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Abstract— Knowledge extraction from a multi-objective opti-
mization process has important implications including a better
understanding of the optimization process and the relationship
between decision variables. The extant approaches, in this
respect, rely on processing the post-optimization Pareto sets for
automatic rule discovery using statistical or machine learning
methods. However such approaches fall short of providing
any information during the progress of the optimization pro-
cess, which can be critical for decision analysis especially if
the problem is dynamic. In this paper, we present a multi-
objective optimization framework that uses a knowledge-based
representation to search for patterns of Pareto optimal design
variables instead of conventional point form solution search.
The framework facilitates the online discovery of knowledge
during the optimization process in the form of interpretable
rules. The core contributing idea of our research is that we
apply multi-objective evolutionary process on a population of
bounding hypervolumes, or rules, instead of evolving individual
point-based solutions. The framework is generic in a sense
that any existing multi-objective optimization algorithm can
be adapted to evaluate the rule quality based on the sampled
solutions from the bounded space. An instantiation of the
framework using hyperrectangular representation and non-
dominated sorting based rule evaluation is presented in this
paper. Experimental results on a specifically designed test
function as well as some standard test functions are presented
to demonstrate the working and convergence properties of our
algorithm.

I. INTRODUCTION

MANY real world problems are formulated as multi-

objective optimization problems (MOP). Evolution-

ary Multi-objective Optimization Algorithms (MOEA) are

arguably the most famous family of metaheuristcs for solving

MOP, which aim at obtaining a set of diverse trade-off so-

lutions with Pareto optimality [1]. However, presenting only

a set of approximate, discrete and static optimal solutions is

often not sufficient for decision makers in a multi-objective

context. The decision makers are often trapped in a dilemma

where no (or only a few) solutions are viable for imple-

mentation even though the so-called optimized result has

been returned. In such situations, what interests the decision

makers more is not only an optimized set of solutions but an

understanding of the problem and an identification of patterns

in the design space that lead to better solutions. This becomes

even critical when there is a need to generalize optimization

results for problems with similar design structures, or when

the problem definitions change dynamically. Knowledge ex-

traction or discovery from a multi-objective optimization
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process, thus, has important implications including better

understanding of the optimization process as well as the

relationship between decision variables.

One of the extant approaches for knowledge discovery

in MOP rely on pre-optimization formulation and mono-

tonicity analysis of the objective functions [2]. While these

techniques can provide insights into the relationship be-

tween decision variables and optimal solutions, their use

is limited due to the monotonic assumptions required for

constraints and objective functions. On the other hand, recent

research [7][4][5][6] has focused on devising techniques

to automatically extract knowledge from post-optimization

processing of the Pareto optimal solutions. The objective of

these approaches is to determine important design rules by

approximating the final Pareto set with respect to the decision

variables using statistical and machine learning techniques.

There are two problems with the post-optimization ap-

proaches: First the knowledge discovery process does not

start until the optimization process is completed and second

no information is available about how the search has pro-

gressed during the optimization process. The first problem

implicates higher computational time, a longer wait to obtain

the extracted knowledge and hence waste of resources while

the second problem relates to a poor understanding of the

optimization process – a key motivation for carrying out the

knowledge discovery process. The second problem is also

restrictive for the dynamic optimization problems where the

search or fitness landscapes may change over time and there

is never a final Pareto set which might be post-processed for

knowledge extraction and discovery. The parsing of Pareto

set and application of regression techniques to approximate

the Pareto front can also become a bottleneck for high-

dimensional MOP as most simple regression techniques do

not scale to high dimensional data spaces. Finally, the post-

optimization extracted knowledge is useless for improving

the optimization problem at hand.

In this paper, we present a multi-objective optimization

framework that uses a knowledge-based representation to

search Pareto optimal areas instead of individual solutions

as is done traditionally in the MOEA research. To clarify,

here we refer to knowledge as patterns in the design space

that lead to Pareto optimal solutions in the objective space.

In this context, the framework facilitates the online discovery

of knowledge during the optimization process in the form of

interpretable rules. The core contributing idea of our research

is that we apply evolutionary process on a population of

n-dimensional bounding hypervolumes (or rules), where n

corresponds to the number of variables or dimensions in the
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design space. The rule population is then evolved towards

Pareto optimal areas instead of evolving towards individual

Pareto solutions. The fitness of rules is partly dependent

upon the quality of the sampled solutions from the bounded

volume of the rule according to a multi-objective criterion,

such as non-dominated sorting, and partly on other char-

acteristics, such as, the relative volume of the rules and

proportion of good solutions. We refer to this framework as

Knowledge-Based Multi-objective Optimization Framework

using Evolutionary Algorithms (KB-MOFEA).

