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Abstract—Luby transform (LT) codes implements an impor-
tant property called ratelessness, meaning a fixed code rate
is unnecessary and LT codes can complete the transmission
without channel status. The property is advantageous to transmit
over certain environments such as broadcasting in heterogeneous
networks or transmitting data over unknown channels. For this
reason, improving LT codes is a crucial research issue in recent
years. The performance of LT codes is decided by the code length
and a probability mass function, called degree distribution, used
in the encoding process. To improve the performance of LT
codes, many studies proposed to optimize the degree distribution
by using methods in evolutionary computation. One of the
key steps in the evolutionary process is to evaluate decision
variables for comparing the fitness of each individual. In the
optimization of LT codes, it needs to repeatedly simulate the
encoding/decoding process with a given distribution and evaluate
the performance over a sufficient number of runs. Hence, a lot of
computational resource is necessary for the optimization of LT
codes. In this paper, we propose a heuristic function to evaluate
the performance of LT codes. The evaluation function estimates
the expected fraction of unsolved symbols with the specified code
length, reception overhead, and degree distribution. Based on
the proposed function, a huge number of evaluations is possible
for searching for better degree distributions. We first verify the
practicality of the proposed function and then employ it in a
multi-objective evolutionary algorithm to investigate the trade-
off of LT codes between the computational cost and decoding
performance.

I. INTRODUCTION

In the field of channel coding, Luby transform (LT)

codes [1] are the first practical implementation of digital

fountain codes [2] which have an important property called

ratelessness. Ratelessness means unlimited number of code-

words can be generated on the fly without a fixed code rate.

The encoding process of LT codes first divides the message

into serval packages which are also named input symbols if

the length of the packages is only one bit. To generate each

codeword or called output symbol, an integer d is first sampled

from a probability mass function and then d input symbols are

uniformly randomly chosen to composite the output symbol

by Xor-sum operator. The integer d denotes the degree of

the output symbol, and hence, the probability mass function

is called degree distribution. Any receiver who is interested

in receiving the message can reconstruct it after collecting

a sufficient amount of the output symbols regardless of the

generated order. The performance of LT codes depends only

on the code length k and the adopted degree distribution

Ω(x). In the proposal of LT codes, a degree distribution

form called robust soliton distribution was introduced with

the performance bound proven by theoretical analysis. When

k + O(ln2(k/δ)
√
k) output symbols are collected by the

receiver, the probability of successfully recovering the original

message is at least 1− δ, where δ is a parameter of the robust

soliton distribution.

Based on LT codes, lots of variants were proposed to

achieve better decoding performance or less computational

cost. The most successful variant is Raptor codes proposed

in [3]. Raptor codes have a two-layer coding mechanism in

which a pre-code is concatenated in front of an inner code. In

the coding scheme, the pre-code usually adopts block codes

with a high rate to encode the original message first. LT codes

then serve as inner codes at the second layer and take the

result of pre-code as message to encode. On the receiver side,

the inner code, i.e., the LT codes, would decode first. After

a sufficient fraction of input symbols are solved, the outer

code would recover the remaining unsolved input symbols to

complete the recovery. While it is unnecessary to recover all

the input symbols, LT codes can adopted degree distributions

with a lower average degree. A lower average degree means

less computational cost is required for the coding process.

LT codes serve in Raptor codes with such special degree

distribution are therefore called weakened LT codes since it is

not able to recover all the input symbols.

The robust soliton distribution is developed based on an

asymptotic analysis. However, the optimum degree distribution

is still unknown for either the LT codes or weakened LT

codes for a finite code length. To improve the performance

of LT codes, many studies utilized methods in evolutionary

computation to search for better degree distributions. In order

to employ methods in evolutionary computation, repeatedly

seeking and evaluating degree distributions are necessities. All

the known evaluation approaches for LT codes degree distri-

bution are very costly. Due to the high computational cost, the

size of code length k or the iterations taken in evolutionary

algorithms are quite limited. Observing the fact, we propose

a heuristic evaluation function for LT codes decoding process

in this paper. The proposed algorithm estimates the expected
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fraction of unsolved symbols with the specified code length,

reception overhead, and degree distribution. With the help of

our proposal, researchers can then easily evaluate the perfor-

mance of degree distributions without high computational cost.

