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Abstract—The primary study on feedback controlled Differen-
tial Evolution (FCDE) is presented. FCDE is a novel framework
of DE with an automatic parameter adjustment mechanism,
which controls its search situation (evaluation index) to be a
promising situation (reference index) by the error feedback.
Its adjustment mechanism consists of three parts: Estimator,
Referencer, and Controller. Estimator calculates an evaluation
index which quantitatively measures the search situation about
the population diversity. Referencer generates a reference index
being the ideal target of the evaluation index. Controller operates
the DE parameters every generation to make the evaluation index
follow the reference index. Further, this paper actually realizes a
FCDE method using a typical DE by designing the three parts.
The effectiveness of the proposed method is confirmed through
computational experiment from viewpoint of the controllability
and performance.

I. INTRODUCTION

Differential Evolution (DE), which was introduced by R.
Storn and K. V. Price in 1995, is one of the powerful and
efficient multipoint mataheuristis for global optimization over
continuous space [1], [2]. DE has been improved or extended
and widely applied in many scientific and engineering fields
so far [3]. The reason why DE attracts a lot of researchers and
practitioners is that it has the following virtues compared to
other methods [3]:

• The structure of DE is more straightforward to pro-
gram and implement.

• The search performance of DE for various problems
is generally better from many research results and
competitions.

• The number of setting parameter of DE is only three:
the scaling factor and the crossover rate and the
population size.

However, its powerful and efficient performance depends on
an appropriate parameter setting corresponding to the targeted
problem. That is, many trial and error for an appropriate
parameter setting are imposed on users, if they do not have
their adjusting knowledge or cannot know structure of the
objective function in advance.

From this backdrop, a lot of automatic parameter adjusting
methods have been developed so far [3]. Examples of recent
parameter automatic adjusting methods are as follows. J. Brest
et al. proposed jDE which adjusts the crossover rate and
the scaling factor every individual [4]. In this method, each
parameter is updated by choosing, with a constant probability,

between a new value generated based on a fixed uniform
randomness and its inherited value. A. K. Qin et.al proposed
SADE that switches mutation strategies and adjusts the scaling
factor and the crossover rate every individual [5]. In this
method, the crossover rates are randomly adjusted by Gaussian
distribution being updated based on the successful parameter
values, and the scaling factors are Gaussian randomization. J.
Zhang and A. C. Sanderson proposed JADE that has new mu-
tation strategy and adjusts the scaling factor and the crossover
rate every individual [6]. In this method, the scaling factors
are randomly adjusted based on Cauchy distribution getting
updated using history of the successful parameter values, and
the crossover rates are randomly adjusted based on Gaussian
distribution getting updated also with successful ones.

This paper is concerned with a new parameter automatic
adjustment for DE different from the conventional methods.
First, a novel framework of DE with an automatic parameter
adjustment mechanism, which controls its search situation
(evaluation index) to be a promising situation (reference index)
by the error feedback. Its adjustment mechanism consists of
three parts: Estimator, Referencer, and Controller. Estimator
calculates an evaluation index which quantitatively measures
the search situation about the population diversity. Referencer
generates a reference index being the ideal target of the
evaluation index. Controller operates the DE parameters every
generation to make the evaluation index follow the reference
index. Secondary, a FCDE method using a typical DE called
DE/best/1 is actually realized by designing the three parts.
The effectiveness of the proposed method is confirmed through
computational experiment from viewpoint of the controllability
and performance.

II. OUTLINE OF DIFFERENTIAL EVOLUTION

DE is a direct multipoint search method for continuous
global optimization problems which uses evolutionary oper-
ation: differential mutation, crossover, and selection. The m
individuals that are solution candidates at the g-th generation
are represented by xi(g) ∈ Rn, i = 1, · · · , m. The termina-
tion criterion of its search is generally defined as the generation
time g reaches the maximum generation gmax arbitrarily given
by users. There are several kinds of DE due to differences
in mutation and crossover, and they are notated as DE/X/Y/Z
where X is a type of mutation, Y is the number of differential
vectors, and Z is a type of crossover.

