
Composite SaaS Scaling in Cloud Computing using
a Hybrid Genetic Algorithm

Zeratul Izzah Mohd Yusoh
Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka
Melaka, Malaysia

zeratul@utem.edu.my

Maolin Tang, Senior Member IEEE

Science and Engineering Faculty
Queensland University of Technology

Brisbane, Australia
m.tang@qut.edu.au

Abstract—A Software-as-a-Service or SaaS can be delivered
in a composite form, consisting of a set of application and data
components that work together to deliver higher-level functional
software. Components in a composite SaaS may need to be scaled
– replicated or deleted, to accommodate the user’s load. It may
not be necessary to replicate all components of the SaaS, as
some components can be shared by other instances. On the
other hand, when the load is low, some of the instances may
need to be deleted to avoid resource underutilisation. Thus, it is
important to determine which components are to be scaled such
that the performance of the SaaS is still maintained. Extensive
research on the SaaS resource management in Cloud has not
yet addressed the challenges of scaling process for composite
SaaS. Therefore, a hybrid genetic algorithm is proposed in
which it utilises the problem’s knowledge and explores the best
combination of scaling plan for the components. Experimental
results demonstrate that the proposed algorithm outperforms
existing heuristic-based solutions.

Index Terms—Cloud Computing, Composite SaaS, Clustering,
Grouping Genetic Algorithm.

I. INTRODUCTION

Cloud computing [1] offer users off-premises high perfor-
mance IT facilities, including applications, data and compu-
tation resources. Its services can be categorised into three
main categories: 1) Infrastructure as a Service (IaaS), [1], 2)
Platform as a Service (PaaS), and 3) Software as a Service
(SaaS) [2].

One of the essential characteristics of the Cloud services is
to provide access to a large pool of computation resources in
which the resources can be dynamically provisioned based on
the demand. The automated provision mechanism in a Cloud
is responsibles for adding or removing the resources for a
particular Cloud service, such that the usage of the resources is
minimised while its performance is maintained. The process of
adding/removing the resources based on the demand represents
the scalability of the service [3]. It can be classified into two
categories – vertical scaling and horizontal scaling. Vertical
scaling, is where more computation resources are added to the
service while in horizontal scaling, more similar services are
created and users’ demands will be directed to the appropriate
service. Both categories of scaling are triggered by scalability
metrics including the number of current users, the quality of
solution of the service and the number of incoming requests
[4], [5], [6]. In a Cloud data centre, the scaling approaches are

implemented at two different levels: 1) at the infrastructure
level to scale the servers, and 2) at the application level to
scale the application components [3], [4], [5].

This research focuses on SaaS as the problem domain
as SaaS is receiving substantial attention today from both
software providers and users. Gartner forecast that the SaaS
revenue would reach $22 billion by 2015 [8]. This raises new
challenges for SaaS providers managing the SaaS, especially
in large-scale data centres. A SaaS can be delivered as a
composite application in which the software is composed
from a group of loosely coupled individual applications that
communicate with each other in order to form a higher-level
functional system or application [9]. Delivering the SaaS in
such an approach allows flexibility of the SaaS functional-
ities, where components can be combined and recombined
as needed. In addition, SaaS providers can gain a number of
benefits including reduced delivery cost, flexible offers of the
SaaS functions and decreased cost of subscription for users.
However, this type of delivery also raises several new chal-
lenges concerning the scaling process of the SaaS in a Cloud
data centre. The new challenges are: 1) The performance of a
composite SaaS is measured by a set of interacting application
components instead of by a single component. 2) A particular
component in a composite SaaS may be requested more by
users than other components in the same SaaS. Thus, it is an
additional challenge to determine which component is more
suitable to scale, and how many replicas are needed for that
particular component. 3) The placement of a new replica of a
composite SaaS has to consider its communication with other
components. It is assumed that more than one application
component can be placed in a virtual machine (VM). As such,
to some extent, the replication process for a composite SaaS
has to consider both the application and infrastructure level
scalability metrics.

A large number of literature has been published on SaaS
scalability in a Cloud. However, most works proposed so-
lutions catering for an atomic SaaS, thus ignoring the new
challenges noted above. In addition, the solutions are mainly
developed at the infrastructure level for IaaS management,
whilst this paper focuses on solutions at the application level to
handle the composite SaaS. To address these new challenges,
a new scaling algorithm for a composite SaaS that uses

1609

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

information at both the application and infrastructure layers
in making the decisions is proposed.