KB-MOFEA is generic in a sense that any existing MOEA

can be adapted to evaluate the rule quality in the objective

space based on the sampled solutions from the bounded

space represented by each rule. Moreover, the framework

is representation independent in that different hypervolume

representations can be used, including hyperrectangles which

allow expressing rules in a simple if-then form. KB-MOFEA

has a number of advantages including:

• It could ensure including all areas of the design space

in the exploration process at initialization. This is espe-

cially useful for problems with large number of decision

variables leading to sparse search spaces. Further, poor

design areas are automatically excluded from the search

process through evolution.

• It allows sampling all areas of the search space without

being computationally too expensive. Once the optimal

areas are discovered, they can be sampled infinitely to

obtain a nice spread of solutions in the decision space.

• The multi-objective evolution of hypervolumes means

that a set of rules are available at every step of the

evolution capturing the current state of the optimization

process. This is especially useful for the dynamic op-

timization problems where the decision makers might

need a set of solutions and hence the knowledge about

them at any point in time.

• The hypervolume representation, and in particular

hyper-rectangular representation, provides a powerful

and intuitive way of capturing knowledge, especially in

high-dimensional search spaces.

• The rule-based representation of the optimal design

space provides decision makers a greater flexibility in

exercising their preferences.

In this paper, we present an instantiation of KB-MOFEA

implemented with hyper-rectangular rule representation and

non-dominated sorting based rule evaluation as used by

NSGAII algorithm [8]. We term the resulting algorithm as the

Rule-Based NSGAII (RBNSGAII). To evaluate RBNSGAII,

a simple bi-objective test function generator is developed

with two decision variables. The function generator allows

generating objective functions with multiple rectangular-

shaped optimal areas in the design space. The experiments

with a four-box test function validates the correct working of

RBNSGAII as the algorithm nicely converge to the optimal

areas with minimum number of rules. The experimental

results with DTLZ functions also show that algorithm can

successfully discover the optimal areas with minimum num-

ber of bounding rules.

It is important to note that our framework is different

from the conventional evolutionary rule learning systems [10]

that use MOEA to evolve classification rules [9][25][26][27].

The main purpose of the above class of systems is to learn

rules for data classification during a training phase where the

systems receive input data with class labels. The evolutionary

algorithms are used to generate and refine these rules during

training which are then used to classify future cases. There

is no input data with correct labels in our context.

The rest of this paper is organized as following. The

overall framework of knowledge-based multi-objective op-

timization is presented in Section III. The hyperrectangu-

lar rule-based implementation of the framework with non-

dominated sorting based rule evaluation (RBNSGAII) is

presented in Section IV. Section V reports on the evaluation

of RBNSGAII and includes the details of the test func-

tions, experimental setup and discussion of the results. The

conclusions and future research directions are discussed in

Section VI.

II. BACKGROUND

A. MOP and MOEA

A multi-objective optimization problem (MOP) typically

contains a set of objective functions for minimization or

maximization subject to a number of constraints. Formally

an MOP can be defined as follows [11] (Minimization for

instance):

Minimize F (X) = (f1(X), f2(X), ..., fm(X))
Subject to x ∈ Ω

(1)

Here, solution X is a n-dimensional vector X =
(x1, x2, · · · , xn) ∈ R

n. Ω is the feasible set of solutions

restricted by equality or inequality constraints and vari-

able bounds [12]. In real-world problems, the objectives

f1, f2, · · · , fm are not harmonious, but conflicting with

each other, instead. Hence, there is no single solution that

can optimize the set of objective functions simultaneously.

Improvement of one objective will deteriorate at least one

of the rests. The Pareto optimality is used to differentiate

outstanding solutions from others [13]. We say solution X

dominate Y if all fi(X) ≤ fi(Y ) for i = 1, 2, · · · ,m and

at least one of them, say fi∗ , satisfies fi∗(X) < fi∗(Y ).
A solution is Pareto optimal if it is not dominated by any

other solution in the search space and the set of all these

non-dominated solutions is referred to as the Pareto set

(PS). While in objective space, the set of corresponding

objective vectors (F (X1), F (X2), · · · ) for a given Pareto

set (X1, X2, · · · ) is called the Pareto front (PF). For many

MOPs, there are numerous or even infinite Pareto optimal

solutions.