This paper throughout handles a typical DE called
DE/best/1/bin for unconstrained minimization problems for the
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Fig. 1. Framework of Feedback Controlled Multipoint Search (FCMS)

objective function f : Rn → R,

Minimize
x

f(x), x ∈ Rn.

The details of the evolutionary operation used in
DE/best/1/bin are as follows.

Mutation: The mutation operation generates the mutation
vectors vi(g), i = 1, · · · , m based on differential vectors made
of the individuals. The mutation operation of best/1 uses the
best individual in the population and one differential vector as
follows:

vi(g) = xb(g) + F (xri1(g) − xri2(g)), i = 1, · · · , m (1)

where F ∈ R+ is a parameter called scaling factor, xb(g),
b = arg mini f(xi(g)), i = 1, · · · , m is the best in the
population until the g-th generation, xri1(g) and xri2(g) are
different vectors chosen randomly from the population such
that i �= b �= ri1 �= ri2.

Crossover: The crossover operation generates trial vec-
tors ui(g), i = 1, · · · , m from xi(g) and vi(g). The typical
crossover type is binomial crossover defined as follows:

ui,j(g) =
{

vi,j(g) if pi,j(g) ≤ C or j = qi(g)
xi,j(g) otherwise , (2)

i = 1, · · · , m, j = 1, · · · , n, where C ∈ [0, 1] ⊂ R is a
crossover rate, and pj(g) is a random real number in [0, 1] ⊂
R, and qi(g) is a random integer number in [1, n] ⊂ N.

Selection: The selection operation compares the objective
function values of xi(g) and ui(g) and selects the superior one
as follows:

xi(g + 1) =
{

ui(g) if f(ui) ≤ f(xi)
xi(g) otherwise , (3)

i = 1, · · · , m.

III. FRAMEWORK OF FEEDBACK CONTROLLED
DIFFERENTIAL EVOLUTION (FCDE)

A. Diversification and Intensification

It is well known that considering a balance between diver-
sification and intensification for search points is important to
improve search performance of multipoint metaheuristics [8],
[9].

• Diversification is a strategy which aims to prevent
search points from remaining local area and to search

for better solutions by searching wide region (global
search),

• Intensification is a strategy which aims to search for
better solutions intensively by searching local area
around a good solution (local search).

That is, although diversification and intensification are oppo-
site strategies, only diversification cannot find deeply better
solutions, and only intensification cannot find widely better
solutions. Therefore, realization of an appropriate balance
corresponding to the targeted problem is important for better
search.

Some of parameter adjustments in multipoint metaheuris-
tics are designed by considering such a balance between them
[9], however most of them seem to be intuitively designed.
Therefore, from objectivity viewpoint, it is necessary to con-
sider the following points:

• To define a measure to quantitatively evaluate a bal-
ance between them (evaluation index).

• To define a target of its measured value concerning an
appropriate balance for better performance (reference
index).

B. FCDE in FCMS

In accordance with the above discussion, we establish a
novel framework for multipoint metaheuristics, which intro-
duces an evaluation index and controls it to a reference index
by the error feedback. This framework is called “Feedback
Controlled Multipoint Search (FCMS)” and its image is as
shown in Fig.1. This framework regards the generation g
as discrete time, the multipoint search models as controlled
dynamical systems, the search point population X(g) =
[x1(g)�, · · · , xm(g)�]� ∈ Rmn as state of the dynamical
system and setting parameters P (g) ∈ Rd as control inputs
into the system. In addition, the following three mechanisms
are connected to the dynamical system to make feedback loop:

• Evaluator: This calculates an evaluation index
E(X(g)) ∈ R which quantitatively measures a bal-
ance between the diversification and intensification for
search points.
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• Referencer: This generates a promising reference in-
dex R(g) ∈ R for E(X(g)) for good performance.

• Controller: This operates the control inputs P (g) to
make E(g) follow R(g).

This framework intends that “Controller” adjusts the pa-
rameters P (g) to make E(g) of “Evaluator” follow R(g) of
“Referencer” by the error feedback. Therefore, its automatic
parameter adjustment mechanism consists of “Evaluator”,
‘Referencer” and “Controller”. By defining and designing the
three parts appropriately, the automatic parameter adjustment
which can realize the promising balance can be expected.
Note that, in order to achieve superior search, it is important
to design the three parts so that they cooperate with each
other, based on characteristics of the targeted problem and the
adopted multipoint search method.

