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Abstract— To facilitate the computer-aided medical appli-

cations, this paper tries to build better intelligent diagnosis

systems with the help of swarm intelligence method. As to

the clinical data, a built-in graph structure is constructed with

training samples being mapped as labeled vertices and test sam-

ples being unlabeled vertices. On the basis of the iterative label

propagation algorithm, this paper first introduces a confidence-

based random walk learning model, where unlabeled vertices

that consistently show high probability (above the confidence

threshold) in belonging to one class is treated as labeled vertices

in the next iteration. Later motivated by the swarm intelligence,

this model is further improved by treating the labeled vertices

as real ants in nature and the predefined classes as different

ant colonies. A novel labeled ant random walk algorithm is

introduced by incorporating the history information of random

walk in the form of aggregation pheromone. The proposed

algorithms are evaluated with a synthetic data as well as

some real-life clinical cases in terms of diagnostic accuracy.

Experimental results show the potentiality of the proposed

algorithms.

I. INTRODUCTION

In the field of human decision, medical diagnosis is
naturally a classification or prediction problem for the sake
of determining further treatment. With the development of
diagnostic knowledge and herb formula of Traditional Chi-
nese Medicine (TCM) in China, there are a huge set of
clinical cases are available up to now. Some of these cases
are represented by tests obtained from modern equipments,
while the others are represented by symptoms from the TCM
methods (e.g. Inspection, auscultation and olfaction, inquiry
and palpation). Therefore, researches on these clinical cases
may help promote the development of diagnosis technology,
and make a contribution to the objection and modernization
of TCM.

The computer-aided disease diagnosis can be easily
molded as classification problem [1] in artificial intelligent
(AI) domain. For example, by analyzing the symptoms of a
patient based on the empirical clinical cases, the computer
can provide a prediction of an initial diagnosis, which
further helps the doctor for final decisions. The classification
problem has been studied by many machine learning methods
for a long time. Machine learning is the study of computer
algorithms that improve automatically through experience
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and has been central to AI research since the field’s inception
[2].

A crucial problem of machine learning is to automatically
learn to recognize complex samples and make intelligent
decisions based on previous data. Due to their effective-
ness and good performance in real-world applications, many
algorithms[3], [4] have been developed and largely employed
to solve problems in application such as pattern recognition,
medical diagnosis, bioinformatics, and even syndrome dif-
ferentiation [5] in TCM.

To solve this problem, this paper first studies the graph pre-
sentation of data samples. Graph is a very important method
for data modeling, since many real-world data sets have
built-in graph topology. So is the disease data, where each
case can be a point in high dimensional space denoted by
multiple symptoms or properties. Provided a graph structure
for the data points, it is easy to introduce local consistency
to previous algorithms by modifying the objective function
under the regularization framework or even to present novel
classification algorithm with better performance.

Learning with graph is quite appealing recently, as for
the classification, label propagation [6] via random walks on
graph is one typical graph-based machine learning method.
In such method, the training data points are considered as
the labeled vertices and the test data points are treated as
unknown vertices to be labeled. The labeled ones, during
their Markov random walk [7] on this graph, are able to
propagate their labels to the unlabeled vertices. This idea is
intuitive and iteration-based, though the analysis equation can
be derived from the iteration equation, it involves complex
matrix operation that affects its scalability on large data set.

Therefore, we improve the basic iterative solution of the
label propagation process and propose a confidence-based
random walks (CRW) Model. In this model, a confidence
value is pregiven so that after a certain number of iterations,
some of the highly reliable unlabeled vertices that consis-
tently belong to one certain class are added into the training
set for the next iteration. By doing so, the unlabeled vertices
will be gradually assigned a label and later contribute to the
successive label propagation process and also ensure early
convergence as long as there is no more label assignment.

Besides the CRW model, we note that the label propaga-
tion process doesn’t treat the labeled nodes as any intelligent
agent such as the ant, bee and bird in swarm intelligence,
while they share many in common. In view of this, we
then try to combine the the swarm intelligence idea for
further improvement of the CRW algorithm. Swarm intel-
ligence (SI)[8] represents a class of bio-inspired algorithms
for complex optimization problems. It studies the collective
behavior of systems composed of many individuals inter-
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acting locally with each other and with their environment.
Swarms inherently use forms of decentralized control and
self-organization to achieve their goals. SI algorithms observe
the social behaviors of different swarm of animals and insects
such as ants, termites, bees, birds, fishes in nature.