Obviously, the goal of multi-objective optimization is to

identify the Pareto set and Pareto front for a given MOP.

However, identifying the exact and entire Pareto set of

a given MOP is often practically impossible due to the

inherent non-linearity, complexity and comprehensibility of
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the problem and the enormous size of the search space.

In this case, multi-objective evolutionary algorithms, espe-

cially the multi-objective genetic algorithms (MOGA), as

a population-based, bio-inspired metaheuristic, emerged and

gradually dominated the research in MOP as they are able

to approximate the Pareto front (Pareto set) in a single

run. Ever since the first MOGA, called VEGA [14], was

proposed, many distinguished algorithms, such as NSGA-

II [8], DMEA [15], MOEA/D [16], has been developed with

remarkable performance improvements and applied to a huge

variety of applications. For the sake of brevity, the detailed

evolution process is not discussed here. Some dedicated

reviews and surveys on MOPs and MOEAs are listed for

reference purpose [11][12].

B. Knowledge discovery from MOPs

In the literature, there is already some research available

regarding the knowledge extraction from multi-objective

problems. The knowledge here is general, not constrained by

the form of rules. The first source of knowledge is naturally

and directly from the definition and formulation of specific

multi-objective problem, such as monotonicity analysis [2].

It is a pre-optimization technique for investigation of im-

portant properties among decision variables and the optimal

solutions when there are monotonic objective functions or

constraint functions. Such methods [17][18] try to capture

and utilize the mathematical characteristics of functions used

to model the original problem to get some insights for the

understanding of MOP. However, they are often restricted by

strong conditions and not popularly used.

On the contrary, the mainstream of knowledge discovery

from multi-objective optimization employs an extra analy-

sis of the Pareto optimality after optimization. Deb et al.

first created the concept of innovization (innovation through

optimization) aimed to unveil innovative design principles

by means of multiple conflicting objectives [19][20]. Then

they proposed a post-optimization analysis framework for

automated discovery of vital knowledge from Pareto optimal

solutions [7] and successfully demonstrated the applicability

of this framework with applications such as truss structure

design [4][5]. They finally differentiate the knowledge to

higher levels and lower levels [6]. In their methodology, the

knowledge denotes hidden problem structure characteristics,

such as the correlations between variables and objectives,

sensitivity to variables or constraints and so on, and is

formulated as polynomials. Then they exploited and op-

timized these polynomial relationships between variables

and objective functions with another evolutionary process

after optimization to original MOP under the belief that

the optimal solutions satisfying strong relationships will

cluster together and the dominating cluster reveals the design

principle. However, polynomial relationships are not general

patterns and the application seems to be restricted with one

or two well designed examples.

Beside the mathematical form of knowledge, association

rules are also targeted for extraction from the Pareto front

by combining optimization and data mining techniques [21].

Not only does the form of knowledge vary, but also many

techniques are involved for this topic. The rough set theory

is employed for the knowledge discovery purposes in [22].

A self organizing map is used to visualize tradeoffs of Pareto

solutions for data mining in order to find clusters with high

correlations [3]. A new multi-objective genetic programming

is also proposed for multi-objective design exploration [23].

All the approaches above tend to integrate data mining

and machine learning techniques into the optimization pro-

cess to obtain interesting knowledge. Learning abilities and

evolutionary search both benefit each other. In this paper, we

will adapt the evolutionary search for knowledge discovery

with rule representation for the pervasive application of rules,

which are considered as one of the highly usable and readable

outputs of data mining.

III. KB-MOFEA

In this section, we present our proposed generic frame-

work for knowledge-based multi-objective optimization –

KB-MOFEA. An algorithmic description of KB-MOFEA

is provided in Algorithm 1. The main components of the

framework include: generation of an initial rule population

using a preferred representation, e.g., hyper-rectangular rep-

resentation, and according to a given initialization scheme

such as purely random or grid-based initialization; sampling

solutions from the bounded space of each rule in the popula-

tion according to a sampling scheme, e.g., uniform random or

based on a statistical measure; evaluation of sampled solution

according to a given criterion, e.g., based on non-dominated

sorting; evaluation of rules based on solution quality as well

as other measures such as rule volume; generation of next

population of rules using an evolutionary algorithm and rule

adjustments such as merging of overlapping rules.

