
A Parallel Evolutionary Solution for the Inverse
Kinematics of Generic Robotic Manipulators

Siavash Farzan* and G. N. DeSouza**
Vision-Guided and Intelligent Robotics Lab – ViGIR

University of Missouri
Email: *SFarzan@mail.missouri.edu, **DeSouzaG@missouri.edu

Abstract—This paper is an improvement of our previous work
[1]. It provides a robust, fast and accurate solution for the
inverse kinematics problem of generic serial manipulators – i.e.
any number and any combination of revolute and prismatic
joints. Here, we propose further enhancements by applying an
evolutionary approach on the previous architecture and explore
the effects of different parameters on the performance of the
algorithm. The algorithm only requires the Denavit-Hartenberg
(D-H) representation of the robot as input and no training or
robot-dependent optimization function is needed. In order to
handle singularities and to overcome the possibility of multiple
paths in redundant robots, our approach relies on the compu-
tation of multiple (parallel) numerical estimations of the inverse
Jacobian while it selects the current best path to the desired
configuration of the end-effector using an evolutionary algorithm.
But unlike other iterative methods, our method achieves sub-
millimeter accuracy in 20 iterations in average. The algorithm
was implemented in C/C++ using POSIX threads, and it can be
easily expanded to use more threads and/or many-core GPUs.
We demonstrate the high accuracy and real-time performance
of our method by testing it with five different robots including
a 7-DoF redundant robot. Results show that the evolutionary
implementation of the algorithm is able to reduce the number of
iterations compared to the previous method significantly, while
also finding the solution within the specified margin of error.

Keywords: Inverse Kinematics, Evolutionary Algorithms,
Inverse Jacobian, Serial Manipulators, Parallel Computing,
Denavit-Hartenberg.

I. INTRODUCTION

In robotics, controlling the movement of a robot in space
so that it performs a desired task is known as motion
planning. In the case of robotic manipulators, the motion
planning requires the solution of two problems: the forward
and the inverse kinematics. The former is concerned with
mapping the configuration of the joints variables ~Q(t) onto
the position and orientation (i.e. pose) of the end-effector
~X(t), i.e. ~X(t) = f(~Q(t)), while the latter, the inverse
kinematics, determines the required configuration of every
joint in order to achieve a given pose of the end-effector, or
~Q(t) = f−1(~X(t)). These mappings are necessary because
when it comes to controlling the velocity of the end-effector,
most methods rely on the calculation of ~̇X(t) = J(~Q(t))~̇Q(t)
using the Jacobian, J(~Q(t)) = ∂f

∂ ~Q
, to estimate the joint

velocities from the Cartesian velocities of the end-effector, i.e.
~̇Q(t) = J(t)−1 ~̇X(t).

Many approaches have been researched in order to solve
the inverse kinematics problem. In our previous work [1],

we presented a fast and accurate method using an iterative
numerical approximation of the inverse Jacobian. In this
paper, we improve our previous method by employing an
evolutionary approach, while further reducing the number
of iterations, keeping its real-time applicability to generic
robot manipulators – i.e. any number and any combination of
revolute and prismatic joints. In summary, the main advantages
and contributions of our method are: 1) unlike other iterative
methods, ours is indeed accurate and fast; 2) it works for
any generic robotic manipulator – redundant or not – even at
singular configurations of the joint variables; 3) it is naturally
implemented in parallel, running as multi threads in a simple
CPU or on modern GPUs; 4) it does not require any training
or robot-dependent optimization function, as it is the case of
recent evolutionary methods (e.g. neural networks [2], genetic
algorithms [3], and swarm optimization [4]); and 5) it is
guaranteed to statistically converge to a solution.

The evolutionary approach used in the proposed algorithm is
based on a single level, real-coded genetic algorithm, where
the fitness function evaluates the positional and the orienta-
tional error of the robot end-effector. We also investigate the
effects of different parameters such as number of Jacobian
estimations and the amount of exploration on the accuracy
and the convergence of the algorithm.

II. BACKGROUND AND RELATED WORK

Over the years, several methods for solving the inverse
kinematics problems have been proposed. These methods can
be divided in basically two classes of methods: closed-form
or numerical solutions [5]. Some of the earliest closed-form
solutions were provided by Liao et al. [6], and Lee and
Liang [7], who proposed a resultant elimination procedure
using complex number method and vector theory respectively.
However, the geometric interpretation of their elimination
procedure was not completely revealed due to its complexity,
and also their solution was limited to 7R [6] or 7-link (6R1P)
[7] mechanisms. Later, Raghavan and Roth [8] showed that the
inverse kinematics problem for a general 6R manipulator can
present at most 16 different solutions, for any given pose of the
end-effector. This allowed for the derivation of a characteristic
polynomial of order 16 and the derivation of a generic closed-
form solution in real time for the inverse kinematics of any
6R robot manipulator [9], [10]. While the method proposed in
[8] had a great impact in the area, it was still limited to 6-DoF

358

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

robots, more specifically: 6R, 5R1P, 4R2P and 3R3P robots.
Also, their method required a Newton iteration for improved
accuracy on the calculation of the eigen-vector/values of a
matrix derived from the Ai matrices in the D-H representation.
However, when multiple solutions exist due to redundancy in
the joint configurations (i.e. nQ > nX), or at singular config-
urations of the robot, this matrix becomes ill-conditioned. In
all these situations, numerical methods are usually required.
These methods include cyclic coordinate descent methods
[11], the Levenberg-Marquardt damped least squares methods
[12], [13], quasi-Newton and conjugate gradient methods [14],
[11], [15], neural network and artificial intelligence methods
[16], [17], [18], [19], [20], [21], genetic algorithms [22],
pseudo-inverse methods [23] and Jacobian transpose methods
[24], [25].