The remainder of the paper is organised as follows. Section
II reviews the relevant literature. Section III formulates the
problem. Section IV presents a hybrid genetic algorithm for the
problem. Section V evaluates the algorithm using simulations.
Finally, Section VI summarises and concludes the paper.

II. RELATED WORK

In this section, existing research on scalability is reviewed
based on the scalability levels: infrastructure and application.
The discussion will focus on replication and deletion as the
mechanism of scalability.

At the infrastructure level, there are a couple of commercial
Cloud providers that offering add-on features that aim to scale
the IaaS that users are renting. For instance, Amazon1 offers
Amazon Cloud Watch and Amazon Auto-scale for its EC2
service. Amazon EC2 service provides resizable computation
capacity for users. A unit of EC2 can be considered as a VM
that has its own memory, processing capacity and storage.
Amazon provides Cloud Watch to monitor the performance of
each EC2, including its CPU utilisation, disks read and write
and network traffic. This information is then used in Amazon
Auto-scale, in which users determine their scalability rules to
replicate or destroy EC2 in order to cope with their demand
or to minimise their costs. The scalability solutions offered by
Cloud providers focus on servers’ resources in respect of the
scalability metrics. While they work well for handling VM
scalability, finer granularity is needed to handle application
scalability, particularly for applications like composite SaaS.

One of the most recent research at the application level
is that of Rodero-Merino et al. [4]. In this research, the
authors differentiated the roles of Service Providers (SPs)
between the one owning the service and Cloud provider,
the one owning the infrastructure. Another abstraction layer,
named Claudia, is proposed and implemented to offer a high
level interface for SPs in managing their services. Application
components under Claudia management will be replicated
or deleted based on the selected scalability rules. Claudia
provides no solution concerning the placement of the replica,
as this is under the authority of the Cloud provider. Lee and
Kim [7] also proposed an application-oriented solution for a
scalable service in the Cloud. In their work, the replication
of an application is triggered if the application exceeds the
threshold for the response time. All the studies described
above have provided a convenient way to manage application
scalability using application-oriented metrics, as opposed to
infrastructure-oriented metrics. However, the replication and
deletion process is still done at the VM level instead of the
application level. As such, there might be some applications
that are forced to be replicated due to the replication of their
host.

Bonvin et al. [10] proposed geographically diverse appli-
cation component replication in a Cloud infrastructure. In

1http://aws.amazon.com

their solution, each component acts as an agent that rents
resources from its host server. The agent migrates, deletes
and replicates itself based on its economic fitness, where the
fitness represents the value of the utility of the component as
compared to its cost. The placement of the replica is based on
the geographical location, where the least loaded and closest
server from its communication component will be chosen. Wu
et al. [6] investigated the scalability of composite web services
in a Cloud based on the productivity of the service, which is
measured based on the bandwidth consumed by a particular
composite service. They designed a GA to search the best
replication and placement plan for the web service, such that
the productivity of the scaled service is maximised. However,
none of these studies considers the overall performance of
the application as its performance indicator. Although to
some extent the dependency of one application on another
application is considered, the evaluation of the action taken is
still independent. This differs for a composite SaaS that has
an overall target performance to meet.

The prior research discussed above has motivated the direc-
tion of this research towards studying the replication problem
for a composite SaaS in the Cloud data centre. This is due
to the challenges resulting from a composite SaaS replication
problem, which may be more suitably addressed to both the
application and infrastructure layers than to one layer only.
In addition, to utilise the resources and to avoid unnecessary
replication, the granularity of the replication must be at the
application level. The overall performance of the SaaS must
also be considered in evaluating the replication decisions. To
address such issues, a hybrid genetic algorithm for a composite
SaaS replication problem is proposed. The following sections
will describe the algorithm in detail.