Algorithm 1 KB-MOFEA: Knowledge-Based Multi-

objective Optimization Framework using Evolutionary

Algorithms

1: Initialization: generate a population of rules covering the

decision space according to a given representation and a

given method;

2: while no stopping criterion is satisfied do

3: Sampling: Select a given number of solutions from

the space bounded by each rule in the population

according to a given sampling scheme;

4: Solution Evaluation: Evaluate all sampled solutions

according to given criteria;

5: Rule Evaluation: Evaluate all rules in the population

as a function of sampled solutions quality and other

rule characteristics;

6: Rule Evolution: Apply an evolutionary algorithm to

generate a new rule population;

7: Re-evaluate parent population if needed;

8: Prune rules if needed;

9: end while

10: return the final rule population bounding the Pareto

optimal decision space;
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IV. KB-NSGAII

KB-MOFEA can be instantiated with and utilize any

point-based solution evaluation method as an underlying

component, such as the non-dominated sorting operation

in NSGA-II and the decomposition operation in MOEA/D,

to name a few. This section presents a detailed imple-

mentation of RBNSGAII – an instantiation of KB-MOFEA

using hyper-rectangular rule representation and NSGAII type

rule evaluation. Algorithm 2 provides complete pseudocode

of RBNSGAII. The following subsections further explain

different operations in detail used in this implementation.

Algorithm 2 RBNSGAII

1: Initialize hyper-rectangular rule population P1 of size N

using a grid-based approach;

2: Sample SR solutions using each rule in P1 using Latin

Hypercube method;

3: Rank all (N × SR) sampled solutions using the non-

dominated sorting;

4: Evaluate the quality of all the rules in P1;

5: Initialize reference point ((ρref , νref )) using the best

quality rule in P1;

6: Compute rules fitness in P1;

7: while gen ≤ Gen do

8: Choose rules from P1 for reproduction to form a

parent population Pp using niched binary tournament

selection;

9: Perform real crossover and mutation on Pp to generate

a new rule population P2;

10: Sample SR solutions from each rule in P2;

11: Rank all (2×N ×SR) solutions in population Pp and

P2 using the non-dominated sorting;

12: Evaluate the quality of all the rules in Pp and P2;

13: Update the reference point;

14: Calculate the fitness for rules in Pp and P2;

15: For each rule Ri in P2, use it to replace the first rule

Rj in Pp when Rj is in the same niche with Ri but

with an inferior fitness;

16: Shrink and resample solutions for each rule in Pp;

17: P1=Pp;

18: end while

A. Rule Representation and Initialization

The hyperrectangular rules use an interval-based represen-

tation. In specific, a rule consists of n intervals representing

n decision variable using upper and lower bounds.

(x1,l, x1,h, x2,l, x2,h, · · · , xn,l, xn,h)

where xi,l and xi,h denote the lower and upper bounds of

variable xi, respectively.

The implementation of RBNSGAII in this paper uses

a grid based initialization that allows covering the entire

decision space systematically without leaving a gap or an

overlap between initial rules. The choice of initialization

might impact the algorithm performance to some degree

e.g. in terms of convergence speed. However, this sensitivity

analysis is not the subject of this paper and focus is on

presenting the main idea.

B. Solution Sampling from Rules

While individual solutions can be sampled from the rules

uniform randomly. This would require a large number of

samples to get an accurate representation of the bounded

area. A high number of samples however means high com-

putational time in our framework. On the other hand fewer

samples could lead to a biased sampling. So an effective

sampling mechanism is important for the working of our

algorithms. While sampling is a rich area of research, in this

paper we chose to use Latin Hypercube sampling (LHS) [24]

which allows stratified and steady sampling of the search

space using a divide and sample approach. Future research

will focus on studying the effect of different sampling

mechanism, including adaptive sampling mechanisms, on the

performance of the algorithms.