Oyama et al. [16] presented a learning approach for IK
problems based on modular neural network architectures using
DeMers method [26]. This method involves an expert selector,
an expert generator, and a feedback controller to accommodate
the nonlinearities in the kinematic system. The disadvantages
of their approach are the high complexity of the procedure for
the IK computation, and the low learning speed. Furthermore,
the final accuracy achieved for the hand position is about
10 mm, which is regarded as a large error. Bingul et al.
[21] presented a neural network approach using the back-
propagation algorithm for the IK solution of industrial robotic
manipulators. The limitation of their approach is clearly the
large errors in the joint angles.

A genetic algorithm approach to solve the IK problem was
presented by Tabandeh et al. [22]. They used a minimizing
genetic algorithm based on adaptive niching and clustering
to find the joint angles with smallest positioning error of the
end-effector. The fitness function was the end-effector error
and a modified filtering and clustering step was added to the
algorithm to identify and process the outputs of the genetic
algorithm. The algorithm was tested using a 3-DoF robotic
manipulator and the average error were determined to be
approximately 5 mm to 20 mm for different experiments.

For the methods relying on Jacobian matrix, the Jacobian
can be indirectly estimated using pseudo-inverse [27], op-
timization [28], and evolutionary algorithms [3], [2], [29],
[30]. In the case of evolutionary methods, a simple genetic
algorithm was employed in [30] for a four-joints redundant
robot using a fixed number of iterations and limiting the search
for a solution on the position of the end effector without con-
sidering its orientation. In order to apply the genetic algorithm
on a redundant robot, the maximum joint displacement was
used as an additional constraint and the fitness function was
selected as a combination of the arm positioning error and
the joint angle displacement from the initial position. As it
will be shown in the next sections, this approach [30] led
to poor results. So, Aguilar et al. [3] proposed a parallel
implementation of the genetic algorithm to find a solution
for both the position and orientation. The Denavit-Hartenberg
representation was used to model a kinematic chain, and
the chromosomes encoded the set of values for each joint

angle (characteristics). Therefore, mutations were performed
to create small random rotations within a range of the joint
angles of the robot’s manipulator. Finally the fitness function
was defined as the distance between the end-effector current
and desired positions. However, one major problem with the
evolutionary approaches is the randomness during mutation
and crossover, which are hard to “tune” and can increase the
number of iterations needed to find the solution.

A major problem that arises during the motion of the robot
is when it passes through singular configurations [31]. A
number of authors (see [32]) avoid singular configurations by
using the null-space method [33] and maximizing Yoshikawa’s
manipulability measure [34], [35]. Maciejewski and Klein [36]
expanded this idea and proposed an approach to also avoid
obstacles by defining task space vectors to critical points,
with which the robot is directed away from the obstacle. Bail-
lieul [32] proposed a more sophisticated null-space method,
called the extended Jacobian method. In this method, a local
minimum value of a secondary objective function is tracked.
The purpose of this secondary function is to represent a set
of constraints and also to take into account some objective
functions (e.g. manipulability), which applies on the whole
structure instead of physically-based constraints for each joint.
The null-space method has also been used to assign different
priorities to different tasks (see [37], [38]). Unfortunately, a
thorough literature survey of this topic reveals that while many
methods can indeed handle specific cases – e.g. 6R robots
[39], [40], [10], [8], [9] – when it comes to redundant robots
[28], [41], [27] and other robots at singular configurations
[31], none of these methods achieved both accuracy and high
performance at the same time. Besides, most numeric methods
require either training, optimization of robot-dependent objec-
tive functions, or time to achieve reasonable accuracy [2]. Even
methods that rely on massively parallel architectures to reduce
time complexity require hundreds of iterations to achieve the
specified error – e.g. the work in [3], where a NVidia GPU
running 512 CUDA threads require over 42ms to converge.

The proposed method – which will be explained in the next
section – does not require any previous training and it can
produce the solution for the inverse kinematics problem for
any robot, provided only its D-H table.

III. PROPOSED ALGORITHM

In this section, we introduce a new parallel evolutionary
method for inverse kinematics. The method relies on estimates
of the actual Jacobian matrix, eliminating the need to find an
analytical solution for the inverse Jacobian, which for many
robots is not even feasible. However, unlike our previous
greedy method [1], this parallel evolutionary method addresses
the problem of selecting one single estimate at each iteration
of the algorithm. Instead, by evaluating an entire generation of
individuals in each iteration, the evolutionary method proposed
here can better handle non-monotonic Forward/Inverse Kine-
matics functions while trying to achieve the fewest possible
iterations to get end-effector to the desired position.

