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Abstract—This paper proposes a growing partitional clustering
method based on particle swarm optimization (PSO) namely
PSOGC for handling data with non-spherical or non-linearly sep-
arable distribution. Particularly, PSOGC uses PSO to optimize
the cluster centers. In each iteration of PSO, the particles encod-
ing candidate cluster centers are evolved according to their social
and personal knowledge. Given the candidate cluster centers, a
growing strategy increasingly absorbs nearby data samples into
the corresponding cluster based on k-nearest neighbor graph.
The fitness of each particle is evaluated in terms of intra-cluster
connectivity and inter-cluster disconnectivity of the resultant
clustering. The combination of PSO and growing strategy ensures
the stability of global search and the robustness of partition on
data of different non-spherical shapes. Experimental results on
six synthetic and three UCI real-world data sets demonstrate the
efficiency of PSOGC.

I. INTRODUCTION

CLUSTERING is one of the main tasks of knowledge
discovery to identify inherent groups within a certain

set of data. Clustering algorithms are mainly designed to
group samples such that the similarity of samples in the
same cluster are maximized while in different clusters are
minimized. Ideally, a clustering algorithm should be simple,
efficient and capable of dealing different cluster shapes [1].

K-means [2] is one of the most popular partitional clustering
algorithms used in the community. It is easy to implement
and efficient in obtaining a single reasonable partition of
various data. Yet, K-means still suffers from drawbacks like
the demand of a predefined number of clusters, sensitivity to
initialization, no defense against irrelevant features, and in-
capability of handling non-spherical or non-linearly separable
data distribution. Many methods have been proposed to solve
the drawbacks of K-means. For example, Cheung [3] intro-
duced a rival-penalised mechanism to K-means for penalizing
incorrect clustering and deciding the number of clusters auto-
matically. Population-based stochastic optimization techniques
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of powerful global search capability, such as particle swarm
optimization (PSO) [4], [5], have been combined to K-means
to alleviate the sensitivity of the clustering to the initialization.
Feature weighting methods were also introduced to K-means
to distinguish relevant and irrelevant features by assigning
larger weights to relevant features [6]. To enable K-means to
deal with non-linearly separable data, kernel K-means [7] was
proposed to map data points from the original input space to a
higher dimensional and more separable feature space through
a nonlinear transformation.

In this study, we focus on solving the issues of sensitiv-
ity to initialization and non-spherical/non-linearly separable
distribution, and accordingly propose a growing partitional
clustering method based on PSO namely PSOGC. Particularly,
PSO is applied to optimize the locations of cluster centers
and a growing strategy based on k-nearest neighbor graph
is proposed to generate clusters from the centers encoded in
the PSO particles. The fitness of each particle is evaluated
with a modularity-like measure in terms of both intra-cluster
connectivity and inter-cluster disconnectivity of the resultant
clustering. The method is designed to take advantages of the
global search capability of PSO and non-linearly clustering
capability of the growing strategy. PSOGC is evaluated on
six synthetic data sets and three UCI data sets. Experimental
results show that it is able to detect various cluster shapes
efficiently and robustly.

The remainder of this paper is structured as follows. Section
II describes the details of PSO clustering and the proposed
PSOGC, Section III presents the experimental results of the
algorithm on both synthetic and real-world data sets, and
Section IV concludes this study.

II. METHODS

Before describing the proposed PSOGC, the basic ideas
of PSO and PSO-based clustering are briefly introduced as
follows.

A. PSO and PSO-based Clustering

Inspired by the swarm behavior of bird flocking and fish
schooling, PSO was first proposed by Kennedy and Eberhart
[8] in 1995 as a population-base stochastic algorithm to handle
complex optimization problems by exploiting the simulations
of social interaction instead of the purely individual cognition.
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In a conventional PSO, a swarm of individuals, namely
particles, cooperate and evolve on the social behavior to search
for the global optimum in the D-dimensional search space.
Each particle records three pieces of information including
the current position xi = (xi,1, xi,2, ⋅ ⋅ ⋅ , xi,D), the velocity
vi = (vi,1, vi,2, ⋅ ⋅ ⋅ , vi,D), and the previous best position
pi = (pi,1, pi,2, ⋅ ⋅ ⋅ , pi,D). During the evolution, each particle
is updated with the core formulae as follows:

vt+1
i,d = !×vti,d+c1×r1×(pti,d−xti,d)+c2×r2×(ptg,d−xti,d)

(1)

xt+1
i,d = xti,d + vt+1

i,d (2)

where the superscript t indicates the current number of it-
eration; vti,d and xti,d are the d-th dimensions of vi and xi,
respectively; pti,d is the d-th dimension of the personal best
(pbest) of particle i; ptd,g is the d-th dimension of the global
best (gbest); ! is an inertia weight introduced by Shi et al.
[9] to balance the exploration and exploitation of PSO; r1
and r2 are uniformly distributed random numbers in [0,1]; c1
and c2 are acceleration coefficients to determine the balance
between the influence of pbest and gbest. PSO has attracted
increasing interest of scientists from various research areas
including clustering due to the simplicity of implementation,
few parameters, and efficiency [10], [11].

