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Abstract—Over the last few decades, metabolomics has been
widely used to reveal the linkages between metabolite signal levels
and physiological states. Metabolomic data are naturally high
dimensional and noisy, which poses computational challenges for
data analysis. In this study, a novel feature extraction method
based on trimmed complex network representation is proposed
for metabolomic data classification. Particularly, the proposed
method begins with feature selection on the original data, and
then a complex network of the selected features is constructed to
represent each data sample. Afterward, the network edges are
trimmed and a few topological network metrics are extracted
as new features for the classification of the samples. The ex-
perimental results on a real-world metabolomic data of clinical
liver transplantation demonstrate the efficiency of the proposed
feature extraction method.

I. INTRODUCTION

Metabolomics is an emerging field attracting great attention
in the last few years. It is a scientific study of biochemical
processes involves metabolites for understanding the funda-
mental of many diseases and the related metabolic responses
[1]. Metabolite profiling is one of the most important research
areas in metabolomics dedicated to reveal the linkages be-
tween metabolite signal levels and physiological states [2].
The metabolite profiling data (referred as metabolomic data
in this study), mainly generated with mass spectrometry,
chromatographic, or nuclear magnetic resonance spectroscopy
technology, captures thousands of metabolite signal levels of a
tissue in a specific physiological state, but only a small number
of them show relevance to the specific physiological state and
the others are noise [3], [4]. The instrument-dependent high
dimensional and noisy nature of the data poses challenges for
the computational analysis tasks like regression, classification,
and clustering [5], [6]. Feature selection, weighting and/or
extraction methods have been applied to filter the noises and
improve the analysis accuracy [7]–[9].
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Recently, a novel feature extraction method based on com-
plex network representation was proposed for the classification
of metabolomic data [10]. Particularly, the method transforms
each data sample into a network whose vertexes represent the
metabolomic spectral bins, i.e., the features, and the edges
represent their intensities of associated with a disease. From
the network constructed, a few topological network metrics are
extracted to represent the samples. A feature selection based
preprocessing method was further introduced to the extraction
method by the same author [11], in order to reduce the network
size and improve the classification accuracy. The feature ex-
traction method not only leads to accurate classification thanks
to its robustness to data noise, but also provides a unique
informative perspective to understand the data samples. Yet,
the feature selection used in [11] is unsupervised, i.e., the class
label is not considered, which might miss out some important
features. Moreover, the complex networks constructed in [10],
[11] still contain noisy connections which would affect the
metric extraction and the analysis of the data.

To overcome the problems, we introduce supervised fea-
ture selection and edge trimming methods to the complex
network representation based feature extraction. Particularly,
the importance of the features, i.e., the network vertexes, and
the edges are evaluated based on mutual information (MI)
and conditional information (CI), respectively, considering the
target class label. Noisy or irrelevant vertexes and edges are
trimmed out of the network according to the importance of
the vertexes and edges, so that more accurate metric features
can be extracted from the network. The new feature extraction
method combining the new supervised feature selection and
edge trimming methods is tested on a real-world metabolomic
data of clinical liver transplantation. The experimental results
demonstrate the efficiency of the proposed method.

The remainder of this paper is organized as follows. Section
II describes the proposed feature extraction method based on
trimmed complex network representations. Section III presents
the experimental results of the proposed method on the real-
world metabolomic data set. Finally, the conclusion is given
in Section IV.

II. METHODOLOGY

In this section, we introduce the proposed feature extraction
method based on trimmed complex network constructions
for metabolomic data classification. As shown in Fig. 1, the
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proposed method consists of four steps, i.e., feature selection,
network construction, edge trimming and network metrics
extraction. In the first step, feature selection selects important
and relevant features based on MI measure, considering the
target class label. In the second step, a complex network of
the selected features is constructed to represent each sample.
In the third step, irrelevant edges are trimmed out from each
network based on CI measure also considering the target class
label. Finally, in the last step, topological network metrics
are extracted as new features of the samples. The topological
network metrics are inputted to standard classifiers for the
classification of the data. The details of the steps are provided
in the following subsections.
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Fig. 1: The procedure of the feature extraction method

A. Supervised Feature Selection Based on Mutual Information
(SMI)

Feature selection aims to select a small subset of K features
from the original D(D >> K) features so that the learning
performance of the data is improved or not substantially
deteriorated [12]. In [11], the relevance of each pair features
is evaluated based on MI measure and the most correlated
or uncorrelated features are selected. In this way, the feature
selection is merely based on the relevancy between features,
but the learning target is not involved. As a result, the selected
features might not suit the learning task. Instead, in this study,
supervised feature selection considering the class label based
on MI is used. The relevance of the features to the class label
is evaluated based on MI as follows:

I(X;C) =
∑
x∈X

∑
c∈C

p(xc) log
p(xc)

p(x)p(c)
(1)

where X is a feature and C is the target class label vector;
x and c are random variables in X and C, respectively; p(x)
and p(c) are the two probability distribution functions; p(xc)
is the joint probability distribution function of x and c. For
each feature X , an MI value I(X;C) is calculated as a metric
to assess the relevance of this feature to the class labels. In
the principle of max-relevance [13], we sort the features in
descending order according to I(X;C) and select the top K
features for network construction.