359

A. Inverse and Pseudo-Inverse Jacobian

Let the pose of the end-effector ~X(t) be described by its
three linear and three angular dimensions – i.e. (x, y, z) for
its position in space, and (φr, φp, φy) the roll, pitch and yaw
angles for its orientation. In addition, the joint configuration
of the robot is described using the joint variable ~Q(t), with
qi = di for the prismatic-joint lengths and qi = θi for revolute-
joint angles. The Jacobian matrix is then defined based on the
forward kinematics equation ~X(t) = f(~Q(t)); where f(~Q(t))
is readily obtained for qi as a function of time in the D-H
representation. Where,

~X(t) =



x(t) = f1(~Q(t))

y(t) = f2(~Q(t))

z(t) = f3(~Q(t))

φr(t) = f4(~Q(t))

φp(t) = f5(~Q(t))

φy(t) = f6(~Q(t))


, ~Q(t) =



q1(t)
q2(t)
q3(t)
q4(t)

...
qn(t)


(1)

and fi(~Q(t)) = fi(q1(t), q2(t), ..., qn(t))
then

~̇X(t) = J(~Q(t))~̇Q(t) (2)

where

~̇X(t) =
∂ ~X(t)

∂t
=



∂x(t)
dt

∂y(t)
dt

∂z(t)
dt

φr(t)
dt

φp(t)
dt

φy(t)
dt


, ~̇Q(t) =

∂ ~Q(t)

∂t
=


∂q1
dt
∂q2
dt
...

∂qn
dt

 ,

J ~(Q(t)) =


∂f1 ~(Q(t))

∂q1

∂f1 ~(Q(t))
∂q2

· · · ∂f1 ~(Q(t))
∂qn

...
...

...
...

∂f6 ~(Q(t))
∂q1

∂f6 ~(Q(t))
∂q2

· · · ∂f6 ~(Q(t))
∂qn

 (3)

Also, for simplicity of notation, hereafter we will replace the
time dependency from all the terms in the equations above with
the subscript ”t”. Similarly, we will omit the dependency on
~Qt in the Jacobian J(.), but it should be made clear here that a
Jacobian can only be fully defined at the current configuration
~Qt of the robot. Finally, it is assumed that the initial position
(~Xt0) and the initial joints configuration (~Qt0) are known –
e.g. can be obtained by reading the current values of robot
encoders.

As the equation (3) implies, the Jacobian matrix J can be
numerically estimated by causing small changes ∂ ~X while
applying arbitrarily small and individual perturbations to ∂qj’s
at the current pose ~Qt. For example,

Jc =
∂ ~X

∂qc
= ~Xt − f(~Qt + [. . . , 0, 0.01, 0, . . .]) (4)

where the subscript c indicates the column of the Jacobian
and t is the iteration step. As it will be described in the next
section, more Jacobians will be estimated in the algorithm

using the mutation procedure.
Also, in order to move the end-effector toward its final

position, the next joint configuration can be calculated using
the inverse of the Jacobian matrix:

4 ~Qt = J−1
t ∗ αt(~Xfinal − ~Xt) (5)

where αt ∈ (0, 1) is an attenuation factor which can affect
the path of the end-effector, and also the time for the process
to converge. For example, a fixed αt ' 1 can cause the end-
effector to jump back and forth over the desired ~Xfinal. On
the other hand, a small αt may slow the convergence process
and it can also cause ~Xt to only asymptotically reach the
~Xfinal. Using αt = 1 at the beginning and slowly decreasing
it towards the end of the process guarantees fast convergence
at the same time that it avoids over stepping ~Xfinal.

When the number of joints, nQ, is either smaller or greater
than the number of degrees of freedom of the workspace,
nX – i.e. nQ < nX or nQ > nX , – the equation (5)
can be re-written, respectively, using the left ((JTt Jt)

−1JTt)
or the right (JTt (JtJ

T
t)−1) pseudo-inverses of the Jacobian.

Otherwise, the equation is solved using the normal inverse,
J−1
t , as already indicated.

The current position, ~̂X , of the end-effector for the new
joint configuration is computed using the forward kinematics
applied to the addition of 4 ~Qt to the current joint config-
uration ~Qt. This and other aspects of the algorithm used in
the proposed evolutionary algorithm will be explained in the
following section.

B. Evolutionary Methodology

Since there is no guarantee that any single estimate of the
Jacobian can lead to the final solution, the parallel evolutionary
method proposed here originated from the assumption that by
creating multiple estimates of the Jacobian matrix, the process
can be sped up and an optimal path to this same final pose can
be found with fewer iterations. With that in mind, we devised
an evolutionary algorithm to produce a generation of Jacobian
matrices which will evolve over time through the selection
of the current best individuals in the path. In order to handle
the several Jacobian matrices at each iteration, we resort to
parallel computation through the use of multiple threads.

For a robotic manipulator, the individual in a population
would be represented by the real value of the joint variables as
{q1, q2, ..., qn}. The evolutionary approach used in this work
thus falls in the category of a real-coded genetic algorithm,
which includes initialization, iterative selection made on the
basis of fitness, mutation and termination.

The algorithm can be summarized in the following major
steps: At each iteration t, first, the best u individuals (poses)
are selected based on a fitness function explained in Sec-
tion III-B2 and the Jacobian matrices at those positions are
estimate: i.e. m

u estimations are computed by the mutation
procedure for each selected individual. Next, the inverses of
the calculated Jacobians are derived using the pose of the robot
given by each individual. These inverses are used to find the

360

Algorithm 1 : Proposed Parallel Evolutionary Algorithm

procedure IK(joints configuration : ~Q)
n ← number of joints
~Qt0

← joints configuration
~Xt0 = f(~Qt0)
~Xt = ~Xt0
~Qt = ~Qt0

while (‖ ~Xt − ~Xfinal‖ > εr) do
create m threads
thread-do

l ← threadID divided by (m
u)

kl ← threadID mod (m
u)

k ← threadID
for each joint c ∈ [1 ... nQ] do

Jl
c = ∂X

∂qi
= ~Xl

t − f(~Qt + ∂qc)

end-for
Jl
t = ~Xl

t − f(~Ql
t + ∂qt)