In addition, the individuals in such biological swarms, are
by no means sophisticated engineers, but instead are simple
creatures with limited cognitive abilities and limited means
to communicate. Yet the complete swarm exhibits intelligent
behavior, thus providing efficient solutions. Providing simple
intelligence and random walk rule, we believe the label
propagation process can be more efficient and intelligent.
For instance, the labeled vertex can be modeled as an ant
from one ant colony representing a class of label, it moves
randomly to neighboring vertices and leaves the pheromone
on them. This specific pheromone thus like the smell or
excreta indicating the possession of this vertex. In other
words, this unlabeled vertex will probably be labeled as that
ant’s colony.

As a result, we present the confidence-based ant random
walk model. To begin with, the model is first trained with
a small amount of labeled (samples) ants. Afterwards, the
classifier is used to classify the unlabeled samples; and
then among the unlabeled vertices, the high confidence ones
are determined in the same manner as the CRW. Then
they are added (together with their predicted labels) to the
corresponding (class) colony in the training set. The classifier
is re-trained (using the newly formed training set) and this
procedure is repeated until colony formation is stabilized.
In this way, a new enlarged training set is built. Once
the colony formation is stabilized, in the last, each test
sample is evaluated to assign to the colony for which the
average aggregation pheromone density is more. At last,
both our proposed models are evaluated and applied in real
medical diagnostic scenarios for the sake of correctness and
effectiveness demonstration.

The remainder of this paper is organized as follows. We
first provide some preliminary knowledge in section 2, and
then present our initial algorithm Confidence-based Ran-
dom Walk in section 3, and the further-improved algorithm
Confidence-based Ant Random Walk in section 4. They are
followed by the performance evaluation in section 5. Section
6 concludes the whole paper.

II. PREREQUISITES

A. Problem definition

Usually, the background of classification is defined
as follows. Given a data set X = Xm

�
Xu =

x1...xm, xm+1, ..., xn, where Xm = (xi)i=1...m is labeled,
corresponding to the known label subset Ym = (yi)i=1...m,
and Xu = (xi)m+1...n is unlabeled, corresponding to the
unknown label subset Yu = (yi)m+1...n. The number of test
data is u satisfying m+ u = n. The label yi of each sample
xi is chosen within a set of c predefined labels, which are
supposed to be available in a fixed permutation order.

Then without caring about the type (Integer, String or
others) of specific labels, we let Y be a vector with its

element denoting the position of corresponding label in this
ordered label set. That is to say, yi = j indicates that the
label of sample xi is the jth label in the given permutation
order. The classification problem then turns to predicting the
Yu given the above prior knowledge.

B. Graph representation and construction

Graph-based methods construct a graph where the vertices
designate the labeled and unlabeled samples of the data
set and edges represent the similarity (distance) of samples.
These methods are naturally nonparametric, discriminative,
and transductive, and thus triggered some graph based learn-
ing methods like harmonic [11], local and global consistency
[9], and our lately introduced component random walk model
[10]. To our knowledge, a few recent graph-based semi-
supervised classifiers are proposed particularly for graph
construction [12], handling multiple graphs in gene networks
[13], neighborhood graph construction [14], betweenness
computation on large sparse directed graphs [15] and protein
localization [16].

Constructing a graph from raw data is usually based on a
well-defined distance (or similarity) measure between a pair
of data points. Most traditional learning algorithms require
that all the data points are numerical vectors of the same
length. For example, in text classification, a document has to
be converted to a vector representation before classifiers can
be applied.

Suppose a graph G = (V,E,w) consists of a vertex set V
and an edge set E. In machine learning problems, the vertex
set is equal to the sample set, i.e. V = X . And the graph
is represented as an affinity matrix W . A popular weight
function is the Radius Basis Function (RBF) kernel, which
is defines as:

wij = w(xi, xj) = e
−γd2

ij (1)

where dij is the distance between xi and xj and γ is a
predefined parameter. Due to the existence of multiple labels,
a n× c label indicating matrix F = [FT

m FT
u ]T = (fij)n×c

is defined, where Fm and Fu respectively denote the states
of the known labeled set Xm and the unknown set Xu. At
the beginning, F is initialized so that fij = 1 if and only if
yi = j, and fij = 0 if yi �= j or yi = 0.