III. PROBLEM FORMULATION

Given a set of computation servers, storage servers, the
Cloud communication network, the composite SaaS, and the
set of tenants, the objective is to determine which SaaS
component should be replicated/deleted, how many replicas to
create/delete and where to place the new replica in the Cloud
data centre such that the performance of the SaaS complies
with its constraints while minimising the Cloud running cost.
These inputs, constraints and output can be formulated as
below:

Input:

1) A Cloud data centre, D = 〈CS ∪ SS,E〉, where
• CS = {cs1, cs2, ..., csn} denotes the set of all

computation servers in D, and n is the number of
computation servers. The resource capacities and
virtual machines of each computation server are
represented in a tuple 〈pci,memi, diski, V MCi〉,
1 ≤ i ≤ n, where pci is the processing ca-
pacity, memi is the memory, diski is the disk
storage capacity, and VMCi is the set of VMs
for csi. VMCi ⊆ VM where VM is the set
of all virtual machines. Each VM is defined as

1610

vmij = 〈pcij ,memij , diskij , priceij〉 , j ∈ N,
where priceij is the cost of the VM.

• SS = {ss1, ss2, ..., ssm} denotes the set of all
storage servers in D, and m is the number of storage
servers.

• E is the set of undirected edges connecting the
vertices, if and only if there exists a communica-
tion link transmitting information from vi to vj ,
where vi, vj ∈ CS ∪ SS. Bvi,vj

: E → R
+and

Lvi,vj
: E → R

+ are the bandwidth and latency
functions of the link from vi to vj respectively.

2) A set of composite SaaS, S =
〈AC ∪DC,DAC,DDC〉, where

• AC = {ac1, ac2, ..., acx} denotes the set of
all application components in S, and x is the
number of application components. The resource
requirements for each component represented in a
tuple
〈pcReqi,memReqi, sizei, amountRWi,maxUseri〉,
1 ≤ i ≤ x, where pcReqi is the requirement for
processing capacity, memReqi is the memory
requirement, sizei is the size of the component
for disk storage requirement, amountRWi is
the amount of read/write to other communication
components, and maxUseri is the maximum user
for aci.

• DC = {dc1, dc2, ..., dcy} denotes the set of data
components for S, and y is the number of data
components.

• S modelled by directed acyclic graphs (DAGs),
DAC is the the set of dependencies between ap-
plication component where DAC = AC × AC

and DDC is the set of dependencies between
application and data components where DDC =
AC ×DC .

3) The current placement of S and its placement constraint:
a) A current placement configuration, P , of application
components, AC, onto VM , P : AC → VM where
aci 7→ P (aci) = vmk, and 1 ≤ i ≤ x, 1 ≤ k ≤ j.
b) A current location, L, of the data components, DC,
at storage servers, SS, L : DC → SS where dcx 7→
L(dcx) = ssz , and 1 ≤ x ≤ y, 1 ≤ z ≤ m.

4) A response time for the composite SaaS, rts.
5) A set of tenant, T = {T1, T2, Ti, ..., Tv}, and 1 ≤ i ≤ v.

Each tenant may have one or more users denoted as 〈ui〉.
Constraints:

• Resource constraint: The placement of application com-
ponents onto VM are subject to the VM capacities.

• Placement constraint: There are two types of placement
constraint: a) An anti-location constraint that determines
the list of virtual machines that should not be con-
sidered for hosting a specific component, aci,j . The
list is defined as AL =

{

(aci,j , vmx,y)z , ...
}

where
z ∈ N, b) An anti-colocation constraint that determines
the list of application components that cannot be placed

in the same virtual machine. The list is defined as
ACL =

{

(aci,j , acs,t)w , ...
}

where w ∈ N. The solution
must comply with the anti-location and anti-colocation
constraint defined in the lists.

• Response time constraint: This constraint enforces the
total response time of the SaaS, TET , to be bounded
by rt, TET ≤ rts. Calculation of the TET is similar
to that defined in in our previous work [11], with some
modification in which the changes are made to include
the affect of having more than one replica as well as to
include the number of tenants.
Output: A scaling plan for application components in-

cluding its replication/deletion and the placements.
Objectives: The objectives of the problem are:

1) to minimise the number of computation servers
used,min

∑

csi∈CS dcsiwhere

dcsi =

{

1, ∀j∈AC∃i∈CS | P (acj) = csi

0 otherwise

2) to minimise the cost of VM used,
min

∑

vmi∈VM costvmi
where

costvmi
=

{

pricevmi
, ∀j∈AC∃i∈VM | P (acj) = vmi

0 otherwise

3) to minimise the number of replica created,
min

∑

aci∈AC kaci , while satisfying all the constraints.