J
kl
t = Jl

t + ℵ (0,ΣJ)
if n = 6
4~Qkl

t = (J
kl
t)−1 ∗ αt(~Xfinal − ~Xl

t)
else
4~Qkl

t = (J
kl
t)−P ∗ αt(~Xfinal − ~Xl

t)
end-if
~Q

kl
t = ~Ql

t +4~Qkl
t

~X
kl
t = f(~Q

kl
t)

end-thread
for each l ∈ [1 ... u) and kl ∈ [1 ... m

u) do
~Xl
t+1 = { ~Xkl

t | ‖ ~Xfinal − ~X
kl
t ‖ is minimal}

end-for
~Xt+1 = min{ ~Xl

t+1}
end-while

end-procedure

next m joint configurations of the end effector. Finally, using

these joint configurations, m current positions, ~̂X
k

t , of the end-
effector are computed using the forward kinematics applied to
the addition of 4 ~Qkt to the current joint configuration ~Qkt
of the individual. The process iterates until the termination
condition is satisfied.

In the rest of this section, we explain further these steps
and the different terms used in the proposed evolutionary
algorithm, including mutation, selection and termination.

1) Mutation Procedure: In order to create multiple esti-
mates of the Jacobian matrix at the current position Jt(~Q) –
i.e. the next generation of solutions from selected individuals
– a mutation method is employed. After selecting the best u
individuals based on the selection process – which will be
explained in the next section – m

u initial Jacobians Jklt (~Q) are
created for each of the u selected individuals, and m

u matrices
from a white-noise distribution ℵ(0,ΣJ) are added to each
Jacobian as a mutation operator. That is, the total number of
m estimations of the Jacobians, J lt , are created by:

Jklt = J lt + ℵk(0,ΣJ) for kl = [0,
m

u
) and l = [0, u) (6)

It is important to mention that for the first iteration (i.e. in
the initialization step), m different estimations are also created,
but at that time, for the single, initial position of the robot.

Next, by using the inverse (or pseudo-inverse) of the m
estimates of the Jacobian matrices, m joint configurations can
be calculated in parallel so that all Jklt ’s are pointing toward
~Xfinal. That is, all Jacobians should cause the end-effector

to move towards the final pose, but each one with a different
“slope”.

4 ~Qklt = (Jklt)−1 ∗ αt(~Xfinal − ~X l
t) (7)

2) Selection: During each successive generation of m joint
configurations, a proportion of the existing population is se-
lected to breed a new generation. Individual joint configuration
are selected through a fitness-based process

fitness = α ∗ errs + β ∗ erro (8)

where errs = ((xf − xi)2 + (yf − yi)2 + (zf − zi)2)
1
2 and

erro = ((φaf − φai)2 + (φbf − φbi)2 + (φcf − φci)2)
1
2 .

α and β are factors in order to adjust the importance of the
space (Cartesian) error and the orientation error in different
applications. In the current implementation, α = 1 and β =
0.5.

This selection method rates the fitness of each solution
and preferentially select the best solutions as the next parent
individuals.

As eq (8) indicates, the fitness of each solution is evaluated
based on its distance to the desired end-effector position.
However, instead of choosing a single individual for the
position of the end-effector, ~̂X – as in [1] – u individuals are
now chosen. The entire process above is performed in parallel,
using:

~Xkl
t = f(~Qlt +4 ~Qklt) for kl = [0,

m

u
) and l = [0, u) (9)

It is important to mention that other constraints can be
imposed to the fitness function in order to avoid obstacles,
select linear paths, scape local minima, etc.

3) Termination: After selecting the u best fitted individ-
uals, m new estimations of the Jacobian are created using
m threads, where each set of m

u threads processes the u
positions reached by the parents. The process iterates until the
following termination condition has been reached for any of
the kl = 1 ... mu and l = 1 ... u elements in each generation
– i.e. the k = 1 ...m solutions for the inverse kinematics
computed.

~Xt = { ~Xk
t | ‖ ~Xfinal − ~Xk

t ‖ is minimal} (10)

The pseudo-code of the proposed process is presented in
more detail in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present three experiments that were per-
formed. First, we ran our algorithm using four different robots
and compared the proposed parallel evolutionary method with
the method presented in the previous work [1]. For the second
experiment, we performed a comparison between the proposed
method and two Genetic Algorithm approaches presented in
[3] and [30], which were also discussed in Section II. Finally,
in the last experiment, we studied the effects of different
parameters of the proposed algorithm on the convergence to
a solution. These parameters are including total number of

361

threads as well as number of selected individuals at each
iteration, the desired accuracy and the amount of exploration.

Our tests were performed on an Intel(R) E8400 CPU
running at 3.00GHz. In average, the algorithm performed ex-
tremely well, returning a solution with sub-millimeter accuracy
in about 20 iterations. The typical speed-up obtained by the
parallel evolutionary approach was about two times the speed
of the previous parallel method, while keeping approximately
the same error.

A. Test for General Robot Manipulators

In this section, the results of applying the proposed inverse
kinematics solution to four different robotic manipulators are
presented. Over 100 random final positions of the end-effector
were used for test of the non-redundant Puma 560, Kuka and
Scara and the redundant 7-Dof Mitsubishi PA10-7C robotic
manipulators. The D-H parameters of these robots can be
found in Table I(a)-(d). All angles are in degree and all lengths
in millimeters. It is important to point out that the initial
position of the end-effector can affect the results as well as
the path to the final position. Due to limitation of space, here
we only report some of the most typical results and the total
average. A spreadsheet with the remaining results can be found
at http://vigir.missouri.edu/parallel-programming. Also, for the
experiments reported here, the initial positions of the robots
were set to the manufacturer-defined home position.

