
 
 

 

  

Abstract—Cultural Algorithms have been previously 
employed to model the emergence of cooperative behaviors of 
agents in different multi-agent systems. In this paper, a 
simplified and adaptive version will be used as the basis to 
generate cooperative behaviors within a team of soccer players 
using different team formations and effective plays. This system 
can be used as a tutorial for the application of Cultural 
Algorithms for the coordination of groups of agents in complex 
multi-agent dynamic environments. Simplified Cultural 
Algorithms were successful in effectively learning different 
types of plays, including active and passive protagonists, within 
a small number of generations. Successful learning includes the 
coordination of adjustments of the team members to develop the 
most suitable team formations for every scenario. Experimental 
results enable us to conclude that Cultural Algorithms, when 
configured properly, in order to produce significant results, can 
perform very competitively when compared to other types of 
learning strategies and case-based game plays.      

I. INTRODUCTION 
VER the years, soccer simulation has turned into an 
attractive domain for applying different approaches of 
learning techniques in artificial intelligence (AI) and 

data mining [1]–[4]. This game can foster research in various 
fields using different technologies and techniques that can be 
examined and integrated to make an interesting and 
competitive play. When using such techniques, the goal is to 
develop optimal, or at least near-optimal, team and player 
behaviors and policies for this application. 

Robocup [6]-[10] is the leading competition in this field as 
an international robotics competition to promote robotics and 
AI research. This international competition has many types of 
leagues; Humanoid, Standard size, Middle size, small size, 
and simulation league (2D, 3D). In this paper we are taking 
the 2D simulation track as a first step toward the 2D 
simulation league in Robocup. 

Studying coordination and collaboration among the agents 
in a multi-agent system (MAS) is one of the most challenging, 
research directions in distributed AI. Different researchers 
have thoroughly studied different decision-making models 
[5] and new algorithms for new tactics (e.g. ball pass, 
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handling, shoot and interception) [6]–[10] when competing in 
simulated soccer as an important application for evolving 
group behaviors between agents and coordinating their 
movement through the problem-solving process.  

Previous works on Cultural Algorithms have examined the 
use of this type of evolutionary computation models to evolve 
cooperation within human cultures [11], [12]. Such work 
investigated the extent to which conceptions of cooperation 
and resource sharing can emerge between groups of 
individuals. In this paper, we investigate the use of a 
simplified and adaptive Cultural Algorithm to develop 
defensive and offensive plays and cooperative strategies 
among a team of autonomous robot soccer players. The 
evolution of such tactics are meant to adaptively enhance the 
team’s play, ball control, and shot production instead of 
hard-coding and iteratively fine-tuning parameters based on 
the presented scenarios. An open source simulation system 
[1] is used to evaluate the proposed plans and effective skills 
for the team of robot players.  

The rest of the paper is organized as follows: we begin by 
briefly describing the Cultural Algorithm approach in section 
II. Then in section III we discuss the current approaches from 
the literature that were employed to tackle similar type of 
landscapes. In section IV we give an overview of the 
simulation system in which we tested our team of robot 
players, a system that has the required simplicity for serving 
as a tutorial for concepts in agent technology and Cultural 
Algorithms. In section V we introduce the simplified adaptive 
version of Cultural Algorithms that is modified for this 
purpose. Section VI describes the experiments conducted 
within this framework. Section VII provides our conclusions.  

II. CULTURAL ALGORITHMS CONFIGURATION 

A. Cultural Algorithms 
Cultural Algorithm is a class of computational models 

derived from the cultural evolution process in nature [13], 
[14]. The pseudo-code for Cultural Algorithms is given in 
Fig. 1. B(t) and P(t) are the belief space and population space 
at time t. The algorithm starts by initializing the population 
and belief spaces and then enters the evolution loop, for a 
certain number of times, until the termination condition is 
satisfied. 

At the end of a loop, each individual in P(t) is evaluated 
using Fobj(). After individuals' fitness values are scored, an 
acceptance function Facc() is used to determine which of these 
individuals should update B(t). The experiences of these 
accepted individuals will then be added to the belief space 
contents via Fupdate(). The newly generated and formed 
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knowledge in B(t) will influence the selection of the 
individuals for the next generation via Finf(). A dual 
inheritance framework for the population and belief spaces is 
formed via the communication topologies, Facc(),Finf(), and 
Fobj(). 
 