IV. A HYBRID GA

It has been proven in the existing literature that deciding
how many replicas for an object and where to place them
is an NP-hard problem [12]. Therefore, a hybrid GA (HGA)
is developed to address the problem formulated in Section
III. A composite SaaS consists of two types of components
– application and data. For this scaling problem, only the
application component will be considered for replication; how-
ever, communication between these two types of components
is formulated as one of the deciding factors in finding the
solution.

The proposed algorithm will find a near-optimal scaling
plan for a composite SaaS such that it can minimise the
total resource usage without violating its constraints. There
are two main processes in producing the scaling plan: 1)
selection of components to replicate/delete and the number of
replicas, and 2) the placement of the replica. The HGA also
utilises two types of domain knowledge in order to improve
its performance, as outlined below.

Knowledge at the application level: Each component has
a number of maximum users it can serve at a time. It is
assumed that this knowledge is given by the SaaS developers
based on their own experience and knowledge of the SaaS.
This knowledge will then be used for calculating the total
execution time of the SaaS, given the current users at a
particular time. The response time is formulated as one of
the constraints in this replication problem.

1611

Knowledge at the infrastructure level : At the infrastruc-
ture level, the algorithm will use the knowledge of the location
and the utilisation rate of VMs in order to decide the placement
of a replica.

Algorithm 1 describes the HGA. In the HGA, Steps 1 and
2 are to initialise the best solution and the best replication
plan. Step 3 is responsible for generating the initial population
using domain knowledge, instead of the traditional random
generation of the initial population. The initial population
generation procedure is described in a later section. Each
individual is checked for resource requirement constraints in
Steps 6 and 7. Steps 8 and 9 are responsible for evaluating the
fitness of all individuals in the population. The best replication
plan and best fitness will be stored. Steps 12 to 15 are the
evolving processes in which selection, crossover, mutation
and fitness evaluation are performed. The following sections
explained the main parts of the algorithm in detail.

Algorithm 1: Hybrid Genetic Algorithm

1 bestF itness = 0
2 bestP lan = 0
3 create an initial population Population of PopSize

individuals, based on the initialisation procedure in
Section 1.4.2

4 while termination condition is not true do
5 for X ∈ Population do
6 if X violates SaaS resource requirements

constraint then
7 Repair(X)
8 end
9 Calculate X fitness value, F (X), penalised if X

violates SaaS placement constraint and response
time constraint

10 if F (X) > bestF itness then
11 Replace bestF itness

12 bestP lan = X

13 end
14 end
15 Select individuals from the Population based on

roulette wheel selection
16 Probabilistically apply the crossover operator to

generate new individual
17 Probabilistically select individuals for mutation
18 Use the new individuals to replace the old individuals

in the Population
19 end
20 output bestF itness

21 output bestP lan

A. Genetic Encoding

The chromosome is encoded by three one-dimensional
parallel integer arrays of n genes, where n is the number of
components in the composite SaaS. The first array represents
the component, the second represents the scaling flag, and

ac1 ac2 ac3 ... acn-1 acn

-1 0 3 ... -1 2

{19} {} {7, 0, 4} ... {35} {24, 1}VM

Application
components

Scaling flag

Figure 1. An example of a chromosome representation

the third array stores the VM for the replica(s). The scaling
flag is encoded by a signed integer where a positive value
means the number of component’s instances created, a negative
value means the number of component’s instances deleted,
and 0 means the current number of instances remains. Figure
1 illustrates the representation of one chromosome with n

application components.

B. Initial Population Generation

To ensure that the population starts off the exploration with
good seeds, HGA uses a procedure that utilises the domain
knowledge. There are two tasks involved in generating the
initial population.

The first task is to determine the number of replicas for
each component. The value will be generated from a range,
with a lower bound of 1 (no replication at all). The upper
boundary is determined using the results produced by a
random replication algorithm. The algorithm will randomly
replicate the component. If the replication can shorten the SaaS
total execution time, the replica will be kept. The process will
continue until the time constraint is satisfied or until there is no
improvement for 100 iterations. The result of each component
will be stored as the upper boundary for the component.