The remainder of the paper is organized as follows. Sec-

tion II introduces the related work of LT codes optimization. In

section III, the proposed function is introduced in details. For

demonstrating the usage of the evaluation function, we first

verify its practicability by comparing the evaluation results

with simulations. Then the proposed function is employed

in multi-objective optimization to assist to design degree

distributions for weakened LT codes in section IV. Finally,

section V concludes the paper.

II. RELATED WORK

Methods in evolutionary computation have long been devel-

oped for search and optimization problems. Searching for good

degree distributions is naturally associated with evolutionary

algorithms. Hyytiä made the first attempt in 2006 to employ

heuristic search algorithms to optimize the degree distribution

for LT codes with code length 100 [4]. After that, our previous

work [5], [6] made the use of evolutionary algorithms on the

optimization of degree distributions, in which the maximum

code length is one thousand. Ref. [7] focused on maximizing

the intermediate recovery rate by using multi-objective opti-

mization algorithms. The code length in the optimization is

still no more than one thousand. In these studies, real coding

simulation was implemented to evaluate the performance of

a particular degree distribution. The approach is feasible but

not efficient because a large number of simulation runs are

required to obtain precise results. The study [8] provides

another solution to evaluate a degree distribution for the

failure probability of full recovery. The method is a dynamic

programming algorithm that exhaustively records the possible

states of the decoding process. Hence, the computational

cost of the method is still high O(k3 log2(k)). Although

another method [9] with a lower computational complexity,

O(k2 log(k)), was introduced, such an expensive cost still

cannot be accepted for most real-world applications of which

the code length is usually larger than ten thousand. Since

methods in evolutionary computation usually require a lot

of evaluations to search the decision space, the evaluation

of degree distributions is therefore the most computationally

costly part. For the reason, an efficient evaluation function

for degree distributions is in need. To handle this issue, we

propose an evaluation function based on the result of the And-

Or tree analysis for LT codes.

III. EVALUATION FUNCTION

To enhance the efficiency of evolutionary algorithms ap-

plied to the degree distribution optimization, a fast objective

function is necessary. This section presents the proposed

evaluation function which can evaluate the fraction of unsolved

symbols in LT codes decoding. The evaluation function is

developed based on a study of random process called And-

Or tree analysis [10]. The approach solved the problem of

Input symbols

(bit nodes)

Output symbols

(Check nodes)

���� ����

�

�

Fig. 1. The bipartite graph represents the coding structure of LT codes. λ(x)
and ρ(x) denotes the edge degree distribution in the graph. y and z are the
fraction of covered nodes while the message passes to the opposite side.

message passing in tree structure that is quite similar to the

iterative decoding process in LT codes. Researchers found

that the approach can be adopted to analyze the asymptotic

performance of LT codes. In other words, the analysis is valid

while the code length is infinite. However, almost all the real-

world applications of rateless codes are limited in the scope

of a finite code length. The prediction of analysis results does

not match the real situation, especially for a small or medium

message code length (e.g., k < 10000). We adopt the same

idea of And-Or tree analysis and propose a heuristic function

to evaluate the packet error rate of finite length LT codes.

A. And-Or Tree Analysis

The coding structure of LT codes can be represented as

a bipartite graph as shown in Figure 1. Input symbols and

output symbols are denoted as circle and square nodes. We

first define the left degree of an edge in the graph to denote the

remaining degree of the left node after eliminating the edge.

