiza
optimization based on NSGA-II as well as t
of Pareto fronts. Due to the strict separatio
and product parameters, the developed alg
find product families close to the optim
quickly. An evolutionary three-objecti
including commonality as objective sh
performance of the proposed framework. 

Based on the proposed optimization meth
a change in system requirements have b
verify the applicability of the framework. In
underline the intuitive hypothesis that th
pre-initialization with optimal prior soluti

 
3+45 to 123+910 

ualized in Fig. 9. 
ed with a grey 
tated above. In the 
5 to 123+78 the 
set provides an 
eration 200 the 

similar and the 
r run 123+89 both 
ng run 123+910 
is even worse for 
olutions are worse 
t can also be seen 
nce both runs can 

d out from scratch.   

omotive industry, 
mulations, usually 
h makes method 
orm optimization 

ations if we strive 
oblem promises to 

complexity and 
popularity in the 
dequate choice as 
tudy of different 
k that it is an 
view of dynamic 
pecifications over 

em in reasonable 
aper a cascaded 
s proposed. Main 

hical optimization 
ation and motor 
the concatenation 

on of the platform 
gorithm is able to 
mal Pareto front 
ive optimization 
hows the good 

hod, the effects of 
een evaluated to 
nitial experiments 
he advantage of 
ion sets vanishes 

with increasing variations in 
Nevertheless, changing product 
lifetime of a platform play of course 
applications since the efficiency o
increases if it provides the capacity
dynamic and uncertain environment

ACKNOWLEDGM

The authors cordially thank P
Simpson, Department of Industr
Engineering, Pennsylvania State U
support in setting up the universal el

REFERENCE

[1] M. H. Meyer and A. P. Lehnerd, “Th
building value and cost leadership,” Ne

[2] M. E. McGrath, “Product strategy for hi
to achieve growth, competitive advantag
Professional Pub., 1995. 

[3] D. Robertson and K. Ulrich, “Planning
Management Review, 1993. 

[4] T. W. Simpson, Z. Siddique, and J. R. 
family development,” Springer-Verlag N

[5] S. Chowdhury, A. Messac, and R. A. K
platform planning (CP3) framework,” 
vol. 133, 2011. 

[6] T. W. Simpson, Zahed Siddique, and J. (
and Product Family Design Methods
Books, 2010. 

[7] T. W. Simpson and B. S. D’Souza, 
platform commonality within a produc
genetic algorithm,” Concurrent Engi
119–129, 2004. 

[8] R. Fellini, M. Kokkolaras, P. Papala
“Platform Selection Under Performance
Product Families,” Journal of Mechani
524, 2005. 

[9] T. W. Simpson, J. R. Maier, and F. Mis
method and application,” Research in e
1, pp. 2–22, 2001. 

[10] S. V. Akundi, T. W. Simpson, and P. M
optimization for product platform and
genetic algorithms,” 2005. 

[11] A. Khajavirad, J. J. Michalek, and T
decomposed multiobjective genetic al
product platform selection and produc
generalized commonality,” Structu
Optimization, vol. 39, no. 2, pp. 187–20

[12] D. Kumar, W. Chen, and T. W. Simpson
product family design,” International Jo
vol. 47, no. 1, pp. 71–104, 2009. 

[13] K. Deb, A. Pratap, S. Agarwal, and T.
multiobjective genetic algorithm: 
Computation, IEEE Transactions on, vo

[14] A. Khajavirad and J. J. Michalek, “
approach for solving the joint product
design problem using decompositio
Engineering Technical Conferences and
Engineering Conference, p. 17, 2007. 

[15] Igel, Christian, Verena Heidrich-Meis
"Shark." The Journal of Machine Lear
2008. 

[16] K. Deb and D. Deb, “Analyzing Mutatio
Genetic Algorithms,” KanGAL Report 

[17] H. Ishibuchi, N. Tsukamoto, Y. 
“Indicator-based evolutionary alg
approximation by achievement scalariz
of the 12th annual conference on
computation, pp. 527–534, 2010. 

 

product specifications. 
requirements over the 
a major role in real world 

of a platform drastically 
y to be evolvable within 
s. 

MENT 
Prof. Dr. Timothy W. 
rial and Manufacturing 
University for his kind 
lectric motor scenario.  

S 
he power of product platforms: 
w York, NY, 1997.  
igh-technology companies: how 
ge, and increased profits,” Irwin 

g for Product Platlorms,” Sloan 

Jiao, “Platform-Based product 
New York Inc., 2010. 

Khire, “Comprehensive product 
Journal of Mechanical Design, 

(Roger) Jiao,” Product Platform 
s and Applications,” Gardners 

“Assessing variable levels of 
t family using a multiobjective 
neering, vol. 12, no. 2, pp. 

ambros, and A. Perez-Duarte, 
e Bounds in Optimal Design of 
ical Design, vol. 127, no. 4, p. 

stree, “Product platform design: 
engineering Design, vol. 13, no. 

M. Reed, “Multi-objective design 
d product family design using 

T. W. Simpson, “An efficient 
lgorithm for solving the joint 
ct family design problem with 
ural and Multidisciplinary 
01, Nov. 2008. 
n, “A market-driven approach to 
ournal of Production Research, 

 Meyarivan, “A fast and elitist 
NSGA-II,” Evolutionary 

ol. 6, no. 2, pp. 182–197, 2002. 
“A single-stage gradient-based 
t family platform selection and 
on,” in International Design 
d Computers and Information in 

sner, and Tobias Glasmachers. 
rning Research 9, pp. 993-996, 

on Schemes for Real-Parameter 
Number 2012016. 

Sakane, and Y. Nojima, 
orithm with hypervolume 

zing functions,” in Proceedings 
n Genetic and evolutionary 

3191