III. CONFIDENCE-BASED RANDOM WALKS

A. Random walks on graph

Recent studies on spectral graph theory and manifold
learning theory have demonstrated that the local geomet-
ric structure can be effectively modeled through a nearest
neighbor graph on a scatter of data points. Basically, the
functions and operators on a manifold can be approximated
by their discrete counterparts on the corresponding graph. For
example, graph Laplacians have been successfully applied in
semi-supervised learning, clustering, and data representation.

Given a partially labeled graph, the process of assigning
labels is iteratively done by randomly propagating the labels
of already labeled vertices to those unlabeled vertices. The
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(a) (b)

Fig. 1. Different views of data set

label propagation via random walks is usually based on
a probabilistic transition matrix P . Here, Each element of
P , pij ∈ [0, 1], contains the possibility of propagating the
class information from vertex vi to vertex vj . Usually the
construction of P involves a normalized similarity matrix
P = D−1W , where D = diag(W1n×n), 1n×n is a n × n

square matrix with all entries are one.
The evolution of F depends on transition matrix P can be

represented in the iterative form

F
t+1 ← PF

t (2)

where F t represents the state of F at time step t, similarly
F t+1 represents the state of F at time step t+ 1.

In the context of semi-supervised learning, since labeled
samples bear discriminative information while unlabeled
samples do not, then the transition probabilities of labeled
samples are distinct from those of unlabeled samples. Con-
sequently, The transition matrix P is decomposed into four
sub-blocks:

P =

�
Pmm Pmu

Pum Puu

�
(3)

where, as can be seen in Fig 1(a), Pmm is the transition
submatrix from Fm to Fm, Puu is the transition submatrix
from Fu to Fu, Pmu and Pum are the transition submatrices
from Fm and Fu to each other.

Under such circumstances, the state transition Eq. 2 then
can be decomposed into two iterative parts:

F
t+1
m = PmmF t

m + PmuF
t
u (4)

F
t+1
u = PumF t

m + PuuF
t
u (5)

To ensure the labeled data unaffected by the unlabeled
ones, we set Pmm = I and Pmu = O. As a result, we have
F t+1
m = F t

m, further it can be deduced that F t
m = F 0

m. Such
iterative process is intuitively shown in Fig. 2, as can be seen,
the next state of F t+1

u is determined by its previous state F t
u

and the initial state of labeled samples F 0
m. Our goal is to

predict Fu when this process converges.
This diagram is the basis of our firstly proposed algorithm

[10], to be discussed later. When the evolution of state

Fig. 2. The state transition diagram

matrix approximates infinity, it is easy to deduce the analytic
solution of the above iterative solution, which goes that

Fu = (I − Puu)
−1

PumFm (6)

As to this equation, the inverse operation only works when
(I−Puu) is non-singular, resulting in a limited classification
performance and application.

B. Confidence-based random walks

According to eq. (6), when the inverse of (I − Puu)
in the analytic solution is intractable, the iterative solution
of label propagation algorithm is more useful. Therefore,
instead of studying the analytic solution of label propagation
via random walks, we pay more attention to improving
the iterative solution, based on the observation that some
unlabeled nodes continuously display high probability in
belonging to one class during the iteration.

High probability grants us with high confidence. Hence,
we take the inspiration that after a period of iteration, it is
better to label such ’high confidence’ unlabeled nodes and
add them into training set for next iteration and for better and
faster random walk learning. To achieve this, we add a self-
training stage into the basic model. The detailed algorithm
description is illustrated in Algorithm 1.

In the beginning, all entries in the unknown state matrix
are initially assigned with equal possibility (� = 1/c) to make
sure that each row sums to 1 (step 1). Then we proceed to
the random walks, where we repeat ∆t times of the state
evolution (step 4-8) at each time step t to avoid a premature
convergence. This local loop also helps to obtain more stable
states.

During the self-training stage (step 10-16), the highly
reliable and stable unlabeled vertices are selected as training
samples. In detail, we search for the largest and second
largest values fij and fik of each row F t+1

u (i, :). The two
values indicate the two most possible classes j and k that
vi belongs to. The ratio fik/fij represents the probability of
the unlabeled vertex vi belonging to class k in comparison
with class j. The smaller the ratio, the higher confidence
of the unlabeled data belonging to the most probable class
j. The larger the ratio, the less confidence in assigning the
unlabeled data to a specific class. Therefore, a confidence
value θ is introduced so that if such ratio between the two
largest values is less than or equal to θ , the unlabeled vertex
becomes a ’high confidence’ vertex that will be added to the
training set for the next iteration. Otherwise, it will not be
included in any class.