This paper applies FCMS to DE and call the resultant
framework as “Feedback Controlled Differential Evolution
(FCDE)”. That is, in Fig.1, “Multipoint Search Model” is
replaced with “Differential Evolution” and input P (g) is
defined as P (g) = [F (g) C(g)]�.

IV. REALIZATION OF FCDE

A. Policy

In this section, for simplification, we consider a case that
the adjusted parameter is only F (i.e. P (g) = [F (g) C]� and
C is a constant.) . To actually realize a method in FCDE, we
first stand the following control policy.

[Policy] Control an evaluation index which measures an aver-
age distance between individuals and the best individual such
that it follows a reference index which gradually decreases
from an initial one when g = 0 to a certain small one ε when
its termination g = gmax.

The image of this policy is shown in Fig. 2. Its validity can
be proved in comparison with other inappropriate balances as
shown in Fig. 3 as follows:

• Fig.3(a) shows a situation where the population are
still dispersed when g = gmax, which means that the
intensification strategy that searches around the best
individual cannot be realized sufficiently well (weak
intensification).

• Fig.3(b) shows a situation where the population con-
verge at subspace within ε from the best individual
when g = gmax/2, which means that diversification
cannot be realized sufficiently well because the half-
generation times persist (strong intensification).

B. Evaluator

In accordance with Policy, to measure an average distance
between individuals and the best, we introduce the following

center (best point) search point optimal solution

(a) Appropriate Intensification

Fig. 2. Image of Promising Balance from Diversification to Intensification

center (best point) search point optimal solution

(a) Weak Intensification
center (best point) search point optimal solution

(b) Strong Intensification

Fig. 3. Image of Unpromising Balance from Diversification to Intensification

evaluation index:

E(g) =

(∑m
i=1

∑n
j=1 |xi,j(g) − xb(g),j(g)|)/mn

B/mn

=

∑m
i=1

∑n
j=1 |xi,j(g) − xb(g),j(g)|

B
(4)

where

B =
∑m

i=1

∑n
j=1 |xi,j(0) − xb(0),j(0)|,

and E(0) = 1. This definition is based on the mean of 1-norm
of difference vectors between xb(g)(g) and xi(g), relative to
xi(0).

This index can quantitatively evaluate a balance between
diversification and intensification for the population during the
search process. That is, if the index is moving near 1, the
search points tend to be under diversification around the initial
population; if it is getting close to 0, they tend to be under
intensification toward the best individual.

C. Referencer

In accordance with Policy, to generate a promising ref-
erence index R(g) for the above E(g), we introduce the
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TABLE I. TEST FUNCTIONS

Name Definition Optimal solution x� f(x�) Initial region

1. Sphere f(x) =
∑n

i=1 x2
i (0, 0, · · · , 0) 0 S = [−5.0 5.0]n

2. Rosenbrock f(x) =
∑n−1

i=1 100(x2
i − xi+1)

2 + (xi − 1)2 (1, 1, · · · , 1) 0 S = [−2.0 2.0]n

3. Bohachevsky f(x) =
∑n−1

i=1

{
x2

i + 2x2
i+1 − 0.3 cos(3πxi) − 0.4 cos(4πxi+1) + 0.7

}
(0, 0, · · · , 0) 0 S = [−5.0 5.0]n

4. Rastrigin f(x) =
∑n

i=1(x
2
i − 10 cos 2πxi + 10) (0, 0, · · · , 0) 0 S = [−5.0 5.0]n

5. Levy f(x) = π/n
[∑n−1

i=1

{
(xi − 1)2(1 + 10 sin2(πxi+1))