Let λ(x) and ρ(x) be the edge degree distribution respectively

for the left and right nodes. According to the And-Or tree

analysis, if yt is the fraction of input symbols that still covered

at decoding iteration t, 1− yt of edges will pass the message

to the right side and the fraction of unknown output symbols

can be evaluated by the function,

zt = 1− ρ(1− yt) . (1)

Oppositely, the fraction of covered input symbols in next

iteration can be calculated as the form,

yt+1 = λ(zt) . (2)

In LT codes, the degree of an output symbol is sampled from

the given degree distribution, Ω(x), and ρ(x) = Ω′(x)/Ω′(1).
At the sender side, the input symbols are unformly randomly

chosen to join the encoding process and hence the degree

distribution of input symbols can be described by Poisson

distribution with parameter α. α is the average degree of

the distribution, Ω(x). Assume that the amount of received
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output symbols are γ · k. α will be γ · Ω′(1). The degree

distribution of input symbols is Π(x) = (e−ααx)/x! and

then λ(x) = Π′(x)/Π′(1) = eα(x−1). Finally, the iterative

evaluation function is given as

yt+1 =λ(1− ρ(1− yt))

=λ(1−
Ω′(1− yt)

Ω′(1))

=e
−α(

Ω
′
(1−yt)

Ω′(1))
)

=e−γ·Ω′(1−yt) , (3)

in which γ is the reception ratio and y0 is 1. When t → ∞,

the iterative function will converge and solve the asymptotic

performance of LT codes for a given degree distribution, Ω(x),
and a particular proportion of reception, γ.

The function iteratively estimates the fraction of covered

symbols in each side of the graph. For each iteration, if

yt+1 < yt, it means that some symbols are newly solved and

the decoding process can keep going and reduce the covered

symbols. Therefore, a good degree distribution of LT codes

is required to satisfy the condition as much as possible for

y ∈ [0, 1]. Ref. [7] employs the function to study the optimum

intermediate recovery rate of LT codes. The evaluation result

is only valid for asymptotic case although it works well.

Evaluating degree distributions for finite length LT codes is

still in need.

B. Proposed Evaluation Function

In the decoding process of LT codes, the input symbols

which are newly solved will be pushed in a waiting queue

called ripple. The input symbols in ripple can be used to

unpack the output symbols with degree more than one for

seeking new elements of the ripple. The decoding fails when

the ripple become empty and there still are covered input

symbols. Observing the analysis in the previous section, Equa-

tion (3) iteratively estimates the fraction of covered symbols.

In other words, yt − yt+1 is the additional fraction of the

ripple at iteration t. For a full recovery, it is expected that

yt − yt+1 > 0 until the unsolved symbols are finished, i.e.,

yt+1 = 0. Moreover, the expected size of ripple should be

sufficiently large to resist the variance because the encoding

process of LT codes is stochastic. The proposal [3] of Raptor

codes recommends a practical threshold based on the theory of

random walk. For a high probability to complete the decoding,

the expected ripple size should be greater than
√
k. As a

consequence, the condition can be formulated as

yt − yt+1 >

√
1

k
. (4)

According to Equation (4), we develop Algorithm 1 to eval-

uate degree distributions for LT codes with code length k and

proportion of received symbols γ. The algorithm iteratively

calculates the unsolved fraction of input symbols yt until the

inequality cannot hold true. The evaluation procedure is quite

straightforward and faster than any known evaluation approach

to the best of our limited knowledge. The experiment and

Algorithm 1 Degree Distribution Evaluation Function

Input: code length k, degree distribution Ω(x), reception ratio

γ;

Output: fraction of unsolved input symbols y;

1: procedure DD-EVAL(k , Ω(x) , γ)

2: y ← 0;

3: while true do

4: ynew ← exp(−γ · Ω′(1− y));
5: if y − ynew < ·

√
1/k then

6: return y;

7: end if

8: y ← ynew;

9: end while

10: end procedure

optimization results presented in next section demonstrate the

feasibility of our proposed evaluation algorithm.