B. Network Construction

After feature selection, a undirected complex network of the
K selected features is constructed to represent each sample.
In mathematics, a network (or graph) is a representation of
a set of objects (or vertexes) where some pairs of objects
are connected by links (or edges) [14]. A complex network
is a graph with non-trivial topological features. Complex
networks have been used to characterize and analyze complex
systems including metabolomic samples [15]. In the network
representations of a metabolomic spectral data, each sample
is represented by a network with each vertex being one of
the available features, and the edges between two vertexes
identifying exhibit characteristics related to the two features.

This study focuses on two-class classification problems of
metabolomic data, where the class labels are either positive or
negative. Following [10] and [11], to represent a sample with
a undirected network, each selected feature is presented as a
vertex, and every two vertexes are connected with a weighted
edge associated with the normalized probability of the sample
being positive when considering only the two corresponding
features.

Let X and Y be two selected features, the normalized prob-
ability of a sample being positive in XY -space is estimated
in the following three steps:
1) Linear regression. As shown in Fig.2, the green squares

represent the positive samples (Xp, Yp) and red circles
represent the negative samples (Xn, Yn) in XY -space. Two
dashed lines are lineally fit to each group according to the
following definitions:

Ỹp = α1
pXp + α0

p Ỹn = α1
nXn + α0

n (2)

where α1
p , α0

p, α1
n and α0

n are coefficients of lines obtained
with linear regression. Ỹp and Ỹn are approximate values
of Y given Xp and Xn, respectively.

2) Estimating possibilities of a sample being positive and
negative. Given a data sample S located in (x, y) in the
XY -space, like the blue triangle plotted in Fig.2, the
distances of the sample to the two dash lines are calculated
as the two arrows in red and green shown. The probabilities
of the sample S being positive Pp(S) and negative Pn(S)
are estimated as follows:

Pp(S) = Guass(ỹp − y,E(∆Yp), D(∆Yp))

Pn(S) = Guass(ỹn − y,E(∆Yn), D(∆Yn))
(3)

where ỹp and ỹn are approximate values y of S being
a positive and negative sample according to (2), ∆Yp =
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Fig. 2: Estimating edge weight of two features

Ỹp − Yp, ∆Yn = Ỹn − Yn, and Guass(V,E(·), D(·)) is a
gaussian curve membership function evaluated at V with
mean E(·) and variance D(·) of V .

3) Possibility normalization. The weight of the edge between
feature X and Y is the normalized probability of the
sample being positive, which is calculated as follows:

P (S) =
Pp(S)

Pn(S) + Pp(S)

where Pp(S) and Pp(S) are the probabilities of the sample
S being positive and negative calculated in (3).

After getting the normalized probabilities of pairwise fea-
tures, we can construct the fully connected network (complete
graph) with K vertexes each being a selected feature and
E = K ∗ (K − 1)/2 edges each assigned a weight of the
corresponding normalized probability.

C. Edge Trimming Based on Conditional Information (ETCI)

The constructed network contains many noise or trashy
edges, which should be trimmed off to avoid disturbance
of feature extraction. We proposed specific trimming method
based on CI. A threshold P is introduced to decide how many
percent of edges should be remained in the networks.

In this method, the edges are selected based on their
pairwise relevance given the class labels. Particularly, the
importance of the edges to the class label is evaluated based
on CI as follows:

I(X;Y |C) =
∑
c∈C

p(c)
∑
x∈X

∑
y∈Y

p(xy|c) log
p(xy|c)

p(x|c)p(y|c)
(4)

where X and Y are two features connected by an edge, and
C is the target class label vector. p(xy|c) is the conditional
joint probability distribution function. p(x|c) and p(y|c) are
conditional probabilities distribution functions, respectively.
I(X;Y |C) denotes the information of the two features X and
Y knowing the distribution of C. For each edge, we get a CI
value I(X;Y |C) as a metric to assess the relevance of this
edge to the class labels. The edges are sorted in descending
order based on I(X;Y |C), and the top P percent of edges
are maintained, i.e., the other edges are removed from the
network.