The second task in generating the initial population is to
find the placement for the new replica or to select a replica
to delete. For the deletion process, a replica in a least-loaded
VM will be selected. For the placement, the least utilised VM
and closest to its communicating component is chosen. The
utilisation of a VM is calculated based on the SaaS demands
for the computation resources, including processing capacity,
memory, secondary storage and bandwidth. The composite
SaaS is served to a number of tenants in which each tenant
has a different number of users. It is assumed that the resource
demands of the SaaS components are linearly proportional to
the number of tenants and the total number of users for all
tenants [13].

C. Genetic Operators

The crossover and mutation operators are responsible for ex-
ploring the search space for the HGA. A single-point crossover
is implemented where in this crossover, two chromosomes
are selected based on the roulette wheel selection scheme. A
randomly selected point in each of the chromosomes is chosen
and the part after the point is exchanged and merged together
to produce two child chromosomes. The chromosomes will
be checked for resource requirement constraints and will be
repaired accordingly. The best two chromosomes from the
parents and child chromosomes will be copied to the next
generation.

The chromosomes are randomly selected for mutation op-
eration. A new value for the replication flag of a component

1612

is generated based on the component’s replica range. Based
on the new value, the replication or destroy process will be
carried out.

D. Fitness Function

As formulated in Section III, the problem has three different
objectives that need to be optimised and constraints that need
to be complied with. The HGA uses a weighted aggregation
approach in which each objective and constraint is given
a weight value depending on its importance in the context
of the problem. The sum of all the weight values is one.
Then a composite objective function is formed by summing
the weighted objectives and converting them into a single
objective optimisation.

Equations 1 to 3 provide the definition of the objective
functions of the problem, and Equations 4 and 5 give the value
of the constraint violation for the placement and response time
constraint:

1) Fobj1 = 1 −
(

Rmax−
∑

csi∈CS
dcsi

Rmax

)

where Rmax is
the maximum number of possible replication for all
components, defined as Rmax = UB × |AC| , and dcsi
is the number of computation server used by the SaaS.

2) Fobj2 = 1 −
(

RmaxCost−
∑

vmi∈V M
costvmi

RmaxCost

)

where
RmaxCost is the maximum cost for Rmax, defined as
RmaxCost = Rmax ×max(costvm) and costvmi

is the
VM cost for the SaaS.

3) Fobj3 = 1 −
(

Rmax−
∑

aci∈AC
kaci

Rmax

)

where kaci is the
number of replica created for aci.

4) CV1 =

∑
aci,k∈Ri

PC∑
aci∈AC

kaci

where PC = 1 if the placement
of component aci violated its constraint and kaci is the
number of replica created for aci.

5) CV2 =

{

1, TET ≥ rts

0, otherwise
where TET is the total exe-

cution time of the SaaS, and rts is the response time
constraint.

A penalty function will be used to determine the degree of
infeasibility raised by violation of these constraints. The fitness
function is designed so that an infeasible solution has a lower
fitness value than any feasible solution, and an infeasible
individual that violates more constraints will be penalised
more than the solution that has lower constraint violations.

Equation 6 defines the fitness function of the problem.

F (X) =

∑

j∈3 Fobjj (X)× wobjj

+0.3,
∑

i∈2 CVi = 0
∑

j∈3 Fobjj (X)× wobjj

×
(

1−
∑

i∈2
CVi

|CV |

)

, otherwise

(6)

where
∑

j∈3 wobjj + 0.3 = 1.
In Equation 6, the fitness of an individual is determined by

the sum of objective functions multiplied by its weightage.
If X is a feasible solution, its fitness will be added by 0.3,
where this value represents the reward for feasible solutions.

This value is obtained through a number of trial experiments
in which the value that produced the best solutions is used.
Otherwise, its fitness will be multiplied by the expression
(

1−
∑

i∈2
CVi

|CV |

)

, which guarantees that the more constraints
that an infeasible individual violates, the lower is its fitness.

V. EXPERIMENTS

The scalability and quality of the HGA were tested on a
number of problem instances with different sizes and com-
plexities. The size of the problem is determined by three
dimensions: 1) the number of Cloud servers in the problem,
2) the number of tenants and their corresponding users, and 3)
the number of applications and data components. Three types
of problem representing each of the dimensions are created to
evaluate how these dimensions affect both the quality of the
solution, produced by HGA, and its scalability. The quality
of solution is evaluated based on the objective function as
a whole as well as on the three objectives separately. For
scalability evaluation, the computation time taken to produce
the solution is measured. Below is the elaboration of these
three test problems.