IV. EXPERIMENTS

In the section, there are two experiments including single

objective and multiple objective optimization on degree dis-

tributions of LT codes. In the first experiment, the proposed

algorithm is adopted as the evaluation function to minimize

the error probability of unsolved symbols when a fixed ratio

of output symbols is received. The expected error probability

of optimized degree distributions are then compared with sim-

ulation results to verify the validity of our proposed evaluation

function. The second experiment is for studying the application

of the proposed method. Once the degree distribution of LT

codes can be rapidly evaluated, a large number of evaluations

is possible for applying multi-objective optimization on LT

codes. Therefore, we introduce a multi-objective algorithm to

solve the requirement of building Raptor codes. The single

and multiple objective algorithms employed in the paper

respectively are covariance matrix adaption evolution strategy

(CMA-ES) [11], [12], [13] and multi-objective evolutionary

algorithm based on decomposition (MOEA/D)[14], [15], [16].

The reason to choose the two well known evolutionary algo-

rithms are not only that their performance has been confirmed

in the literature but also that the source codes of them are

publicly available [17], [18].

A. Single Objective

The first experiment is to minimize the fraction of unsolved

symbols by using CMA-ES with the proposed evaluation func-

tion. CMA-ES belongs to the family of evolution strategies

which has an important evolutionary mechanism called self-

adaptation. The mechanism allows the algorithmic parameters

to evolve with individuals such that the user can focus on

the target problem without the need to address the tuning

of parameters. CMA-ES naturally inherits the characteristic,

and hence, it is adopted in our experiment with the default

settings except that the maximum number of evaluations is

105. Our first experiment is to minimize the ratio of unsolved

input symbols while a fixed number of output symbols are
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TABLE I
THE TABLE LISTS THE OPTIMIZATION RESULTS FOR MINIMIZING THE ERROR PROBABILITY y. NOTE THAT THE FIRST TWO INSTANCES WITH γ ≤ 0.824

MATCH THE THEORETICAL OPTIMUM.

Opt. #1 #2 #3 #4 #5 #6 #7

γ 0.7 0.8 0.9 0.95 1.0 1.02 1.05

p1 1.0 0.0156 0.0357 0.0113 0.0461 0.0273 0.0401

p2 0 0.9844 0.4003 0.5652 0.3744 0.4159 0.3693

p3 0 0 0.5641 0.0966 0.3744 0.3328 0.3278

p5 0 0 0 0.3263 0 0 0.0811

p8 0 0 0 0.0007 0.2052 0.1629 0.0362

p13 0 0 0 0 0 0.0611 0.1110

p21 0 0 0 0 0 0 0

p34 0 0 0 0 0 0 0.0345

p55 0 0 0 0 0 0 0

p89 0 0 0 0 0 0 0

p144 0 0 0 0 0 0 0

p233 0 0 0 0 0 0 0

p377 0 0 0 0 0 0 0

p611 0 0 0 0 0 0 0

p990 0 0 0 0 0 0 0

y 0.4966 0.3747 0.2383 0.1398 0.0871 0.0545 0.0216

received. Let y denotes the fraction of unsolved input sym-

bols that y = #(unsolved input symbols)/#(input symbols)
and the ratio of received output symbols is γ =
#(received symbols)/#(input symbols), which has been in-

troduced in section III. Therefore, the proposed algorithm

evaluates y for arbitrary degree distributions when code length

k and received ratio γ are given.