1723



Algorithm 1 Confidence-based Random Walks (CRW)
Input: X,Ym,∆t and confidence value θ

Output: Yu.
1. Initialize F 0

u = 1u×u ∗ �, build graph G = (V,E,w)
2. t = 0;
3. while not STOPPINGCRITERIA do

4. F t̃
u = F t

u (For local iteration)
5. for t̃ = 1 to ∆t do

6. F t̃+1
u = P t

umF t
m + P t

uuF
t̃
u

7. Row-Normalize F t̃+1
u according to Eq. 7:

F
t̃+1
u (i, :) =

F t̃
u(i, :)�c

k=1 F
t̃
u(i, k)

(7)

8. end for

9. F t+1
u = F t̃

u

10. for each row F t+1
u (i, :) do

11. Find the largest value F t+1
u (i, j) and second

largest value F t+1
u (i, k).

12. if F t+1
u (i, k)/F t+1

u (i, j) ≤ θ then

13. Add this row into F t
m as new known state

matrix:

F
t+1
m =

�
F t
m

F t+1
u (i, :)

�
(8)

14. Remove the ith row from F t+1
u

15. end if

16. end for

17. Update P t+1
mm , P t+1

mu , P t+1
um , P t+1

uu with respect to
F t+1
u and F t+1

m

18. t = t+ 1
19. end while

20. Assign labels to V according to F t
u and F t

m

The training phase of this algorithm stops when there is no
(re)assignment of ’high confidence’ unlabeled vertices. Then
the label of an arbitrary vertex vi is computed as

yi = argmaxj fij (9)

IV. CONFIDENCE-BASED ANTS RANDOM WALKS

A. Combining historic information in form of Aggregation

Pheromone

The random walk on graph holds the memoryless property:
The future behavior of a Markov chain depends only on
its current state, but not on how it arrived at the present
state. However, the intermediate states denoting how the
initial vertex transits to the current vertex is also worthy
of consideration. In our concern, keeping memory of the
walking trace can help select optimal transition paths during
the iteration and thus help produce a better classification
performance. This is proved by many swarm intelligence
algorithms [8], such as ant colony optimization (ACO) [17]
and Aggregation Pheromone Systems (APS) [18], which
maintain a pheromone matrix for recording the historic
random walk (searching) information so as to find an optimal
solution.

ACO and APS are computational algorithms modeled on
the behavior of ant colonies. ACO algorithms are designed to
emulate ants’ behavior of laying pheromone on the ground
while moving to solve optimization problems. Pheromone
is a type of chemical emitted by an organism to commu-
nicate between members of the same species. Aggregation
pheromone is termed due to the clumping or clustering
behavior in a species that brings individuals into closer
proximity. Thus, aggregation pheromone causes individuals
to aggregate around good positions which in turn produces
more pheromone to attract individuals of the same species.

The further improving idea of our first proposed CRW
algorithm is triggered based on the aggregation pheromone
density. In earlier work, attempts have been made for solving
clustering [19] and classification [20] showing encouraging
results. In view of the recent research [21], the rest of this
paper will propose a novel confidence-based ant random
walks (CARW) classification algorithm using aggregation
pheromone.

B. Model building

We take into account of different classes for rebuilding
our graph. Since the training data are divided into c classes
and a small number of labeled data from each class, by
our assumption, forms C homogeneous groups or colonies
of ants in the training/labeled set Xm. Therefore, it is
more reasonable to partition the whole training set into
multiple subsets according to the label distribution, as is
illustrated in Fig. 1(b). Each subset with the same label l

denoted by Xml(⊂ Xm) is treated as an ant colony Cl.
Let, xl

1, x
l
2, · · · , xl

|C0
l |

be the given original training data
or labeled data samples in the lth initial training class C0

l .
These samples are considered as a population of |C0

l | number
of ants represented as al1, a

l
2, · · · , al|C0

l |
. Hence, an ant ali

represents the ith training data in the lth initial training class
xl
i ∈ C0

l .
Due to the fact that different labeled subset may contain

different number of instances thus causing the imbalance of
training data, instances belonging to same class are integrated
into a single nest vertex vl. In other words, we let vertex vl