C. Rule Evaluation and Fitness

A rule is evaluated using two measures: the quality of

solutions sampled from the evaluated rule compared to all

sampled solutions and the volume or size of the rule. To

measure solution quality, all solutions sampled from the rule

population are ranked using non-dominated sorting procedure

as used in NSGAII. Then the overall quality of sampled

solutions ρ is measured as:

ρ =
∑

end

α
i

SR −
∑

ed

β × (rankj) (2)

where end and ed refer to the number of non-dominated and

dominated solutions, respectively, in the sampled solution

pool with indices i and j iterating over each set. Non-

dominated solutions are given rank = 1, whereas dominated

solutions are ranked rank = 2, 3, · · · . α and β are two

arbitrary numbers that denote the magnitude with which a

rule is rewarded or penalized for enclosing a non-dominated

or a dominated solution within its bounds respectively. In the

current implementation, α and β are both set to 10.

The second measure, size of the rule ν, is computed as

the summation of interval ranges in each dimension.

ν =

n
∑

i=1

(xi,h − xi,l) (3)

Instead of using a product function to compute the actual

volume occupied by the rule, we use a summation function

to reduce the impact of a few infinitely small interval lengths

on the overall rule quality.

Finally the fitness of a rule is computed as:

fitness = e−
(ρ−ρref )

2

2 e−
(ν−νref )

2

2 (4)

ρref and νref were mentioned in Algorithm 2 above. They

are computed as a pair. ρref corresponds to the best ρ value

achieved by a rule during the evolution up to the current
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generation. νref is computed as the max size of all rules

with a ρ value equal to the current ρref .

This fitness function serves two purposes, first it aims

at preferring the rules which enclose more non-dominated

solutions and second it encourages larger or more general

rules over specific rules. Since we do not apriori know the

exact size of the optimal design space, this fitness function

uses a dynamic reference point in the hope of finding the

optimal design space size during the search.

D. Rule Evolution

The next generation of rules involve choosing N parents

and creating N children through crossover and mutation

operators. To choose the parent population, Pp, a modified

niched-binary tournament selection scheme with elitism is

used. For every rule in the old population, P1, another rule

is chosen uniform randomly from the whole population. Then

the two rules are checked if they belong to the same niche

or not. Two rules belong to the same niche if

• none of them contain any non-dominated solutions;

• either of the two contain one or more sampled solutions

which are non-dominated; or

• both contain one or more non-dominated solutions and

they overlap;

If none of the above conditions are true, the rules are not

considered to belong to the same niche. Next a rule with

better fitness value is inserted in the parent population if the

two rules belong to the same niche. Otherwise, the second

randomly selected rule is discarded and the first rule is

inserted into the parent population.

Once the parent population is created, children are created

by selecting two rules from the parent population in sequence

and crossing them over. Each child is then mutated with a

given probability. Both crossover and mutation operators are

adopted from [8]. A consistency check is performed to ensure

that the bounds are within the limits and are logical. Once

the new population, P2, is created by creating N children,

the fitness of rules in both populations are updated using

procedure explained in the above section. Finally, the two

populations Pp and P2 are combined to generate the next

generation population. The combination involves a similar

procedure as the selection procedure explained above. Each

rule in P2 is compared with each rule in Pp and rules in Pp

are replaced by rules in P2 if they fall within the same niche

as a rule in Pp and have better fitness.

E. Shrinking

A rule shrinking heuristic is adopted to improve the

convergence speed of the algorithm. In shrinking the rules

boundaries are adjusted to the minimum bounding hyperrect-

angles that cover their best ranked solutions globally (e.g., if

a rule has five solutions with following global ranks: 2, 3, 3,

2, 4, then the shrinking operator will consider first and fourth

solutions). The second best ranked solutions are considered

if the rules only contain a single best ranked solution.

V. EXPERIMENTS

This section covers the details of the test functions we

used to evaluate the performance of our proposed algorithm

RBNSGAII, parameter settings for the algorithm and the

experimental results.

A. Test Problems

Two types of functions are used to evaluate the proposed

RBNSGAII. The first of them, that we term as HMOA for

Hyperrectangular Multi-objective Optimal Area test function,

is specifically designed to evaluate the research question:

To what degree our proposed rule based algorithm can

converge to the optimal area with a shape matching the rule

representation? In a sense, we used this test function to tune

our algorithm. However, a formulation of these concepts is

warranted and is left for the future work.