Begin 
t = 0; 
initialize B(t), P(t) 
while(!termination condition) 

evaluate P(t)   { Fobj()} 
update(B(t), Facc(Pt)) 
evolve(P(t), influence(B(t))) 
t = t + 1; 
select P(t) from P(t-1) 

   end 
End 

Fig. 1. Basic Pseudo-code for Cultural Algorithm 
   

B. Knowledge Sources 
Five basic knowledge sources have been identified in 

Cultural Algorithms. These knowledge sources include 
Normative, Situational, Topographic, Historic, and Domain 
knowledge sources.  

Normative knowledge represents a set of promising 
parameter ranges. These variable ranges represent basics for 
individual behaviors and are used to guide individual 
adjustments [16]. This helps individuals progressing to good 
ranges of behavior. 

Situational knowledge provides a set of representative 
cases of exemplar individuals. This knowledge is used for 
interpreting individuals’ experiences. This type of knowledge 
helps individuals in imitating exemplars in the population. 

Topographic knowledge makes use of region-based 
functional landscape patterns [17]. Based on spatial 
characteristics, topographic knowledge divides the whole 
functional landscape into cells. Each cell in the landscape 
keeps track of the best individual in this region, in a manner 
that emulates cell-best. 

Historic knowledge observes all the events in the game and 
archives important events and scenarios. Among these events 
it records any change that occurs in the functional landscape 
that can be utilized as a case that can be used to reason about 
future moves.         

Domain knowledge utilizes information from the problem 
domain to direct future search. For example, in a functional 
landscape represented in a soccer pitch, knowledge about the 
different types of regions in the pitch, goal region, where to 
go when the team possesses the ball and where to move when 
the team loses it should be useful in reasoning about them 
during the game in this dynamic environment. 

These five knowledge sources were added at different 
times and are used to add different problem-solving 
capabilities to the Cultural framework. This set of knowledge 
sources is considered complete [16], [17] in the sense that any 
problem can be expressed as a subset of this set. When these 

knowledge sources are woven together, the interaction results 
in interesting collaboration behaviors in the soccer game. 

III. PREVIOUS WORK 
Many previous works have assessed the use of 

evolutionary algorithms (EAs) to simulate the evolution of 
cooperation in human cultures [11], [12], [18]. The goal of 
this research has been to identify the limitations in 
information sharing and cooperation between agents in a 
multi-agent system. 

Other researchers have investigated the use of EAs in 
dynamic environments, similar to those presented in the 
domain of RoboCup [19], [20]. This is a competition that is 
held every year and is considered as multidisciplinary 
research area that can be carried in a variety of 
implementations. These implementations support leagues 
composed of agents with varying capabilities [21], [22].  

In [23] Mota et al. evolutionary algorithm used to 
manipulate location parameters and players’ regions in the 
pitch. There, the authors used a genetic algorithm (GA) where 
the chromosome contained all the information for the agent’s 
team. This technique makes tactical information available to 
all team members. The GA was always successful in finding a 
good solution. However, the algorithm needs many 
generations before its fitness ranking increases to a 
satisfactory level, and hence improving the team 
performance. 

Hannebauer [8] proposed a methodology that makes use of 
a plan definition language to extract the representation of 
pertinent behaviors. The methodology helped to promote the 
reuse of such behaviors in future scenarios. The authors 
analyzed the behaviors which started from set-pieces and led 
to the scoring of goals while their team kept possession of the 
ball. The conclusions helped the authors to infer expressive 
rules to influence the process of generating rules from 
scratch. 

De Raadt in [24] used a standard genetic algorithm to learn 
team strategies and set plays – set events that are extracted as 
a consequence for a specific situation. The evolutionary 
algorithm was used to optimize the behavior of every agent in 
the game. The extracted rules (using the proposed approach) 
were able to generate successful strategies as compared to the 
ones used by base team. Other techniques were used for such 
purpose to effectively learn set plays [15]. The authors in [25] 
used interaction nets to learn team strategies and find an 
optimal role assignment with  a behavior that is similar to 
agent cooperation in RoboCup that arises between robots in 
the play field. 