be the representation of labeled subset Xml or colony Cl,
and let vertex set Vc = (vl)1,..,c contains the c nest points.
Meanwhile, for the unlabeled instances, we let them be food
resources scattered around these nests. Instead of being a
single vertex, a connected graph is constructed over Xu. Ac-
cordingly, we let Vu = (vi)c+1,..,c+u be the set of unlabeled
vertices. Then given that Puu is the transition submatrix from
unlabeled instances to themselves, we assume that there is
an edge linking a pair of vertices only if pairwise transition
probability exists. Fig. 3 shows a simple model composed of
two nests (labeled data sets belonging to different classes)
and three resources (unlabeled data).

However, the transition probabilities from nests to all
the resources are still unknown. We define Pcu to be the
transition matrix from c nests to u resources, as we have
known that Pmu denotes the transition probabilities from
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Fig. 3. A simple example of binary-class ant colonies

all labeled instances to unlabeled instances, so we use the
following equation to compute Pcu with the supervised
information of Fm

Pcu = (PumFm)T (10)

C. Aggregation pheromone definition

In this paper, we focus on the collective strength (aggrega-
tion pheromone) rather than the individual pheromone. The
pheromone matrix is defined as a u × c matrix τ , where
each column vector is assumed to be the accumulation of
pheromone on all resources by one nest. For instance, given
a nest label l at the tth generation, τ t∗l = τ t(:, l) is the
corresponding column vector with its element τ tjl = τ t(j, l)
indicates the vertex vj’s pheromone left by the ants from nest
l. At first, the pheromone matrix is initialize as τ0 = F 0

u (see
in Algorithm 1). By doing so, once the algorithm converges,
we can directly assign the labels to unlabeled data according
to this matrix. Since ants from different nests may attach
different types of pheromone to a vertex, when choosing the
next target, ants are not only attracted by its type of class
pheromone but also resisted by other classes. Therefore, the
relative pheromone level is more useful, and the pheromone
matrix is normalized in the following way so as to consider
such influence.

τ
t(j, l) =

τ t(j, l)�c
k=1 τ

t(j, k)
(11)

This operation is done after the pheromone update and
before the next generation of colony random walk. After
many generations of such colony random walk, one type of
pheromone from a certain nest may dominate that vertex.
Thus for the other population of ants, they are unlikely to
choose this vertex though the heuristic transition probability
is appealing.

Consider ants from one colony or samples with the same
label, since we pay more attention to aggregation pheromone
rather than individual pheromone, now we define the incre-
ment of aggregated pheromone on the jth unlabeled vertex
vj due to lth training colony at iteration t as ∆τ tjl. We
also define ∆τ t, whose column vector ∆τ t(:, l) indicates
the increment of the collective emitted pheromone on all
unlabeled vertices by the ant colony l at iteration t.

Fig. 5 depicts the ants random walk mechanism of com-
puting the aggregated pheromone increment. Thereafter, the
pheromone density τ tjl is updated at iteration t+1 using the
following equation:

τ
t+1 = (1− ρ)τ t +∆τ

t (12)

Particularly, for an output of a nest with label l, the update
equation is:

τ
t+1(j, l) = (1− ρ)τ t(j, l) +∆τ

t(j, l) (13)

where ρ ∈ [0, 1) is the evaporation constant. With smaller
values of ρ, the model uses more information of the
pheromone density of the past cycles. Larger value of ρ

indicates that the effect of the pheromone emitted in the
present iteration is more important than the pheromone in the
previous iterations. ρ acts as a trade-off factor of the emitted
pheromone in the previous and present iterations. Instead of
keeping it constant throughout the self-training process, we
make it vary with time. Then ρ becomes a function of time
and we define it as:

ρ =
1

2 + log(t+ 1)
(14)

By doing so, the initial evaporation value at t = 0 is 0.5 and
it will decrease with time goes by.