}
+ 10 sin2(πx1) + (xn − 1)2

]
(1, 1, · · · , 1) 0 S = [−5.0 5.0]n

6. Ackely f(x) = −20 exp

(
−0.2

√
1

n

∑
n
i=1 x2

i

)
− exp

(
1

n

∑n
i=1 cos 2πxi

)
+ 20 + exp(1) (0, 0, · · · , 0) 0 S = [−5.0 5.0]n

7. 2n minima f(x) =
∑n

i=1 x4
i − 16x2

i + 5xi (0, 0, · · · , 0) −78n S = [−5.0 5.0]n

8. Six-hump f(x) =
∑n/2

i=1(4 − 2.1x2
i + 1/3x4

i )x2
i + xixi+n/2 + (−4 + 4x2

i+n/2)x
2
i+n/2 (0.09, 0.07, 0.09, · · · , 0.07) −0.52n S = [−2.0 2.0]n
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Fig. 4. Referencer

following two types.

Ref1 : R(g + 1) = gmax
√

ε R(g), R(0) = 1 (5)

which generates an exponential curve, as shown in Fig.4 (a).

Ref2 : R(g + 1) = R(g) − (R(0) − ε)/gmax, R(0) = 1
(6)

which generates a straight line, as shown in Fig.4 (b). Both
are functions of the maximum generation gmax and a small
ε > 0, and converge to R(gmax) = ε at the search termination
g = gmax from R(0) = 1.

D. Controller

Here we aim to design a simple control law for F to make
E(g) follow R(g) by the following steps.

First, we calculate an expected value of E(g +1) from (4)
as follows. The j-th element of the mutation vector vi(g) in
(1) is

vi,j(g) = xb(g),j(g) + Fξri,j(g), (7)

where ξri,j(g) = xri1,j(g) − xri2,j(g) and b(g) =
arg mini f(xi(g)), i = 1, 2, · · · , m. Therefore, expectation of
the j-th element of the trial vector ui(g) is

E[ui,j(g)] = C′vi,j(g) + (1 − C′)xi,j(g)
= C′xb(g),j(g) + C′Fξri,j(g) + (1 − C′)xi,j(g)

(8)

where E[·] represents an expected value of a random variable
and C′ = C + 1/n − C/n = C(1 − 1/n) + 1/n is the actual
crossover rate based on (2).

Assuming a success probability of the selection of ui(g)
to be μ(g) ∈ [0, 1] ⊂ R, expectation of the j-th element of

xi(g + 1) is

E[xi,j(g + 1)] = μ(g)E[ui,j(g)] + (1 − μ(g))xi,j(g)
= μ(g)C ′xb(g),j(g) + μ(g)C ′Fξri,j(g)

+ (1 − μ(g)C ′)xi,j(g). (9)

Based on (9), expectation of the j-th element of xb(g+1)(g+1),
b(g + 1) = arg mini f(xi(g + 1)) is

E[xb(g+1),j(g + 1)]
= μ(g)C ′xb(g),j(g) + μ(g)C ′Fξrb(g+1),j(g)

+ (1 − μ(g)C′)xb(g+1),j(g). (10)

From (9) and (10), we can derive the following equation.∣∣E[xi,j(g + 1) − xb(g+1),j(g + 1)]
∣∣

=
∣∣(1 − μ(g)C ′)(xi,j(g) − xb(g+1),j(g))
+ μ(g)C ′F (ξri,j(g) − ξrb(g+1),j(g))

∣∣. (11)

Therefore, from (4) and (11), expectation of E(g + 1) is

E[E(g + 1)]
=

∑m
i=1

∑n
j=1

∣∣E[xi,j(g + 1) − xb(g+1),j(g + 1)
∣∣/B

=
∑m

i=1

∑n
j=1

∣∣(1 − μ(g)C ′)(xi,j(g) − xb(g+1),j(g))

+ μ(g)C ′F (ξri,j(g) − ξrb(g+1),j(g))
∣∣/B. (12)

Further, because (1 − μ(g)C ′) ≥ 0, μ(g)C′F ≥ 0, using
triangle inequality, the following inequality holds:

E[E(g + 1)] ≤ (1 − μ(g)C ′)E(g)′ + μ(g)C′FΘ′(g) (13)

where

E(g)′ =
∑m

i=1

∑n
j=1 |(xi,j(g) − xb(g+1),j(g))|/B,

Θ(g)′ =
∑m

i=1

∑n
j=1 |(ξri,j(g) − ξrb(g+1),j(g))|/B.