Test problems with different numbers of Cloud servers:

Five test problems were constructed with different numbers
of Cloud computation servers and storage servers. For com-
putation servers, the number ranges from 100 to 500, while
for storage servers the number ranges from 60 to 300. The
attributes of the Cloud servers were randomly generated us-
ing the models presented in the Hewlett-Packard and IBM
websites [14]. The communication between the servers was
also generated randomly. For all test problems, the number of
application components is set to 10, data components to 5 and
the number of tenants to 200.

Test problems with different numbers of tenants : Five test
problems were created with a fixed number of computation
servers (400), storage servers (240), application components
(10), and data components (5), and with varying number of
tenants ranging from 300 to 500, with an increment of 50.
For each tenant, the minimum user is set to 1, the maximum
number of users is 200 and the value will be generated
randomly.

Test problems with different numbers of application com-

ponents : Four test problems were designed with composite
SaaS with different numbers of application and data compo-
nents and a fixed number of Cloud servers and tenants. The
number of application components ranges from 5 to 20, while
the number of data components is from 2 to 10. The number
of computation servers is set to 500, storage servers is set to
300, and the number of tenants, to 200.

A. A Greedy Algorithm

Although comparing the HGA to the optimal solution ob-
tained by an exhaustive search is the best way to illustrate the
performance of the algorithm, such a search is able to provide
an optimum solution for small size problems only. Since
this is not the case, a simple greedy algorithm is developed
for comparison. Basically, the greedy algorithm will replicate

1613

a component if the replication brings benefit to the SaaS
performance in terms of its total execution time. It is assumed
that at the start of the algorithm, all components have only one
instance. Algorithm 2 shows the greedy replication algorithm.

Algorithm 2: The Greedy Algorithm

1 count = 0
2 while (TETs > rts and count < 100) do
3 for (aci ∈ AC) do
4 Create a new replica for aci
5 Find aci placement
6 Calculate the new newTETs

7 if (newTETs < TETs) then
8 Accept the replica and its placement
9 count = 0

10 end
11 else
12 count = count+ 1
13 end
14 end
15 end

B. Evaluation

A number of experiments were conducted to evaluate the
scalability and effectiveness of the proposed algorithm. In
order to conduct the evaluation, the HGA and the greedy
algorithm was implemented in Microsoft Visual Studio C++
2010. All the experiments were conducted using a desktop
computer with 3 GHz Intel Core 2 Duo CPU and 4GB RAM.
The parameter setting for HGA is illustrated in Table I. These
parameters were obtained through trials on randomly gener-
ated test problems. Parameters that led to the best performance
in the trials were selected as the settings of the algorithms for
the experiments below.

1) Experiments on the Number of Servers : Considering the
stochastic nature of HGA, and that the random element exists
in the greedy algorithm, the experiments were executed 30
times for all problem instances. The objective of the problem
is to minimise the replication plan’s cost while satisfying
the SaaS constraints with the minimum number of replicas
possible. The cost here refers to the resource cost that is used
for the components, which includes the number of computation
servers (CS) used and the price of VM.

To evaluate the overall performance of the algorithms, an
overall objective function, F (X), is formulated based on the
fitness function in Equation 6. The overall objective function
is defined in Equation 7. The F (X) value is based on the sum
of scores for each category multiplied by its weightage. High
values of F (X) indicate good solutions. The weightage for CS
used and VM cost is set to 0.4, while the number of replicas
is set to 0.2. Figure 2 illustrate the value of F (X) for both
algorithms for the five test problems. Based on the figure,
the HGA has higher values of F (X) in all test problems,

Table I
SIMULATION PARAMETERS FOR THE EXPERIMENTS

Parameter Value
Population size 100
Crossover rate 90%
Mutation rate 10%
Termination condition (# of generation without improvements) 25
w

obj1
0.25

w
obj2

0.25
w

obj3
0.2

Figure 2. Comparison of the overall objective function, F (X), of the HGA
and the greedy algorithm for different numbers of Cloud computation servers

which indicates that it produced a better replication plan for
the problem.