D. Probabilistic transition rule

For metaheuristic algorithms, the heuristic evaluation func-
tion is necessary because mostly the initial pheromone ma-
trix can not guide the optimization process, while heuristic
evaluation functions can provide a quality measurement for
different solutions. Traditional ACO for traveling salesman
problem treats the inverse of pairwise distance to be the
heuristic value. However in our paper, the transition prob-
ability of random walk on graph is more appropriated to
be the heuristic value. Specifically we let Pcu and Puu be
the heuristic values, which respectively indicate the transition
matrix from Vc to Vu and Puu and from Vu to Vu. Therefore,
the heuristic transition matrix from Vc ∪ Vu to Vu at iteration
t becomes

η
t =

�
P t
cu

P t
uu

�
(15)

If an ant starts to move out from its nest l, then the
heuristic value guiding it to the resource vertex vj is η(l, j) =
Pcu(l, j). If an ant starts from the vertex vi, then the heuristic
value guiding it to its neighbor vj is η(i, j) = Puu(i, j).
Moreover, for an arbitrary nest l, let η(l, :) be the lth row of
matrix Pcu, its related transition matrix is

η
t
l =

�
P t
cu(l, :)
P t
uu

�
(16)

Finally, the ants determine their paths based on the combi-
nation of the heuristic value and the strength of pheromone
trail. That is to say, given a vertex pair �vi, vj�, the prob-
ability of ants moving from vi to vj at the tth generation
is

q
t
l (vi, vj) = τ(j, l)t + η

t
i,j (17)
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Fig. 4. The spanning tree of breast cancer cells

Each nest maintains a transition rule for its random walk;
we also provide the integrated transition matrix form for nest
l at generation t

Q
t
l = [1(u+1)×1(τ

t
∗l)

�+η
t
l∗] =

�
1(u+1)×1(τ

t
l )

� + P t
uu

(τ tl )
� + P t

cu(l, :)

�
(18)

Ants from different colonies may attach different kinds
of pheromone to a vertex. With the increase of iterations,
one class of pheromone from a certain colony will dominate
that vertex. Thus for the other population of ants, they are
unlikely to choose this vertex.

E. Ant random walks from one colony

Each labeled ant emits pheromone at its visited edges and
vertices. The intensity of the pheromone emitted by the ith

individual labeled ant ali ∈ Ct
l located at vli at iteration t

decreases with increase in its distance from vli. Thus, the
pheromone left on the data points closer to vli is intenser
than that left on the data points far from vli. Since we enforce
an ant only visit one vertex only once, the shorter the path
that travels through all the vertices, the more deposition of
pheromone left on the unlabeled vertices. Then the random
walk result of labeled ants turns out to be a tree rooting from
the nest vertex that links all the vertices.

For instance, the Fig. 4 displays some breast mass cells
organized with a binary spanning tree, from which we can
easily recognize the intimacy degree between cells by the
parent-children relationship. In addition, if the root cell
is already labeled as malignant or benign, then its direct
children cells are likely to be malignant or benign, but this
similarity is less compared to its indirect children cells.

In our nests-and-resources model, a nest l and all resource
vertices constitute a fully connected sub-graph Gl, which
allows the ants to visit all the resources in at least one
step. However, due to the existence of other different kinds
of pheromone, an ant will also addresses the intensity of
pheromone belonging to its kind when choosing the nest
transition target. If an ant detects that a candidate choice
shows inferior pheromone intensity produced by its nest to
that produced by other nests, it is unlikely to move to this
vertex despite a favorable heuristic probability.

As a result, the goal for a nest’s tree traversing is finding
a maximum spanning tree (MST), or specifically in our
paper a spanning tree which maximizes the sum of transition
probability and relative pheromone intensity. The reason for
choosing the structure of spanning tree is because that it can
indicate the intrinsic structure of the input data space. On
one hand, spanning tree and its derived tree algorithms serve
as a common introductory example of both graph algorithms
and greedy algorithms due to their simplicity. On the other
hand, there are many spanning tree-based segmentation,
recognition and classification applications. They have been
proved to outperform the other spanning trees in the setting
of weighted graph prediction [22]. Therefore, it is reasonable
to perform such ants random walk for classifying medical
data sets.

The algorithm starts with a tree consisting of the nest
vertex, and continuously increases its size one edge at a time,
until it spans all unlabeled vertices. This one nest random
walk is sort of like the PRIME algorithm for finding the min-
imal spanning tree. Detailed description of our ants maximal
spanning tree (AMST) algorithm is given in Algorithm 2.

Algorithm 2 Ants Maximal Spanning Tree (AMST)
Input: The nest label l and a connected subgraph Gl =

(V t, E,Qt
l), where V = {vl}∪V t

u , Qt
l is the probabilistic

rule at generation t.
Output: Vnew and Enew, which describe a MST; ∆τ

1. Initialization: Vnew ← {vl}, Enew ← ∅ and ∆τ(:, l) =
1.

2. repeat

3. Choose an edge �vj , vk� from V t with maximal
value in Qt

l such that vj ∈ Vnew and vk is not.
If there are multiple edges with the same value, we
choose one of them randomly.