The first two robots have six revolute joints, while the
Mitsubishi robot has seven revolute joints, and Scara robot
has three revolute and one prismatic joints. The algorithm was
implemented in C/C++ using POSIX threads. For the current
tests, the number m of threads used for each iteration was 24
and the number u of threads picked at each iteration was 4.
(In Section IV-C, we discuss this choice in detail).

Table I
D-H PARAMETERS OF THE TESTED ROBOTS

θ d a α

1 θ1 0 0 -90

2 θ2 149.09 431.8 0

3 θ3 0 -20.3 90

4 θ4 433.07 0 -90

5 θ5 0 0 90

6 θ6 56.25 0 0

θ d a α

1 θ1 700 750 -90

2 θ2 0 1250 0

3 θ3 0 -55 -90

4 θ4 1500 0 90

5 θ5 0 0 90

6 θ6 -230 0 180

(a) Puma 560 (b) Kuka robot

θ d a α

1 θ1 317 0 -90

2 θ2 0 0 90

3 θ3 450 0 -90

4 θ4 0 0 90

5 θ5 480 0 -90

6 θ6 0 0 90

7 θ7 70 0 0

θ d a α

1 θ1 0 250 0

2 θ2 0 350 180

3 0 d3 0 0

4 θ4 114.5 0 0

(c) Mitsubishi PA10-7C (d) Scara robot
As it can be seen in Tables II(a)-(d), in most of the tests

reported here, the algorithm was able to find the inverse kine-
matics solution in less than 20 iterations within the specified

margin of error. As the average values indicate, the number
of iterations shown in the tables are typical also for the tests
not reported here. The error column is the same for both the
proposed method and the parallel method since the termination
conditions for both cases were set to εrTrans

< 1mm and
εrRot

< 0.5o. For all cases above, in the third column of
the tables, we report the number of iterations required by the
proposed parallel evolutionary method presented in section III
versus the parallel method in [1].

B. Comparison with other works

For the second set of experiments, we present a comparison
between the results of the proposed method and two genetic
algorithm approaches presented in [3] and [30], discussed in
previous sections.

In [3], Aguilar and Huegel applied their serial and parallel
genetic algorithm method to a Puma 500 robot. They reported
the results for two different positions. The comparison between
those results and the results of the new proposed method for
the same robot and positions is presented in Table III(a). In
this test, each algorithm was allowed to iterate freely while
the termination condition was fixed (< 1mm and < 0.5o).

Parker et al. in [30] applied their genetic algorithm method
to a redundant robot for a fixed number of iterations, i.e. 50
iterations. The new proposed algorithm was also applied to the
same redundant robot for the same 50 iterations. The results
are shown in Table III(b).

As it can be seen in the results, although in both cases the
genetic algorithm solutions, specially the parallel one (Table
III(a)), have reasonable outputs, the new proposed method
showed a much better performance with less than 1

10 of the
number of iterations.

C. Effects of Different Parameters On Convergence

In this section, the effects of different parameters of the
proposed algorithm on the convergence to a solution are
studied. These parameters are the total number of estimated
Jacobians, the number of selected individuals, the accuracy
(i.e. termination condition), and the exploration parameter, i.e.
the amount of white noise added to the Jacobians. As we
mentioned before, for all the results shown in the previous
sections, the termination condition was set to 1 millimeter
for the position and 0.5 degree for the orientation of the
end-effector. Furthermore, the number of estimated Jacobians
were 24 with selection of 4 best individuals, and the standard
deviation of the distribution used for exploration was set to
0.5. Here, we must justify these choices.

The first question that arises from the previous tests is
regarding the best number of threads (i.e. number of Jacobians)
and also the best number of selected individuals to be used.
These choices are constrained by the hardware employed (i.e.
number of CPU cores, memory, etc.). In order to minimize
the influence of the hardware, we measure this parameter
versus the number of iterations. Figure 1 combines these two
parameters in one graph: the effect of using different number
of Jacobians on the convergence time, and also keeping

362

Table II
RESULTS FOR TESTED ROBOTS

End-effector position Calculated joint configuration # of iterations Error

and orientation (θ1, θ2, θ3, θ4, θ5, θ6) (Proposed method / Position / Orientation

(x, y, z, φr , φp, φy) Parallel method) (mm) / (deg)

(164, 415, 165, 90, 30, 60) (-85.4, -97.5, -23.19, 122.12, 92.59, 3.47) 11 / 46 0.51 / 0.41

(543, -587, 43, 45, -15, 60) (143.52, -143.21, 30.13, -178.31, 5.07, -74.51) 9 / 22 0.72 / 0.42

(-280, 360, 700, 30, 15, -60) (108.33, -33.85, 39.54, 3.92, 55.36, -73.34) 13 / 25 1.02 / 0.22

(140, 600, 560, -60, 0, -15) (-87.95, -122.70, 70.64, 165.35, 120.04, 143.79) 10 / 25 1.01 / 0.26

Average of 20x20 tests 17.48 / 28.11 0.76 / 0.38

(a) Four arbitrarily chosen test cases and the average of all 400 trials for the Puma 560

End-effector position Calculated joint configuration # of iterations Error

and orientation (θ1, θ2, θ3, θ4, θ5, θ6) (Proposed method / Position / Orientation

(x, y, z, φr , φp, φy) Parallel method) (mm) / (deg)