To use PSO for clustering, the key issues are particle
encoding and fitness evaluation. Let S = {s1, ⋅ ⋅ ⋅ , sl, ⋅ ⋅ ⋅ , sn}
be a set of n objects to be clustered, m denote the dimension
of each object, i.e., the length of each data vector, Nc be
the number of clusters to be formed, and Ci,j denote the j-
th cluster in i-th particle. Each single particle is designed to
represent the candidate Nc cluster centroids, i.e., each particle
xi is constructed as xi = (zi,1, ⋅ ⋅ ⋅ , zi,j , ⋅ ⋅ ⋅ , zi,Nc), where
zi,j refers to the cluster centroid vector of Ci,j . The fitness
of a particle xi can be easily measured with the mean square
error:

MSE =

∑Nc

j=1 [
∑
∀sl∈Ci,j

d(sl, zi,j)/∣Ci,j ∣]
Nc

(3)

where d(⋅, ⋅) is a distance metric of two vectors and ∣Ci,j ∣
is the number of objects belonging to cluster Ci,j , i.e. the
frequency of that cluster.

B. The Growing Clustering Based on PSO

Traditional K-means and PSO clustering work under the
assumption of mixture of “spherical” Gaussian distribution
model to ensure linear separableness. Pointing at nonlinearly
separable data sets, a few solutions have been proposed, e.g.,
the kernel-based method [12], multi-exemplar clustering [13],
and graph-based method [14], [15], [20]. These methods could
somehow solve the problem, but most of them need prior
knowledge specific for the target data sets. For example, one
should learn the knowledge of a data set to choose a suitable
kernel function in kernel-based clustering method. In multi-
exemplar clustering, domain knowledge would be needed to
tune the parameters crucial to build the multi-exemplar-model.

Spectral clustering, based on graph theory, may have some
challenges in calculating the eigenvalues and eigenvectors
when the number of samples is large.

Inspired by the idea of graph based-method but avoiding
complicated eigenvector calculation, we propose the PSOGC
algorithm which is a combination of PSO-based clustering and
a novel cluster growing strategy. The details of PSOGC are
provided as follows.

As the intuitive goal of clustering is to divide the data
samples into groups such that samples in the same group
are similar and samples in different groups are dissimilar
to each other, similarity graph G = (V,E) is a suitable
form to represent the relevance between samples, especially in
nonlinear separable cases. Each vertex in this graph represents
a data point si. Two vertices are connected if the similarity sij
between the corresponding data points si and sj is positive or
greater than a certain threshold, and the edge is weighted by
sij .

There are several popular constructions to transform a given
set {s1, ⋅ ⋅ ⋅ , sn} of data points with pairwise similarities sij
or pairwise distances dij into a graph [15]. In this study, the
k-nearest neighbor graph is used. Firstly, an affinity matrix
A ∈ ℝ

n×n is defined with element aij = d(si, sj) reflecting
the similarity between si and sj , where d(⋅, ⋅) is the widely
used Euclidean distance. Then the k smallest elements in each
column are set to 1 (forming a directed edge from si to sj),
leaving others to 0. In this way, the affinity matrix degenerates
to a binary k-nearest neighbor graph-based sparse matrix B.

Fig. 1. Process of growing clustering.

Based on the matrix B and a set of candidate cluster
centers, a growing method kicks in to group the samples into
corresponding clusters. As shown in Fig. 1, at the beginning of
the growing method, the Nc samples closest to the candidate
cluster centers (one for each center) are selected as seedlings
to grow their corresponding clusters. Then the k data samples
nearest to each seedling are categorized to the corresponding
cluster. In this step, at most (k + 1)Nc samples are affected.
Afterward, the method searches in the sparse matrix B for new
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samples with direct connection to the samples that have been
clustered, and then each identified new sample is grouped to
the corresponding cluster that has the most edges connected
to it. Equivalently, for a non-grouped sample si, we calculate
its connections to a cluster Cj using (4):

L(si, Cj) =
∑

c∈Cj

Bsi,c, j = 1 . . . Nc (4)

Find out the cluster Cjmax such that jmax =
argmaxL(si, Cj) and let si join Cjmax. The procedure
repeats until all samples are grouped. The cluster growing
procedure is summarized in Algorithm 1.