The degree distribution Ω(x) can be represented in the form

of generating function
∑k

i=1 pi · x
i in which the coefficients,

pi, are the decision variables in the optimization. If all the

coefficients are considered, the dimensions of the problem

will equal to code length k. The optimization becomes im-

practical when the targets are LT codes with a large code

length, e.g., one thousand. To solve the difficulty, free degree

distributions are replaced with sparse degree distributions of

which only partial degrees are considered to have nonzero

probabilities. Sparse degree are commonly used to design good

distributions for less complexity [3]. Our previous work [19]

has provided a general approach to define a subset of de-

grees and form a sparse degree distribution which can well

approximate full degrees. According to [19], degree subset

S = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 611, 990}
with size |S| = 15 is adopted in the experiment, and then

the optimization problem can be formulated as follows,

Decision variables : (p1, p2, ..., pi) for i ∈ S

Objective : Ω(x) =
∑
i∈S

pi · x
i

min(DD-EVAL(k,Ω(x), γ))

The optimization results for code length k = 10000, and a

series of reception ratio is given in Table I. There are many

zero entry in each degree distribution confirms that using

appropriately selected sparse degrees is sufficient to compose

a good degree distribution. The evaluation values for these

optimized degree distributions are given in the bottom of the

table. The author would like to note that the theoretical opti-

0.9 0.95 1 1.02 1.05

10
−2

10
−1

10
0

γ

y

 

 

Opt.#1 for γ = 0.7
Opt.#2 for γ = 0.8
Opt.#3 for γ = 0.9
Opt.#4 for γ = 0.95
Opt.#5 for γ = 1
Opt.#6 for γ = 1.02
Opt.#7 for γ = 1.05

Fig. 2. The figure shows the simulation results for each optimization case
in Table I. The results are average over 1000 independent runs and the code
length k us 10000.

mum solution for the range, y ∈ [ 13 , 1], has been found [20].

Ref. [20] proved that the optimum degree distributions for the

two region of y. In the first region, y ∈ [ 12 , 1], the optimum

degree distribution only have probability on degree one and

the required reception ratio is γ = −log(y). For the second

region, y ∈ [ 13 ,
1
2 ], degree distribution with all probability

on degree two is the optimum for γ = −log(y)
2(1−y) . The first

two experiment instances are γ = 0.7 and γ = 0.8 whose

optimization results pretty match the prediction of the theory.

For the other instances, we make the real encoding/decoding

simulation, as used in previous studies, to verify the soundness

of the proposed evaluation function. Figure 2 displays the

average results over 1000 simulation runs, in which the scale

focus on γ ≥ 0.9 because the two instances out of the scope

have been confirmed by the known optimum. To compare
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TABLE II
THE TABLE LISTS THE OPTIMIZATION RESULT OF SEVERAL INDIVIDUALS BY MOEA/D AND “RAPTOR” IS THE OPTIMIZED DEGREE DISTRIBUTION FROM

THE LITERATURE [3]

indiv. #1 #10 #20 #30 #40 Raptor

p1 0.04197 0.04602 0.00750 0.00594 0.00686 0.00797

p2 0.35548 0.35736 0.46647 0.49613 0.51276 0.49357

p3 0.32341 0.32481 0.24211 0.20844 0.11037 0.16622

p4 0.06613 0.06164 0.00820 0.00035 0.01781 0.07265

p5 0.01622 0.02109 0.00793 0.00270 0.18379 0.08256

p8 0.07170 0.06553 0.20583 0.27056 0.16164 0.05606

p9 0.00432 0.00300 0.01420 0.00891 0.00651 0.03723

p18 0.06333 0.07465 0.02178 0.00036 0.00002 0

p19 0.01160 0.01432 0.00894 0.00450 0.00006 0.05559

p20 0.01187 0.02872 0.01704 0.00201 0.00014 0

p65 0.03008 0.00031 0 0 0.00001 0.02502

p66 0.00361 0.00220 0 0 0.00001 0.00314

p67 0.00028 0.00034 0 0.00010 0.00001 0

y 0.00163 0.00930 0.01732 0.02644 0.03641 0.00426

Ω′(1) 6.49119 5.01718 4.41671 4.02172 3.71125 5.8703

the results in Table I and Figure 2, it can be found that

all the degree distributions obtained in optimization show

the expected error probability of input symbols. It illustrates

that the proposed algorithm is valid to evaluate the degree

distribution. The evaluation function is quite straightforward

and its computational complexity is lower than any known LT

codes evaluation function to the best of our limited knowledge.