F (X) =
∑

j∈3

Fobjj (X)× wobjj (7)

The growth trend of the computation time of both algo-
rithms is shown in Figure 3. From the figure, it can be seen that
there is no correlation between the number of Cloud servers
and the time taken by both algorithms. Although the greedy
algorithm is fast in computation time, the quality of results
produced are not convincing for the use of this algorithm for
solving the replication problems. For all test problems, the
best result achieved by the greedy algorithm for the number
of replicas created, as well as for the CS and VM cost, is still
higher than the average result of the HGA.

2) Experiments on the Number of Tenants : This experi-
ment evaluated how the number of tenants affects the quality of
solutions as well as the computation times of both the proposed
algorithm and the comparison algorithm. Both algorithms were
executed 30 times for each test problem.

The overall performance of both algorithms based on the
objective function defined in Equation 7 is shown in Figure 4.
It can be seen that both algorithms can always find feasible
solutions for each test problem. It also shows that the HGA
can always find a better solution for all the problem objectives
in the five test problems, compared to the greedy algorithm.

For this experiment, it should be highlighted that, compared
to the HGA, the greedy algorithm tends to generate more
replicas as the number of tenants increased. Figure 5 shows

1614

Figure 3. Comparison of the computation time of the HGA and the greedy
algorithm for different numbers of Cloud computation servers

Figure 4. Comparison of the overall objective function, F (X), of the HGA
and the greedy algorithm for different numbers of tenants

the pattern for the number of replicas generated between these
two algorithms. It can be seen that the gap between the two
algorithms is increasing as the number of tenants grows. With
new tenants added, the HGA manages to retain a minimal
degree of replications, resulting in a linear increment. This is
due to the non-deterministic nature of the HGA in deciding the
replications. The greedy algorithm created far more replicas
for a larger number of tenants.

Unfortunately, the better performance and the large cost
savings of the HGA are achieved at the expense of a large
execution time. As shown in Figure 6, the HGA computation
time is much higher compared to that of the greedy algorithm.
In addition, there is no correlation at all between the number
of tenants and the computation time taken.

3) Experiments on the Number of SaaS Components: This
experiment was an evaluation of how the number of SaaS
application components affects the quality of solution and
computation time of the HGA compared with the greedy
algorithm. In each test problem, both algorithms were executed
30 times.

Figure 7 presents the overall performance based on the
objective function in Equation 7. It can be seen that the
HGA achieved better results than the greedy algorithm. The
difference in the score for F (X) for the test problem with

Figure 5. Comparison of the number of replica created of the HGA and the
greedy algorithm for different numbers of tenant

Figure 6. Comparison of the execution time of the HGA and the greedy
algorithm for different numbers of tenant

5 components is only about 5%, while in the test problem
with 20 components the difference is 40%. This overall result
is also consistent with the results for each criterion, and it is
particularly obvious in terms of the number of replicas created.
Figure 8 shows the replication trend for both algorithms; the
gap between the two results increases as the number of SaaS
application component increases. This observation should be
attributed to the fact that, by having more components in the
SaaS, the algorithms have more options of components to be
replicated, together with additional dependency complexities
caused by the communication between the components. The
HGA tackles these effects more successfully than the greedy
algorithm does, through its better exploration of which of the
components are worth replicating.

No trend was observed for the computation time for the
HGA as the number of application components increases. The
longest time taken is around 6 minutes. On the other hand,
the greedy algorithm took less than one second for all test
problems conducted.

In the above experiments, HGA achieves more cost savings
in its replication plan as well as the replica placement plan in
all variable dimensions. Compared to the greedy algorithm,
HGA can save up to 46% in overall performance when

1615

Figure 7. Comparison of the overall objective function, F (X), of the
HGA and the greedy algorithm for different numbers of SaaS application
components

Figure 8. Comparison of the number of replica created of the HGA and the
greedy algorithm for different numbers of SaaS application components

evaluated with a different number of Cloud servers, and up
to 43% and 40% when evaluated with various numbers of
tenants and SaaS components. It has also been shown that
the proposed algorithm achieves far better results than the
greedy method when the number of tenants and the number
of application components are both large. This shows that
the algorithm can respond well to changes of demands and
to the increment of SaaS components. It also demonstrates
the exploring ability of the algorithm in a large and complex
search space with constraints. However, the performance of
the HGA is a trade-off with its computation time. The HGA
did not exhibit any trends of computation time taken in all the
experiments conducted. The longest time it took is about eight
minutes, while the greedy method, on average, took less than
one second for all the experiments.