Algorithm 1 Procedure of growing method
1: Input: a candidate cluster center vector xi =

(zi,1, zi,2, ⋅ ⋅ ⋅ , zi,Nc) and the matrix B
2: Choose Nc samples closest to the candidate cluster centers

(one for each center) as seedlings.
3: for i = 1 to n do
4: if si is not grouped then
5: Find jmax = argmaxL(si, Cj) based on (4);
6: Group si to Cjmax;
7: end if
8: end for

The growing method can generate clusters from candidate
cluster centers, yet the cluster centers should be optimized by
PSO. We follow the PSO-based clustering introduced in the
previous section, except that a new fitness function is defined
to evaluate the clustering generated from the candidate centers
encoded in each particle. Particlarly, the fitness function is
defined as follows:

fitness =

∑
i L(Ci, Ci)

n2
−
∑

i L(Ci, Ci)

vol(B)
(5)

where Ci = C − Ci is the complement of Ci,vol(B) =∑
i,j Bi,j ,

∑

i L(Ci,Ci)

n2 represents the connection between dif-
ferent clusters and −

∑

i L(Ci,Ci)

vol(B) represents the disconnection
between samples within same clusters. Lower fitness indicates
higher quality of the particle. The proposed PSOGC algorithm
is summarized in Algorithm 2:

Algorithm 2 Procedure of PSOGC
1: Input: a data set S, the number of cluster Nc, and k;
2: Randomly initialize the position and velocity of each

particle;
3: Generate the matrix B;
4: while stopping criteria are not satisfied do
5: Update the velocity and position of each particle ac-

cording to (1) and (2);
6: Perform the growing clustering in Algorithm 1 for each

particle vector;
7: Evaluate the particles based on (5);
8: Update pbest and gbest;
9: end while

III. EXPERIMENT RESULTS AND DISCUSS

A. Data sets
To test the performance of PSOGC, six synthetic data (SD)

sets and three real-world UCI data sets are used. The synthetic
data sets are plotted in Fig. 2. Among them SD1, SD3, SD4
and SD6 are nonlinearly separable. SD2 is linearly separable,
but the non-spherical shape distribution makes it annoying to
clustering algorithms. SD5 has four clusters within connection
between them. As three of the most widely used UCI data
sets, Iris, Wine, and Seeds are considered as the real-world
benchmark to test the algorithms. The properties of the all
data sets are summarized in Table I.

TABLE I
DATA SETS FOR CLUSTERING

Dataset Number of Number of Number of

samples attributes clusters

Iris 150 4 3

Wine 178 13 3

Seeds 210 7 3

SD1 400 2 2

SD2 650 2 4

SD3 266 2 3

SD4 400 2 2

SD5 1000 2 4

SD6 400 3 2

B. Evaluation Measure
The clustering result can be evaluated in terms of inter-

and/or intra- cluster distance, which is also known as internal
evaluation. Internal evaluation criteria are indispensable when
there is no information of the real clustering. However, when
the class labels of the data sets are known, external criteria
could provide more accurate evaluation of the clustering result.
In the study, one of the most widely used external evaluation
measure, Rand Index [16], is used to evaluate the performance
of the clustering algorithms. Let C = {C1, C2, ⋅ ⋅ ⋅ , Cj}
be the set of actual clusters in the data set and C ′ =
{C1

′, C2
′, ⋅ ⋅ ⋅ , Cj

′} be the set of j clusters generated by a
clustering algorithm. Given a pair of points (Si, Sj) in the
data set, we refer to it as

1) SS if both points appear in the same cluster in C and
also in the same cluster in C ′,

2) DD if the two points appear in two different clusters in
C and also in different clusters in C ′.

Check all point pairs in a data set, and let
∑
SS and∑

DD record the number of the appearances of SS and DD,
respectively. The Rand Index is calculated as

RI =
2(
∑
SS +

∑
DD)

n(n− 1)

RI takes value in [0, 1] and a higher value indicates a more
accurate clustering.
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Fig. 2. Synthetic Data

C. Parameter Setting

A series of experimentations were performed to evaluate
the parameter setting of PSOGC and also considering the
suggestions presented in the literature, a set of parameters is
found to deliver appropriate result. The parameters of PSO are
set as follows: swarm size = 15, ! = 0.7, c1 = c2 = 2, and the
maximum number of iterations = 50. The number of neighbors
k is a key parameter in the growing method for deciding the
speed of budding. A large k leads to a fast speed of budding,
but it also tends to give a worse clustering result. In this study,
we set k in a range ( n

10Nc
, n
5Nc

).