B. Multiple Objectives

Since the proposed evaluation function is valid and efficient,

the second experiment presents a multi-objective application

for designing Raptor codes. Raptor codes are a two-layer

coding structure consisting of a pre-coder and the inner LT

codes. Many traditional block codes can serve as the pre-

coder to share the loading of full recovery. Therefore, instead

of solving all the input symbols, the new objective of the

inner LT codes is changed to recover a fixed fraction. LT

codes with degree distributions devised for the objective are

called weakened LT codes. Weakened LT codes need not to

recover all the input symbols, and hence, the average degree

of the adopted distribution can be lower to reduce the coding

complexity. However, weakened LT codes must ensure a high

probability to solve the certain amount of input symbols.

It means that we cannot choose degree distributions with

an arbitrary small mean degree. Although there are some

optimization results of weakened LT codes presented in the

literature [3], most of them considered only a single objective.

In this work, we introduce a multi-objective optimization

algorithm to investigate the trade-off between the decoding

performance and computational complexity. The employed

multi-objective optimization algorithm is MOEA/D proposed

in [14] in 2007. As CMA-ES, the performance of MOEA/D

has been verified in the literature, and it was the winner of

the MOEA Competition in CEC-2009. In the experiment, the

two objectives are defined as

Objective 1 : min(Ω′(1))

Objective 2 : min(DD-EVAL(k,Ω(x), γ)) ,

1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ω
′(1)

y

 

 

indiv #1

indiv #10

indiv #20

indiv #30

indiv #40

Raptor

Fig. 3. The figure shows the Pareto front of multi-objective optimization
results in which k = 65536 and γ = 1.038. The degree distribution of the
five individuals with maker symbols are listed in Table II.

for a given degree distribution Ω(x). We set k = 65536 and

minimize the two objectives for reception ratio γ = 1.038.

Figure 3 displays the optimization results, in which the

Pareto front is well approximated by 100 individuals. Each

individual represents a degree distribution with non-dominated

objective values. The result demonstrates lots of possible so-

lutions for Raptor codes designer to choose according to their

own requirements. An optimized degree distribution from the

literature [3] is given in Table II and marked as “Raptor.” The

degree distribution was obtained by minimizing the average

degree for the same settings of k and γ in our experiment.

We evaluate it with the proposed algorithm and plot it in the

Figure 3. It seems like an individual in the Pareto front even

though coming from other optimization. In the next, totally five

individuals with different average degrees are chosen and listed

in Table II. We investigate their decoding performance by

real simulation again. The simulation results in Figure 4 clear
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Indiv. #20
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Indiv. #40

Raptor

Fig. 4. The figure shows the average results over 1000 simulation runs in
which k = 65536.

presents the different error floor of each degree distribution.

Individuals with smaller average degrees perform worse on

another objective of decoding performance. The efficiency of

the proposed function make possible for researchers to do a

huge amount of evaluations in multi-objective evolutionary

algorithm for designing weakened LT codes.

V. CONCLUSIONS

Applying evolutionary algorithms to solve the optimization

on LT codes degree distributions is a crucial, meaningful issue,

but an efficient evaluation function was missing. The evalua-

tion approaches in existence were so costly that the results

of LT codes optimization were limited within the scale of

k ≤ 1000. To resolve this issue, this paper proposed a heuristic

function to evaluate the fraction of unsolved input symbols

for a given code length, reception overhead, and degree

distribution. The proposed function is not only efficient but

also practical. The first part of our experiment demonstrated

that by optimizing a single objective of degree distributions.

In the second experiment, the proposed function was applied

in a multi-objective evolutionary algorithm to demonstrate its

utility. The results of the multi-objective optimization help

the user to choose the degree distribution to build various

weakened LT codes. We believe that the evaluation function

is extremely helpful when the issue of LT codes optimization

is investigated.
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