(-560, 730, 1300, 45, -30, 30) (123.12, -163.63, 68.77, 159.31, 120.49, 74.31) 9 / 33 0.84 / 0.54

(560, 720, 1400, 30, 15, -60) (40.04, 174.40, 65.23, -71.62, -61.03, 142.04) 14 / 28 0.02 / 0.00

(280, 1200, 1120, -60, 0, -15) (78.96, -136.20, 70.48, 11.59, -104.05, -44.84) 11 / 51 0.52 / 0.02

(-920, -430, 822, 75, -15, 45) (-161.98, 131.60, 99.47, 147.37, 87.36, 104.31) 16 / 31 0.54 / 0.01

Average of 20x20 tests 15.49 / 33.84 0.68 / 0.21

(b) Four arbitrarily chosen test cases and the average of all 400 trials for the Kuka robot

End-effector position Calculated joint configuration # of iterations Error

and orientation (θ1, θ2, θ3, θ4, θ5, θ6,θ7) (Proposed method / Position / Orientation

(x, y, z, φr , φp, φy) Parallel method) (mm) / (deg)

(450, 80, 120, 90, 15, -60) (158.49, -177.72, -35.12, 124.77, 158.94, 69.23, 92.62) 14 / 27 0.02 / 0.54

(-180, -260, 200, -90, -30, 90) (108.97, -74.95, -64.13, -131.99, 57.32, -144.37, -152.85) 11 / 24 0.94 / 0.05

(-140, 275, 140, -90, 0, -15) (68.16, 74.34, 36.42, 130.90, 69.87, 125.83, 71.63) 23 / 32 0.75 / 0.11

(-170, 100, 60, -30, 30, 15) (83.80, -116.41, -37.95, -148.13, -21.30, 59.07, -46.61) 12 / 40 0.75 / 0.07

Average of 20x20 tests 26.57 / 42.28 0.82 / 0.28

(c) Four arbitrarily chosen test cases and the average of all 400 trials for the Mitsubishi PA10-7C

End-effector position Calculated joint configuration # of iterations Error

and orientation (θ1, θ2, d3, θ4) (Proposed method / Position / Orientation

(x, y, z, φr , φp, φy) Parallel method) (mm) / (deg)

(350, 250, 120, 75, 0, 0) (-18.89, 89.98, -34.50, -3.07) 10 / 18 0.18 / 0.28

(-175, -250, -200, 90, 0, 0) (157.57, 121.64, 85.50, -170.03) 17 / 29 0.14 / 0.26

(300, -475, -140, 30, 0, 0) (-33.48, -41.41, 25.50, 75.38) 9 / 16 0.87 / 0.09

(175, 450, 400, -30, 0, 0) (24.65, 74.05, -314.50, 128.63) 11 / 21 0.72 / 0.02

Average of 20x20 tests 11.79 / 22.75 0.56 / 0.18

(d) Four arbitrarily chosen test cases and the average of all 400 trials for the Scara robot

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Number of Threads − Number of Selected Individuals

4

6

8

10

12

16

24

32

48

64

96

128

Figure 1. Convergence vs. Threads Configuration for the Puma 560

different number of individuals as the parents for next iteration.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Accuracy (mm)

Puma 560

Kuka

Mitsubishi PA10−7C

Scara

Figure 2. Convergence vs. Accuracy

It is important to mention that keeping only 1 Jacobian makes

363

Table III
COMPARISON WITH OTHER WORKS

End effector pose Calculated joint configuration Number of Iterations

(x, y, z, φr , φp, φy) (θ1, θ2, θ3, θ4, θ5, θ6) Serial GA Parallel GA Proposed Method

(29, -163, 343, -5.6, 1.8, 0) (-19, 116, -64, 7, -53, 9) 395 260 25

(-284, -803, 186, -0.5, 1.5, 0) (-99, 124, 162, 178, -75, -80) 211 239 18

(a) Comparison between the proposed method and the method presented in [3]

End effector position Calculated joint Genetic Algorithm Proposed Method

and orientation configuration
Position

Error
Number of

Position

Error

Orientation

Error
Number of

(x, y, z, φr , φp, φy) (θ1, θ2, θ3, θ4) (mm) Iterations (mm) (deg) Iterations

(685.8, 152.4, 660.4, 0, 30, -90) (0, -39, 86, -20) 7 50 0.87 0.46 21

(-25.4, 355.6, 635, -60, 30, 90) (-61, 158, 91, 142) 4.6 50 0.72 0.54 16

(b) Comparison between the proposed method and the method presented in [30]

algorithms 1 and the one proposed in [1] identical. As it can be
seen in the figure, generating more threads, helps, and keeping
more threads also improves the performance of the algorithm.
In the case of total number of threads, using only two Jacobian
estimations rather than one has a tremendous effect on the
number of iterations. However, there is not much difference
after about 48 Jacobians being created. Apparently, this shows
that the probability of finding the closest ~Xfinal from 48
estimations is large enough to eliminate the need for more
estimations. In the case of number of selected individuals,
as Figure 1 indicates, keeping more Jacobians/individuals has
also a positive effect on the convergence. For example, having
total number of 24 threads/Jacobians, selecting 2, 3, 4, 6, 8,
and 12 individuals can decrease the number of iterations from
28 to 22, 19, 17, 15 and 13, respectively.

However, due to limitation on the number of cores in a
CPU-based system, the total number of 24 Jacobians with 4
selected individuals at each iteration was used in this work.