Secondary, we investigate relations between E, Ẽ :=
E[E(g + 1)] and the right side of (13) : Ẽh := (1 −
μ(g)C ′)E(g)′ + μ(g)C ′FΘ′(g) through various numerical
experiments. The used test functions are Sphere, Rastrigin and
2n-minima which are shown in Table I. The number of the
individuals is set m = 100, the dimension is n = 100 and the
maximum generation is gmax = 100 and 1000. Note that μ(g)
is calculated based on the actual successful selection rate of
ui(g), i = 1, · · · , m. Some of results are shown in Fig.5-7. It
is observed that the error between E and Ẽ is quite small, the
error between Ẽ and Ẽh is also quite small, and the inequality
of (13) holds. Although we cannot all data due to the page
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,Ẽ

,Ẽ
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Fig. 5. Trajectories of E, ˜E, and ˜Eh for Sphere (m = 100, n = 100)
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,Ẽ
h

 

 

E(F = 0.1)
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Ẽ(F = 0.9)
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Fig. 6. Trajectories of E, ˜E, and ˜Eh for 2n-minima (m = 100, n = 100)
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Fig. 7. Trajectories of E, ˜E, and ˜Eh for Rastrigin (m = 100, n = 100)

limitation, let us report that the same tendency for all data
was observed.

Finally, considering the numerous computational results,
E[E(g + 1)] can be approximated based on Ẽh as follows:

E[E(g + 1)] ≈ (1 − μ(g)C ′)E(g)′ + μ(g)C′Θ(g)′F. (14)

We use this model in order to analyze the effect of the
parameter F and derive its adjusting law. Based on (14), since
μ(g)C ′Θ(g)′ ≥ 0, assuming μ(g) �= 0, Θ(g)′ �= 0, we can
analyze the influence of F on E(g + 1) as follows:

• F and E(g + 1) are strong positive correlation.

Using this relation, we can propose a simple parameter
adjusting law using the error feedback between R(g) and E(g)
and a gain KF > 0 as follows:

F (g + 1) = F (g) + KF(R(g) − E(g)) (15)

where its domain is Fmin ≤ F (g) ≤ Fmax, and if the adjusted
valus are outside of its domain, they are modified such that
F (g + 1) = Fmax (if F (g + 1) > Fmax) and F (g + 1) =
Fmin (if F (g + 1) < Fmin).

This law increases F (g) when R(g) > E(g) to increase
E(g) and decreases F (g) when R(g) < E(g) to decrease
E(g) depending on the error degree, and then enable E(g+1)
follow R(g).

E. Algorithm

By designing the three mechanism from the former sub-
sections, a method in FCDE has been realized. The algorithm
in case of using Ref1 is described as follows.

Algorithm (Proposed Method in FCDE)

Step 0: Set the number of individuals m, the maximum
iteration gmax, the feedback gain KF, the parameter ε, the
maximum Fmax, the minimum gFmin and the crossover
rate C.

Step 1: Set the initial position of individuals xi(0) ∈
S, i = 1, 2, · · · , m, randomly. Set the initial iteration
g = 0, the initial scaling factor F (0), and R(0) = 1.

Step 2: Calculate F (g + 1) based on (15).
Step 3: Generate vi(g), i = 1, · · · , m, from

vi(g) = xb(g) + F (g + 1)(xri1(g) − xri2(g)).

Step 4: Generate ui(g), i = 1, · · · , m, from (2).
Step 5: Determine xi(g + 1), i = 1, · · · , m, from (3).
Step 6: Calculate E(g + 1) from (4).
Step 7: Generate R(g + 1) from (5).
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Step 8: Terminate the whole search if g = gmax, other-
wise set g := g + 1 and return to Step 2.

V. COMPUTATIONAL EXPERIMENT

To verify the effectiveness of the proposed method, we
conduct computational experiment for various problems.

A. Experiment Conditions

The 8 test functions with different structures in Table I are
used. Their structures are classified as follows: function 1 - 3:
unimodal, function 4 - 6: globally unimodal, and function 7 -
8: globally multimodal. The regions of initial search points S
are defined every function in Table I.