After edge trimming, there are K vertexes and P ∗E edges
in each constructed network. And each edge is associated a
weight indicating the normalized probability of sample being
positive. From here, edges with small weights are further
trimmed to simplify the network. Following [11], a edge
weight threshold denoted as T is introduced and the edges with
weights smaller than T are removed from the network. Setting
P and T in [40%, 60%] and [0.4, 0.6], respectively, is observed
in our empirical study to obtain satisfactory performance.

D. Network Metrics Extraction

After edge trimming, a few topological network metrics
are extracted from a network as the new features of the
corresponding sample. The network metrics listed below are
considered in this study. The definitions of these metrics can
be found in [14], [15].
• Link Sum
• Maximum degree
• Entropy of the degree distribution
• Link density
• Clustering coefficient
• Efficiency
• The number of components
• Max components size
• Entropy of eigenvector centrality distribution

E. Classification

The classification of the data samples is performed on the
extracted new features using support vector machine (SVM)
[16] implemented in LIBSVM [17]. Ten-fold cross-validation
is used to evaluate the classification accuracy.

III. EXPERIMENTS AND RESULTS

To test the performance of the proposed method, a real-
world microdialysis-HPLC derived metabolomic data of 41
liver transplantation samples [18] is used. The data measures
and records metabolomics mean levels at the donor and back
table stages, and between early (2-6 h) and late (43-48 h) post-
reperfusion. Each sample is detected in the chromatographic
and the metabolite signal is split along the retention time into
866 features. In the following experiments, three clinical states
are considered as class labels:
• Type of donor (TOD): livers used in transplantation are

obtained from two types of donor, i.e. brain death donor
(DBD) and cardiac death donor (DCD).

• Overall cold ischaemia time (OCIT): the sum of cold
ischaemia time before the end of cold phase and cold
ischaemia time elapsed before cold phase biopsy. Ac-
cording to OCIT, patients samples could be categorized
into two groups, i.e., OCIT ≤ 471 minutes and
OCIT > 471 minites.

• Peak Aspertate Aminotransferase (P-AST): P-AST is
used to classify the extent of preservation injury af-
ter transplantation. According to the peak levels of
serum AST during the first 72h after transplantation,
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patients samples can be categorized into two groups, i.e.,
P -AST ≤ 3000 U/L and P -AST > 3000 U/L.

To study the effect of feature selection, in the first com-
parison study, the proposed supervised MI feature selection
together with complex network representation but not using
edge trimming, or SMI for short, is pitted against the feature
selection methods MID and MII proposed in [11]. MID and
MII are similar to SMI except that they select features with
unsupervised MI in decreasing and increasing order, respec-
tively. We also compared the performance of SMI to pure MI
feature selection on the original data, i.e., no feature extraction
SMI-NFE, to see the effect of network metric extraction.
Experimental results of all algorithms for selecting different
number of features are shown in Fig. 3. It is shown that
methods based on feature extraction all have higher accuracy
than SMI-NFE, which reveals that network representation is
an efficient way for extracting more discriminative features.
SMI show better performance than MID and MII, especially
on studying OCIT and P-AST. From Fig. 3, it is also shown
that 300 selected features i.e., K = 300 is suitable for studying
the data.

Edge trimming could reduce the impact of noise to the clas-
sification results as well as reduce the amount of computational
time. To study the effect of edge trimming, we conduct edge
trimming using all features (i.e., no feature selection) with
different network weight threshold T , denoted as ETCI. And
to study the effect of both feature selection and edge trimming,
we use the algorithm with both feature selection method SMI
and edge trimming method ETCI, denoted as SMI-ETCI. The
results of SMI and N-FS-ET (i.e., not using neither feature
selection or edge trimming) are also included for comparison.
The results reported in Fig.4 show that edge trimming is
capable of improving the final classification accuracy without
doing feature selection, i.e., ETCI is better than N-FS-ET.
The combination of SMI and ETCI, i.e., SMI-ETCI, taking
advantage of the two components, performs better than the
single SMI or ETCI.

IV. CONCLUSION AND FUTURE WORKS

This paper proposed a feature extraction for metabolomics
data classification based on trimmed complex network repre-
sentations. We proposed supervised feature selection based on
mutual information and edge trimming based on conditional
information to simply the complex network representations.
The experimental results on real-world data show the ef-
ficiency of the proposed feature extraction method. Never-
theless, we note that the propose method still have a few
drawbacks to be addressed in the future work. For example,
there should be a self-adaptive way to decide the parameters
including the number of selected features K, the edge weight
threshold T , and P the percent of edges should be remained.
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