4. Add vk to Vnew and �vj , vk� to Enew; meanwhile,
compute the pheromone increment as follows.

∆τ
t(k, l) ← ∆τ

t(k, l)× η
t(k, j) (19)

5. until Vnew = V

For each labeled ant with label l, it starts from the labeled
vertex and search for a spanning tree over the unlabeled
vertices under the guidance of transition probability. Taking
the Fig. 5 as an example, the left figure presents the ant
random walk environment–a weighted form of Fig. 3. The
ants start with a tree rooting at the labeled vertex, and
continuously increases its size one edge at a time, until it
spans all unlabeled vertices. The right of Fig. 5 shows the
random walk result of ants starting at nest vertex v1.

F. Confidence-based Ants Random Walk Learning

The detailed description of our CARW algorithm is given
in Algorithm 3. At each generation, guided by both η and
τ , every colony will continuously send ants for foraging
mission: occupying the already visited vertices by pheromone
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Fig. 5. An example of ants random walk

densities and exploring new ones. After a MST is found,
the pheromone increment can be immediately obtained for
updating corresponding column in τ .

Next, step 12-19 illustrate the selection of ’high con-
fidence’ unlabeled vertices. Similar to CRW algorithm in
Fig. 1, the highly reliable unlabeled vertex will be added into
its corresponding colony as new member for next generation
of label prediction.

G. Stopping criterion

The stopping criterion is based on the computation of
ant colony centers. If the colony centers do not change
in two successive iterations, then we can say that there
is no (re)partition. At that time, the colony formation on
the unlabeled vertices is stabilized. It means that either the
unlabeled vertices have joined any colony with sufficient
reliability, or they have not joined any colony (with sufficient
confidence). The unlabeled vertices, which have joined in any
colony are now considered as training samples, and thus, the
size of the training set is increased.

V. EXPERIMENTS

To evaluate the performance of our proposed models on
real-world data sets, we adopt five typical diagnostic data
sets, including SPECT, Hepatitis, Hypothyroid, Heart and
Breast Cancer. Most of them are binary-class classification
problems except the Heart data set.

The missing values of original data sets are filled in the
following way: continuous features are set to the average
value and those nominal features are set to the majority value.
To produce the training data set, a labeled rate is given, then
samples are randomly taken out to form the initial training
set, and the rest samples are considered as the test set. In
this paper, we adopt five labeled rate from 1% to 5%. The
test results produced by our CRW and CARW methods are
shown in Table I and Table II, while the test results produced
by Label Propagation algorithm is given in Table III. In
these tables, each row reports the average accuracies and
standard deviations for 10 simulation runs given different
labeled ratios.

Generally, with the increase of labeled rate, both methods
gradually improve the classification accuracy on all the data
sets, but not always the case as we can see from both tables.
Then our methods share on a fifty-fifty basis on SPECT

Algorithm 3 Confidence-based Ant Random Walks (CARW)
Input: X,Ym, γ,∆t and confidence value θ

Output: Yu

Input:

1. Initialize parameters t = 0
2. Construct initial graph G0 = (V 0, E,Q0)
3. while not STOPPINGCRITERIA do

4. for each nest vertex vl do

5. Build the ants walking environment Gt
l =

(V t, E,Qt
l)

6. Generate a MST using AMST method
7. Traversing this tree and compute the aggrega-

tion pheromone increment ∆τ t∗l
8. Update the pheromone density τ

t+1
∗l using

∆τ t∗l
9. end for

10. Normalize the matrix τ t+1 according to Eq. 11
11. Let V t+1

u = V t
u and Ct+1 = Ct

12. for each unlabeled vertex vi ∈ V t
u do

13. Search row τ
t+1
i∗ for the largest value τ

t+1
ij and

second largest value τ
t+1
ik .