Formally, the objective of HMOA is to minimize

f1(X) = sin(x1 +
π
4 ) + sin y

f2(X) = cos(x1 +
π
4 ) + sin y

(5)

where y is given by:
{

x2 − n n(2π + 1)− π
2 ≤ x2 < n(2π + 1) + 3π

2
n2π + 3π

2 n(2π + 1) + 3π
2 ≤ x2 < n(2π + 1) + 3π

2 + 1
(6)

when there exists n ∈ Z.

In the implementation, we restrict the decision variables as

x1 ∈
[

−π
4 ,

19π
4

]

and x2 ∈ [0, 5π]. The interval of x2 means

only n ∈ {0, 1, 2} are possible. Hence y equals






















x2 0 ≤ x2 < 3π
2

3π
2

3π
2 ≤ x2 < 3π

2 + 1
x2 − 1 3π

2 + 1 ≤ x2 < 7π
2 + 1

7π
2

7π
2 + 1 ≤ x2 < 7π

2 + 2
x2 − 2 7π

2 + 2 ≤ x2 < 5π

(7)

The optimal areas for the 2-dimensional HMOA are then

identified as

x1 ∈
[

3π
4 , 5π

4

]

x2 ∈
[

3π
2 , 3π

2 + 1
]

x1 ∈
[

3π
4 , 5π

4

]

x2 ∈
[

7π
2 + 1, 7π

2 + 2
]

x1 ∈
[

11π
4 , 13π

4

]

x2 ∈
[

3π
2 , 3π

2 + 1
]

x1 ∈
[

11π
4 , 13π

4

]

x2 ∈
[

7π
2 + 1, 7π

2 + 2
]

(8)

.

Next, we test our algorithms using the standard DTLZ1

functions.

f1(X) = 1
2x1x2 . . . xk−1(1 + g(X))

f2(X) = 1
2x1x2 . . . (1− xk−1)(1 + g(X))

· · ·
fk−1(X) = 1

2x1(1− x2)(1 + g(X))
fk(X) = 1

2 (1− x1)(1 + g(X))
0 ≤ xi ≤ 1, i = 1, 2, . . . , n

(9)

g(X) is recommended as following:

g(X) = 100×
{(|X| − k + 1)+
∑n

i=k[
(

xi −
1
2

)

− cos
(

20π
(

xi −
1
2

))

]}
(10)
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Fig. 1. Rule evolution in RBNSGAII over time when tested with HMOA function. The red dashed boxes show the optimal area of the design space. The
rules are represented with solid line blue boxes and the green dots show the sampled solutions.

Theoretically, the set of Pareto solutions of DTLZ1 is 0 ≤
xi ≤ 1, i = 1, 2, . . . , k − 1 and xi =

1
2 , i = k, k + 1, . . . , n

while the Pareto front is
∑k

1 fi =
1
2 .

In specific, we used the 2D and 3D DTLZ1 functions listed

below:

DTLZ1-2D:

f1(X) = 1
2x1(1 + g(x2))

f2(X) = 1
2 (1− x1)(1 + g(x2))

(11)

DTLZ1-3D:

f1(X) = 1
2x1x2(1 + g(x3))

f2(X) = 1
2x1(1− x2)(1 + g(x3))

f3(X) = 1
2 (1− x1)(1 + g(x3))

(12)

The Pareto solutions of DTLZ1-2D are all located on the

line segment 0 ≤ x1 ≤ 1, x2 = 0.5 in the decision space and

the Pareto front is f1 + f2 = 0.5. Accordingly, DTLZ1-3D

has all the optimal solutions on a hyperplane 0 ≤ x1, x2 ≤
1, x3 = 0.5 and the front is f1 + f2 + f3 = 0.5.

B. Experimental Setup

Some of the common parameters for the experiments are

listed in Table I.

TABLE I

COMMON PARAMETERS FOR RBNSGAII

Name Value Name Value

Rule Pop Size 100 Sampling Size 10
Max Generation 2000(1000) Reserved Digits 3
Crossover Rate 0.9 Mutation Rate 0.1

The evolution starts with 100 rules and grid-based ini-

tialization. In every evaluation, 10 solutions are sampled

from every rule (i.e., a total of 1000 solutions for the whole

population) using LHC sampling method explained above.

Rules are real coded up to 3 digits after the decimal point.