To verify whether the proposed method is achieved for
different gmax, we set gmax = 100 and 1000.

To verify whether the proposed method is achieved for
various dimensions of functions, we set m = 100 and n
as follows: n = 30 which means in case of dimensions are
fewer than search points, n = 100 which means in case of
dimensions are equal to search points, and n = 300 which
means in case of dimensions are more than search points.

The proposed methods are used as PRM1 which uses (4),
(5), (15) and PRM2 which uses (4), (6), (15). The setting
parameters in PRMs are KF = 1.0, Fmax ≈ ∞, Fmin = 0,
and (F (0), C) = {(0.5, 0.1), (0.5, 0.9), (0.1, 0.1), (0.9, 0.9)}.

One compared method is “ORI” that is the original
DE/best/1/bin with the initial parameters (F (0), C). The other
compared method is “JADE” which is known as a conventional
powerful adaptive DE [6], [7].

1) Results and Discussions: Table II and III show the
results which are mean of the resultant function values after 25
runs from different initial search points in S. Table II shows
the results in case of gmax = 100 and Table III shows the
results in case of gmax = 1000. In addition, to evaluate the
controllability of the proposed method, ”error” which is mean
of every gap between R(g) and E(g) is shown.

Now, based on the results, let us discuss about the control-
lability and search performance as follows:

(1) Controllability: It is confirmed that “error” in both
PRM1 and PRM2 are almost small. It seems that the pro-
posed method has good controllability in various cases.
Here, some examples of trajectories of E(g), R(g) and
F (g) are shown in Fig. 8-10, which each trajectory is
obtained through one trial with the same initial search
points. It is observed that E(g) actually follows R(g)
while F (g) is automatically adjusted.

(2) Performance: The following facts are observed:

• The performance of PRMs are affected by the ini-
tial parameters (F (0), C). PRM with (F (0), C) =
(0.5, 1) is generally more powerful than other
cases.

• PRM1 is stronger than PRM2 in almost cases.
That means the reference index with the exponen-
tial curve is superior to one with the strait line.

• PRM1 tends to be stronger than ORI in many
cases: In case of (F (0), C) = (0.5, 0.1), PRM1
is stronger than ORI in both gmax = 100 and
gmax = 1000. In case of (F (0), C) = (0.1, 0.1),
ORI is a little stronger than PRM in gmax = 100,
but ORI is a much weaker than PRM in gmax =
1000. In case of n = 300 and gmax = 1000, PRM
tends to be stronger.

• PRM1 and PRM2 are weaker for unimodal func-
tion than JADE. But, in multimodal functions,
some of PRM is stronger than JADE.

VI. CONCLUSIONS

This paper proposed the novel framework for DE with the
automatic parameter adjusting mechanism called FCDE and
realized a method in FCDE. The effectiveness is confirmed
through computational experiments. This is the primary study
on FCDE, and remains many future tasks including how
to adjust the parameter C and how to define Referencer,
Estimator for improving search performance.
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(a) (F (0), C) = (0.5, 0.1), error = 0.012 (b) (F (0), C) = (0.5, 0.1), error = 0.025 (c) (F (0), C) = (0.5, 0.1), error = 0.036 (d) (F (0), C) = (0.5, 0.1), error = 0.033

Fig. 8. Trajectories of E(g), R(g) and F (g) (Sphere, n = 100)
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(a) (F (0), C) = (0.5, 0.1), error = 0.012 (b) (F (0), C) = (0.5, 0.9), error = 0.029 (c) (F (0), C) = (0.5, 0.1), error = 0.034 (d) (F (0), C) = (0.5, 0.9) error = 0.057

Fig. 9. Trajectories of E(g), R(g) and F (g) (2nminima, n = 100)
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(a) (F (0), C = (0.5, 0.1)), error = 0.015 (b) (F (0), C = (0.1, 0.1)), error = 0.015 (c) (F (0), C = (0.5, 0.1)), error = 0.028 (d) (F (0), C = (0.1, 0.1)), error = 0.028

Fig. 10. Trajectories of E(g), R(g) and F (g) (Rastrigin, n = 100)

378