D. Experiment Results

All experiments were performed on a PC configured with
Intel Dual Core 2 × 2.5GHz CPU and 4GB RAM running
MATLAB platform. We compare PSOGC to K-means, fuzzy
C-means (FCM) [17], kernel K-means (KKM) [18], PSO
Clustering (PSOC) [19] and spectral multi-manifold clustering
(SMMC) [20]. K-means, FCM and KKM are run with default
parameter setting until convergence is reached. PSOC takes the
same PSO parameter setting as PSOGC, so that they consume
similar computational cost. SMMC use the same parameter
k as PSOGC to build up the linkage matrix between sample
pairs, and default settings are applied to the other parameters.
All algorithms are independently run 20 times on each data
set and the average results are reported.

1) Synthetic data sets: Table II shows the performance of
all algorithms on synthetic data. It is not surprising that K-
means, FCM and PSOC cannot separate these data sets well.
On SD4 and SD6, these three methods can only give a random
clustering result. Compared to these three methods, KKM does

better for it maps the data to a high-dimensional space in
which they are linearly separable. However, different ways
of mapping are needed for different data sets, so a specific
kernel function will not give a good result all the time. SMMC,
especially designed for manifolds clustering, shows up as the
most distinguished one on synthetic data by transforming the
feature space and combining the advantage of graph-based
method as well as k-means. PSOGC gives a satisfactory result
on all synthetic data sets. It is comparable to SMMC and
superior to other algorithms.

2) UCI data sets: Fig. 3 shows the performance of the algo-
rithms on the three real-world UCI data sets. PSOGC obtains
slightly better average RI values than other algorithms over
the three data sets. It also shows good robustness for having
small variance. Unlike the case on synthetic data, SMMC does
not perform so well as PSOGC on UCI data sets. It tends
to obtain lower average RI and larger variance. The reason
could be the lack of prior knowledge for the transformation
of feature space, which may lead to initialization sensitivity
for the following K-means step. On both synthetic and real-
world data, PSOGC shows good robustness and efficiency in
identifying clusters in various shape distributions. The time
cost of PSOGC could be greater than K-means, FCM and
KKM, but less than SMMC.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a growing clustering method
based on PSO for clustering non-spherical or non-linearly
separable data. The proposed method PSOGC is easy to use
and performs robustly on both synthetic and real-world data.
The simplicity and robustness of the algorithm make it a
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TABLE II
COMPARISON OF THE CLUSTERING ALGORITHMS ON SYNTHETIC DATA SETS IN TERMS OF RAND INDEX.

Data sets K-means FCM Kernel k-means PSO clustering SMMC PSOGC

SD1 0.7622± 0.0036 0.7695± 0.0000 0.8387± 0.0045 0.7766± 0.0048 0.9700± 0.0156 0.9675± 0.0405

SD2 0.8299± 0.0344 0.8799± 0.0009 0.8509± 0.0149 0.7925± 0.0629 1.0000± 0.0000 1.0000± 0.0000

SD3 0.7579± 0.0300 0.7711± 0.0000 1.0000± 0.0000 0.7588± 0.0430 1.0000± 0.0000 1.0000± 0.0000

SD4 0.5012± 0.0004 0.5000± 0.0000 1.0000± 0.0000 0.5004± 0.0000 1.0000± 0.0000 1.0000± 0.0000

SD5 0.6479± 0.0111 0.6636± 0.0042 0.5057± 0.0184 0.6521± 0.0276 0.9752± 0.0012 0.9494± 0.0097

SD6 0.5057± 0.0206 0.5496± 0.0000 0.5137± 0.0146 0.5070± 0.0122 0.8667± 0.0323 0.8983± 0.0678
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Fig. 3. Comparison of the clustering algorithms on UCI data sets, a) Iirs,
b) Wine, c) Seeds

candidate solution for clustering complex data, especially in
non real-time cases. Yet, we also note that it still has some
drawbacks. For example, in the growing procedure, a smaller
cluster may invade into the sphere of larger ones. In the
future work, we will consider adding processes to manipulate
asymmetric data sets avoiding the invasion of the smaller
cluster.
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