Since different applications may require different accuracies
in robot pose, an immediate question about the behavior of
the proposed method vis-a-vis the required accuracy must
be investigated. Figure 2 shows the effect of changing the
accuracy – i.e. the termination condition – on the number of
iterations required for the convergence of the algorithm. A
total of 20 different final positions of the end-effector, running
20 times each, for each of the four robots were averaged
to produce the results in this figure. As it was expected,
the convergence takes longer as we increase the accuracy.
The algorithm can achieve the accuracy of 20 micrometer
in position and 0.02 degree in orientation of the end-effector
in 312 iterations for Puma 560 robot. Based on this figure,
one can now choose the most appropriate accuracy/number of
iterations for each application.

Finally, the effect of different amount of exploration in the
creation of Jacobians is studied. Since the proposed approach
is a greedy algorithm and the Forward/Inverse Kinematics
functions are non-monotonic, there can never be a guarantee
that one specific amount of exploration will always work the

0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Amount of White Noise (std)

Puma 560

Kuka

Mitsubishi PA10−7C

Scara

Figure 3. Convergence vs. White Noise

best. As Figure 3 indicates, while the number of iterations
seems to reach reasonable values for a standard deviation of
0.5, the rising number of iterations at the trailing edge of
3 out of 4 of the curves in Figure 3 (after std ≥ 1.2) as
well as the spike in number of iterations for the third curve
between 0.8 ≤ std < 1.2 suggest that further investigation is
warranted. For example, the effects of the covariance between
the n-DoF of the robot could be taken into the account, which
were assumed zero in this work.

V. CONCLUSION AND FUTURE WORK

This paper presented an improvement of the previous work
presented in [1] as a solution of the inverse kinematics
problem for a general robotic manipulator. The method is an
evolutionary approach implemented in parallel using C/C++
programming and POSIX threads. Our experimental results
showed that the proposed method achieves 1mm accuracy
in an average of 20 iterations. The high accuracy and the
real-time performance of our method was demonstrated by
testing it with five different robots, including a 7-DoF redun-
dant robot. Furthermore, in addition of comparison with the
previous work in [1], the algorithm is compared to two other
evolutionary algorithms presented in [30] and [3].

While some choices of the parameters of the algorithm
including the threads configuration and the desired accuracy
were experimentally justified, others remain configurable de-

364

pending on the desired constraints of the specific application.
Yet one parameter (amount of exploration) requires further
investigation. Moreover, the use of constraints, as to avoid
obstacles, when selecting the best ~X towards the final posi-
tion of the end-effector can be further investigated. Finally,
expanding the algorithm to use many-core GPUs could lead
to an impressive speed-up in the algorithm..

REFERENCES

[1] S. Farzan and G. N. DeSouza, “From d-h to inverse kinematics: A
fast numerical solution for general robotic manipulators using parallel
processing,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, 2013, pp. 2507–2513.

[2] R. KöKer, “A genetic algorithm approach to a neural-network-based
inverse kinematics solution of robotic manipulators based on error
minimization,” Inf. Sci., vol. 222, pp. 528–543, Feb. 2013.

[3] O. A. Aguilar and J. C. Huegel, “Inverse kinematics solution for
robotic manipulators using a cuda-based parallel genetic algorithm,” in
Proceedings of the 10th Mexican international conference on Advances
in Artificial Intelligence - Volume Part I, ser. MICAI’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 490–503.

[4] D. Pham, M. Castellani, and A. Fahmy, “Learning the inverse kine-
matics of a robot manipulator using the bees algorithm,” in Industrial
Informatics, 2008. INDIN 2008. 6th IEEE International Conference on,
july 2008, pp. 493–498.

[5] D. Pieper, “The kinematics of manipulators under computer control,”
Ph. D. Thesis, Stanford University, 1968.

[6] Q. Z. Liao and Q. Z. C. G. Liang, “A novel approach to the displacement
analysis of general spatial 7r mechanism,” Chinese Journal of Mechan-
ical Engineering, vol. 22, no. 3, pp. 1–9, 1986.

[7] H.-Y. Lee and C.-G. Liang, “Displacement analysis of the spatial 7-link
6r-p linkages,” Mechanism and Machine Theory, vol. 22, no. 1, pp. 1 –
11, 1987.

[8] M. Raghavan and B. Roth, “Inverse kinematics of the general 6R
manipulator and related linkages,” Journal of Mechanical Design, vol.
115, no. 3, pp. 502–508, 1993.

[9] D. Manocha. and J. F. Canny, “Real time inverse kinematics for general
6r manipulators,” in Robotics and Automation, 1992. Proceedings., 1992
IEEE International Conference on. IEEE, 1992, pp. 383–389.

[10] D. Manocha and J. F. Canny, “Efficient inverse kinematics for general 6r
manipulators,” Robotics and Automation, IEEE Transactions on, vol. 10,
no. 5, pp. 648–657, 1994.

[11] L.-C. Wang and C. Chen, “A combined optimization method for solving
the inverse kinematics problems of mechanical manipulators,” Robotics
and Automation, IEEE Transactions on, vol. 7, no. 4, pp. 489–499, 1991.

[12] C. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 16, no. 1, pp. 93–101, 1986.

[13] Y. Nakamura, “Inverse kinematic solutions with singularity robustness
for robot manipulator control,” J. of Dynamic Systems, Mes. and Contr.,
vol. 108, pp. 163–171, 1986.

[14] J. Zhao and N. I. Badler, “Inverse kinematics positioning using nonlinear
programming for highly articulated figures,” ACM Transactions on
Graphics (TOG), vol. 13, no. 4, pp. 313–336, 1994.