14. if τ
t+1
ik /τ

t+1
ij ≤ θ then

15. Assign label j to vi

16. C
t+1
j = C

t+1
j ∪ vi

17. V t+1
u = V t+1

u /vi

18. Remove the ith row of τ t+1

19. end if

20. end for

21. t = t+ 1
22. Update the graph Gt = (V t, E,Qt)
23. end while

24. Assign labels to Yu according to τ t and Ct

and Hepatitis data sets, but CARW outperforms CRW on
Hypothyroid and Breast Cancer. Further comparisons to our
algorithms on these data sets can be obtained from Table III.
We adopt the analytical solution of label propagation (LP)
as bench marks.

On one hand, CRW performs not worse than the LP
algorithm, that is to say, our CRW method is comparable in
classification performance but more scalable in large data set.
On the other hand, CARW method outperforms CRW and LP
algorithms in terms of classification accuracy. Therefore, the
combination of ant pheromone and random walk mechanism
is successful and effective.

VI. CONCLUSION

In this paper, we aim to build disease diagnose models
over the clinical cases using graph-based methods and swarm
intelligence. With a partially labeled graph representation of
the raw input medical data under the classification back-
ground, this paper first proposes a confidence-based random
walks algorithm using the self-training trick over both labeled
and unlabeled data. Later, the swarm intelligence algorithm
is incorporated to improve the former proposed method by
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TABLE I
CLASSIFICATION ACCURACY OF CRW ON FIVE DATA SETS

Labeled Ratio 0.01 0.02 0.03 0.04 0.05
SPECT 79.25% ± 0.07% 79.25% ± 0.05% 79.23% ± 0.04% 79.22% ± 0.01% 79.22% ± 0.01%

Hepatitis 79.22% ± 0.04% 79.08% ± 0.03% 78.95% ± 0.01% 79.33% ± 0.02% 79.05% ± 0.01%
Hypothyroid 95.29% ± 1.70% 95.47% ± 0.99% 95.21% ± 0.93% 95.23% ± 0.77% 96.71% ± 0.76%

Heart 53.97% ± 0.05% 53.85% ± 0.07% 54.05% ± 0.02% 53.92% ± 0.01% 53.84% ± 0.01%
Breast Cancer 80.39% ± 3.57% 83.75% ± 3.31% 85.04% ± 3.01% 89.52% ± 3.32% 89.23% ± 2.94%

TABLE II
CLASSIFICATION ACCURACY OF CARW ON FIVE DATA SETS

Labeled Ratio 0.01 0.02 0.03 0.04 0.05
SPECT 79.25% ± 0.07% 79.25% ± 0.05% 79.23% ± 0.04% 79.22% ± 0.01% 79.22% ± 0.01%

Hepatitis 79.22% ± 0.04% 79.08% ± 0.03% 78.95% ± 0.01% 79.33% ± 0.02% 79.05% ± 0.01%
Hypothyroid 95.29% ± 1.70% 95.47% ± 0.99% 95.21% ± 0.93% 95.23% ± 0.77% 96.71% ± 0.76%

Heart 53.97% ± 0.05% 53.85% ± 0.07% 54.05% ± 0.02% 53.92% ± 0.01% 53.84% ± 0.01%
Breast Cancer 80.39% ± 3.57% 83.75% ± 3.31% 85.04% ± 3.01% 89.52% ± 3.32% 89.23% ± 2.94%

TABLE III
CLASSIFICATION ACCURACY OF LP ON FIVE DATA SETS

Labeled Ratio 0.01 0.02 0.03 0.04 0.05
SPECT 79.25% ± 0.03% 79.39% ± 0.01% 67.96% ± 0.03% 65.25% ± 0.07% 65.27% ± 0.07%

Hepatitis 79.22% ± 0.07% 79.08% ± 0.05% 78.95% ± 0.03% 79.33% ± 0.01% 78.89% ± 0.01%
Hypothyroid 95.21% ± 1.69% 95.23% ± 1.01% 95.21% ± 0.93% 95.21% ± 0.84% 95.21% ± 0.78%

Heart 53.97% ± 0.04% 53.85% ± 0.03% 54.05% ± 0.03% 53.92% ± 0.02% 53.61% ± 0.02%
Breast Cancer 62.77% ± 3.77% 62.72% ± 3.44% 62.75% ± 2.46% 62.71% ± 4.32% 62.73% ± 3.03%

using the metaphor of the aggregation pheromone found in
natural behavior of real ants.

For our present models, the classification process is tested
on five real data sets, and the test results and comparisons
on these real data sets show that our proposed algorithms
are competing and impressive, thus demonstrating practical
value for medical diagnosis application.
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