C. Results

Figures 1 show the outcome of applying RBNSGAII

to solve HMOA test function. First, Figure 1 shows the

evolution of rules over time starting from the first to the

last generation. Starting from a grid based initialization, one

can note that the algorithm quickly converged to find the

optimal design areas as early as generation 10. However, the

optimal rules are found around generation 100. Although the

algorithm converge quickly to the optimal area, there are still

many overlapping rules in the population as demonstrated by

the rule population listed in Table II. Since all these rules

covers the optimal area they are all competitive and it would

take a long time for evolution to remove such overlaps (see

Table III). Obviously, the convergence to final optimal areas

could be improved by introducing a rule pruning operators

when population reaches a steady state as is shown by

Figure 3. Figure 2 shows the comparison of true Pareto front

for HMOA and solutions sampled from the rules of the final

generation (gen=2000). As can be seen RBNSGAII is able to

get a nice spread of the solutions owing to all 1000 solutions

sampled from the optimal decision areas.
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Fig. 2. The Pareto solutions obtained by RBNSGAII for HMOA function.
The red solid line shows the true Pareto front and the blue dots shows the
solutions sampled using the final generation rules.
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TABLE II

DISTINCT RULES AT GENERATION 1000 FOR HMOA

x1,l x1,h x2,l x2,h

2.357 3.927 4.713 5.712
8.64 10.21 4.713 5.712
8.64 10.21 11.996 12.995
2.357 3.926 4.713 5.712
2.357 3.926 11.996 12.995
2.357 3.886 4.713 5.712
2.357 3.877 4.713 5.701
2.357 3.85 4.713 5.597

TABLE III

DISTINCT RULES AT GENERATION 2000 FOR HMOA

x1,l x1,h x2,l x2,h

2.357 3.926 4.713 5.712
8.64 10.21 4.713 5.712
8.64 10.21 11.996 12.995
2.357 3.926 11.996 12.995

Figures 4 and 5 repeat the same experiments as discussed

above for HMOA test function for DTLZ1-2D and DTLZ1-

3D respectively. For both functions the optimal design areas

correspond to a single Pareto area. Subsequently, RBNS-

GAII converged much quickly than in the case of HMOA.

Tables IV and Table V show the distinct rules in the final

populations corresponding to the exact optimal areas in both

cases.

TABLE IV

DISTINCT RULE AT GENERATION 1000 FOR DTLZ1-2D

x1,l x1,h x2,l x2,h

0 1 0.5 0.5

TABLE V

DISTINCT RULE AT GENERATION 1000 FOR DTLZ1-3D

x1,l x1,h x2,l x2,h x3,l x3,h

0 1 0 1 0.5 0.5

VI. CONCLUSION

This paper presents a novel knowledge-based multi-

objective optimization framework which aims at searching

for optimal areas of the design space instead of individual

solutions using a rule-based representation. A population of

rules, corresponding to the bounding areas in the design

space, are evolved to search for the optimal areas. The

rules are evaluated based on the quality of sampled solutions

from their bounded area. The framework allows using any

existing MOEA to be used for the quality of rule evaluation.

This facilitates the online discovery of knowledge during the

optimization process in an interpretable form.

An implementation of the framework using a hyperrectan-

gular rule representation and NSGAII based rule evaluation

is presented in this paper. The resulting algorithm is tested

on a few standard as well as custom designed test functions.
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Fig. 6. The Pareto solutions obtained by RBNSGAII for DTLZ1-3D
function. The red solid line shows the true Pareto front and the blue dots
shows the solutions sampled using the final generation rules.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Generation

N
um

be
r 

of
 D

is
tin

ct
 R

ul
es

Fig. 7. The number of unique rules over time in the population for DTLZ1-
3D function.

The experimental results show that the algorithm is able

to successfully identify the optimal areas with minimum

number of rules.

We believe that the knowledge-based MOEA framework

presented in this paper has important implications for many

domains including engineering design and decision support

systems and has a broad scope for extensions. There are a

number of directions stemming from this work for future

research including extensions of the framework using a

number of leading MOEA including SPEA and MOEA/D;

extensions of the framework using a number of other rule

representations including hyper-ellipsoids and fuzzy repre-

sentations and thorough evaluation of the framework with

complex optimization problems including those with non-

linear, convex and dynamic objective functions under the

above extension. The first two classes of extensions would

establish the generality of the framework and the extensive

testing mentioned above would be required to establish the

effectiveness of the framework.
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