[15] A. Deo and I. Walker, “Adaptive non-linear least squares for inverse
kinematics,” in Robotics and Automation, 1993. Proceedings., 1993
IEEE International Conference on, 1993, pp. 186–193 vol.1.

[16] E. Oyama, N. Y. Chong, A. Agah, and T. Maeda, “Inverse kinematics
learning by modular architecture neural networks with performance
prediction networks,” in Robotics and Automation, Proceedings 2001
ICRA. IEEE International Conference on, vol. 1, 2001, pp. 1006–1012.

[17] G. G. Lendaris, K. Mathia, and R. Saeks, “Linear hopfield networks
and constrained optimization,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 29, no. 1, pp. 114–118, 1999.

[18] A. Ramdane-Cherif, B. Daachi, A. Benallegue, and N. Levy, “Kinematic
inversion,” in Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, vol. 2, 2002, pp. 1904–1909 vol.2.

[19] G. Tevatia and S. Schaal, “Inverse kinematics for humanoid robots,”
in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, vol. 1, 2000, pp. 294–299 vol.1.

[20] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, vol. 1, 2001, pp. 298–303 vol.1.

[21] Z. Bingul, H. Ertunc, and C. Oysu, “Applying neural network to inverse
kinematic problem for 6r robot manipulator with offset wrist.” Springer
Vienna, 2005, pp. 112–115.

[22] S. Tabandeh, C. Clark, and W. Melek, “A genetic algorithm approach to
solve for multiple solutions of inverse kinematics using adaptive niching
and clustering,” in Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, 2006, pp. 1815–1822.

[23] D. Whitney, “Resolved motion rate control of manipulators and human
prostheses,” Man-Machine Systems, IEEE Transactions on, vol. 10,
no. 2, pp. 47–53, 1969.

[24] A. Balestrino, G. De Maria, and L. Sciavicco, “Robust control of robotic
manipulators,” in Proceedings of the 9th IFAC World Congress, vol. 5,
1984, pp. 2435–2440.

[25] W. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in Decision and Control, 1984. The 23rd IEEE Conference
on, vol. 23, 1984, pp. 1359–1363.

[26] D. DeMers and K. Kreutz-Delgado, “Solving inverse kinematics for
redundant manipulators,” Neural Systems for Robotics, pp. 75–112,
1997.

[27] D. Demers and K. Kreutz-Delgado, Inverse Kinematics of Dextrous
Manipulators. 525 B Street, Suite 1900, San Diego, CA 92101-4495,
USA: Academic Press, 1997, ch. 4.2, pp. 77–80.

[28] S. Kumar, N. Sukavanam, and R. Balasubramanian, “An optimization
approach to solve the inverse kinematics of redundant manipulator,”
International Joural of Information and Systems Sciences, vol. 6, no. 4,
pp. 414–423, 2010.

[29] P. Kalra, P. Mahapatra, and D. Aggarwal, “An evolutionary approach for
solving the multimodal inverse kinematics problem of industrial robots,”
Mechanism and Machine Theory, vol. 41, no. 10, pp. 1213 – 1229, 2006.

[30] J. Parker, A. Khoogar, and D. Goldberg, “Inverse kinematics of redun-
dant robots using genetic algorithms,” in Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on, may 1989, pp.
271 –276 vol.1.

[31] A. T. Hasan, N. Ismail, A. M. S. Hamouda, I. Aris, M. H. Marhaban,
and H. M. A. A. Al-Assadi, “Artificial neural network-based kinematics
jacobian solution for serial manipulator passing through singular config-
urations,” Advances Engineering Software., vol. 41, no. 2, pp. 359–367,
Feb. 2010.

[32] J. Baillieul, “Kinematic programming alternatives for redundant manip-
ulators,” in Robotics and Automation. Proceedings. 1985 IEEE Interna-
tional Conference on, vol. 2, 1985, pp. 722–728.

[33] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 7, no. 12, pp. 868–871, 1977.

[34] T. Yoshikawa, “Dynamic manipulability of robot manipulators,” in
Robotics and Automation. Proceedings. 1985 IEEE International Con-
ference on, vol. 2, 1985, pp. 1033–1038.

[35] ——, “Manipulability of robotic mechanisms,” The international journal
of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[36] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinemati-
cally redundant manipulators in dynamically varying environments,” The
international journal of robotics research, vol. 4, no. 3, pp. 109–117,
1985.

[37] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” Robotics and
Automation, IEEE Transactions on, vol. 13, no. 3, pp. 398–410, 1997.

[38] P. Baerlocher and R. Boulic, “Task-priority formulations for the kine-
matic control of highly redundant articulated structures,” in Intelligent
Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International
Conference on, vol. 1, 1998, pp. 323–329 vol.1.

[39] S. Qiao, Q. Liao, S. Wei, and H.-J. Su, “Inverse kinematic analysis of the
general 6r serial manipulators based on double quaternions,” Mechanism
and Machine Theory, vol. 45, no. 2, pp. 193 – 199, 2010.

[40] M. Husty, M. Pfurner, and H.-P. Schrocker, “A new and efficient
algorithm for the inverse kinematics of a general serial 6r manipulator,”
Mechanism and Machine Theory, vol. 42, no. 1, pp. 66–81, 2007.

[41] O. Ivlev and A. Graser, “Resolving redundancy of series kinematic
chains through imaginary links,” in in Proc. CESA 98 IMACS Multi-
conference. Computational Engineering in Systems Applications, 1998,
pp. 477–482.

365