VI. CONCLUSION

This paper has studied a new composite SaaS scalability
problem in Cloud. The problem has been formulated as a
combination of the components’ scaling and placement prob-
lems, with the main objective being to minimise the cost
of resources with the minimum number of replicas possible
while satisfying the problem’s constraints. A hybrid genetic
algorithm has been proposed. The hybrid genetic algorithm
makes good use of the problem’s domain knowledge at the

application and infrastructure levels to make its search more
efficient and effective. The simulation results have shown
that the proposed algorithm constantly outperforms a heuristic
algorithm in terms of the quality of solution. The proposed
algorithm gives an impressive performance by achieving low
cost replication and placement plans compared to the perfor-
mance of the greedy algorithm. Although the results show that
the computation times for HGA are long, it is still acceptable
as the algorithm is meant to be executed during the offline
maintenance phase of the SaaS.

This problem has multiple objectives but it was transformed
into a single objective problem. Therefore, a possible future
work is to implement a multi-objective evolutionary algorithm.
However, further works need to be carried out, as the involve-
ment of human administrators is not available in an automated
SaaS resource management

ACKNOWLEDGMENTS

This research was carried out as part of the activities of, and
funded by the Smart Services Cooperative Research Centre
(CRC) through the Australian Government’s CRC Programme
(Department of Innovation, Industry, Science and Research).
The research was sponsored by Universiti Teknikal Malaysia
Melaka, Malaysia.

REFERENCES

[1] I. Foster, Z. Yong, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, Proceedings of the Grid Computing Environ-
ments Workshop, IEEE, 2008, pp. 1–10.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in
the clouds: Towards a cloud definition, SIGCOMM Computer Commu-
nication Review 39 (1), 2009 pp. 50–55.

[3] J. Caceres, L. M. Vaquero, L. Rodero-Merino, A. Polo, J. J. Hierro,
Service scalability over the cloud, Handbook of Cloud Computing, 2010
pp. 357–377.

[4] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galan, J. Fontan, R.
S. Mon- tero, I. M. Llorente, From infrastructure delivery to service
management in clouds, FGCS 26 (8), 2010 pp. 1226–1240.

[5] L. M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling
applications in the cloud, ACM SIGCOMM Computer Communication
Review 41 (1), 2011 pp. 45–52.

[6] J. Wu, Q. Liang, E. Bertino, Improving scalability of software cloud
for composite web services, Proceedings of the IEEE International
Conference on Cloud Computing, IEEE, 2009, pp. 143–146.

[7] J. Y. Lee, S. D. Kim, Software approaches to assuring high scalability in
cloud computing, Proceedings of the IEEE 7th International Conference
on e-Business Engineering, IEEE, 2010, pp. 300–306.

[8] G. Inc, Gartner says worldwide software-as-a-service revenue to reach
$14.5 billion in 2012, 2012. URL http://www.gartner.com/it

[9] C. S. Inc, Cisco service-oriented network architecture: Support and
optimize SoA and web 2.0 applications, [Online; accessed 9-March-
2010] 2008. URL http://www.cisco.com/

[10] N. Bonvin, T. G. Papaioannou, K. Aberer, An economic approach for
scalable and highly-available distributed applications, Proceedings of the
IEEE 3rd Int. Conf. on Cloud Computing, IEEE, 2010, pp. 498–505.

[11] Z. Mohd Yusoh, M. Tang, A penalty-based GA for the composite
saas placement problem in the cloud, Proceeding of IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2010, pp. 600–607.

[12] M. Karlsson, C. Karamanolis, Bounds on the replication cost for QoS,
Tech. rep., Citeseer 2003.

[13] T. Kwok, A. Mohindra, Resource calculations with constraints, and
placement of tenants and instances for multi-tenant SaaS applications,
Proceedings of the 6th Int. Conf. on SoC, Springer, 2008, pp. 633–648.

[14] IBM, System & servers, [Online; accessed 9-November-2011] (2009).
URL http://www-07.ibm.com/storage/au/

1616