IV. SOCCER SIMULATION TESTBED 

A. Prototyping Environment Motivation 
In this section, we provide an overview of the simple 

soccer simulator and its main characteristics that are common 
to all prototypes and contestant teams across the various 
leagues. The simple soccer simulator was not the first of its 
type to be used for forming soccer teams and testing 
theoretical research in this field. First prototype approaches 
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were attempted using the RoboCup simulator. The RoboCup 
soccer simulator is a rich environment for testing and 
developing soccer teams. On the other hand, its richness is 
what imposes extra constraints that made it less desirable for 
our research. As an example of the richness of the RoboCup 
simulator and its imposed constraints is that the simulated 
robot players are incapable of recognizing their teammates on 
the field. This feature is considered a constraint in that it 
forces the robot players to deal with perception. For the scope 
of this research, instead of spending much time on handling 
perception and object recognition the focus is on testing 
theories and tactics. Our utilized simulator could be used as a 
first stage for a RoboCup simulator implementation. 
Moreover, dealing with perception for theories at this stage 
will cause noise in the test data. This makes it harder to isolate 
the tested behaviors in a system that was meant as a brief 
tutorial for an application of CAs in dynamic environments.      

B. Overview of the simulator 
In a similar fashion to indoor soccer, the playing area in the 

simulator is a rectangular field enclosed by walls, as can be 
seen in Fig. 2. At each end of the field there is a goal for each 
of the two teams. The game consists of two opposing teams 
each with five players, one goalie and four field players. The 
game starts with a kick-off and continues until a goal is scored 
by either team, after which the ball is then replaced at the 
center of the field.. The game then resumes with another 
kick-off. A technical description of the implementation of the 
simulator is not relevant to this research and hence will not be 
provided here. More information can be found in [1]. 

 
Fig. 2. Simple Soccer playing field 

C. Simple Soccer: Teams   
The team implemented in the simple soccer simulator is 

important to this research as it constitutes the base for the 
tested teams and implemented behaviors. The characteristics 
described below are basic ones and are possessed by all teams 
in the game. Any team consists of five players, one goalie and 
four field players, two of which are attackers and the other 
two are defenders. Steering behaviors and finite state 
machines used to implement basic heuristics in the game. 
Steering behaviors that are provided to players include: 

- Seek: The player moves towards a target location 
without adjusting the speed of the player. 

- Separation: A player is steered away from other players. 

- Arrive: similar to seek but the player slows down as it 
approaches the target. 

- Pursuit: the player treats the destination as a moving 
object (another moving player) and follows its 
direction. 

- Interpose: finds out the midpoint between two objects 
and steers the player to that location. 

A set of self-explanatory finite state machine (FSM) is 
utilized by field players as shown in Fig. 3. 
GlobalPlayerState is responsible for message routing. 
Messages are connected to the available states; as can be 
inferred from their names. These include Msg_GoHome, 
Msg_ReceiveBall, Msg_PassToMe, Msg_Wait, 
Msg_SupportAttacker. The message determines the player’s 
next state during the game play. 
 

 
Fig. 3. FSM for any team in the simple soccer simulator [1] 

        
The ReceiveBall state directs players to either arrive at the 

ball’s target or to pursuit the ball. The decision is determined 
based on some factors, or might happen randomly. Another 
factor that affects this state is the presence of an opponent 
player within a threatening radius. KickBall is a state that will 
be entered when the player attempts to shoot at the goal or 
pass to another player. ReturnToHomeRegion causes all 
players to return to their predefined home regions. For each 
team there is a goalie, left attacker and right attacker, left 
defender and right defender. More information is provided in 
[1].   

V. EVOLVING TACTICS USING CULTURAL ALGORITHMS  

A. Enhancing the offense 
We will now discuss the framework that is used to train one 

of the teams in the game based on the overview on CA as 
presented in previous sections. The fitness is the number of 
goals scored by the team. Any population-based evolutionary 
algorithm can be used for the population space. Examples are 
GA, evolutionary programming (EP) and particle swarm 
optimization (PSO) [16], [17]. We selected the classic EP 
configuration of the CA for the population model. The 
pseudo-code of the overall algorithm is given in Fig. 4. For 
each individual in the population, there are actions that can be 
taken and regions that it can occupy. Each player will have a 
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state (one from those previewed in Fig. 3), and a region. For 
the entire team, an individual might be represented as: 

[P1R|P1S|P2R|P2S|P3R|P3S|P4R|P4S] 
As can be seen in Fig. 4, the default regions and states are 

predefined and assigned to all players in both teams. For the 
red team, players will be assigned to regions 16, 3, 5, 9, 11, 
and for the blue team players are situated in regions 1, 12, 14, 
6, 4. States for all players will be initialized to prepare for 
kick-off. The goal is to train the team to choose the best 
regions and best states depending on the scenario whether 
offending or defending.   

The belief space is simplified and has only generalizations 
of the behaviors (regions and states) associated with plans 
that exhibit the best performance. Such beliefs normally 
circumscribe the behaviors that an individual can select from, 
and are represented in terms of intervals. The mutation step is 
based on the resultant limits. These values for intervals are the 
base for affecting the mutation operator. 

The simulation run continues for 150 generations where 
the algorithm checks the status of some indicators every 15 
generations (epoch). If the average score of an epoch (avg) 
superseded the previous epoch (pre) and the ratio of scores 
for red to blue is less than one, then we will record the best 
regions when the goal was scored by the red team. Moreover, 
the states that players entered while moving around till 
reaching the goal regions clearly affect the status of the team. 
These recorded regions and states are used for future 
generations in developing a good plan for starting with when 
playing online (without having the learning feature turned 
on). The best behaviors are extracted from the produced log 
files from the game after 150 generations as described above. 

Fig. 5 shows how the soccer robot players change their 
positions effectively while approaching the goal of their 
opponent. This should also enhance their supporting positions 
to the player possessing the ball. 

B. Enhancing the defense 
Defensive plans help the team reduce the number of scored 

goals. Defense is more important than offense. Reducing the 
number of scored goals by the opponent will enhance the rank 
of the team even with basic offensive plans. One of the best 
techniques a team should be trained on is to identify the best 
time to place a player between an opponent possessing the 
ball and his supporting player. This way, the player is 
enforced to either shoot the ball or continue on his own which 
decreases the number of scored goals.  

 

    
Fig. 4. Pseudo-code for the adaptive Simplified Cultural Algorithm 

framework 

 
Fig. 5. Enhancing positions of players by chooses more appropriate regions 

to support the attacker and approach the goal 

  

Begin 
        t = 0; 
        initialize Avg, pre, ratio, best 

 initialize plan {Red: 16,3,5,9,11; Blue: 
1,12,14,6,4} 

        initialize B(t) 
        initialize P(t) of N candidate solutions 
        evaluate P(t) 
        while(Gen ≤ 150) 
              Copy parents to create N children 
              Mutate each child 
              evaluate P(t)   { Fobj()} 
              select the best N individuals 
              update(B(t), Facc(Pt)) 
              discard the poorest N individuals 
              if(Gen % 15 == 0) 

                  

15

1

15 15

1 1

( ) ( )

i
i

i i
i i

avg score

ratio score red score blue

=

= =

=

=

∑

∑ ∑
 

                   if(Avg>pre) and (ratio<1.0)  
                       Record best (score) 
                       Plan = {Red: best} 
                       adjust(B(t), accept(best)) 
                       update(B(t), Facc(best)) 
                   end     
              end 
              t = t + 1 
         end 
   End
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This simple, yet very effective, plan is illustrated in Fig. 6. 
The crucial aspect is to train the players to anticipate when to 
interpose themselves between the opponent who has the ball 
and his supporter waiting to receive the pass. When the 
opponent with the ball reaches beyond a certain point, it is 
better to start interposing in order to reduce the load on the 
game simulator, and switching states. 

 
Fig. 6. Enhancing defense: interposing the opposing player with the ball and 

his supporting player 

Defense is one of the two team states. When the team enters 
this state, every player should learn in which region to place 
itself and how to interpose the opponent players.  

VI. EXPERIMENTAL RESULTS AND ANALYSIS 
In all of the experiments described in this section, the red 

team represented our modified team. Our results come from 
plays made against several other representative teams, 
including teams that play offensively and teams that play 
defensively. Moreover, our team played against the default 
team, and the GA team. In all of the runs, we will show the 
results from training the team on the presumed skills and 
plans. Each training session is 150 generations for which we 
conducted 10 runs. Training sessions were usually composed 
of 2 stages. The results of the first stage (with a focus on 
enhancing the offense) are used as a starting point for the 
second stage. With a two-stage learning we initialize all 
simulation variables and time in the second stage and see how 
the learning curve goes with respect to the first stage and 
using its resultant tactic as a starting point. Finally, we will 
present the results of playing our team against all other teams 
in 35 runs, where each run is 10 minutes long. The conducted 
simulations with their results are discussed next. 

Experiment 1. Proposed CA-team against the default team   

   In this experiment, the CA-team played against the default 
team with basic skills as previously described. It was evident 
that the enhancements added using a strong defense, 
EP-based offense achieved superior results compared to those 

obtained using the default team. Fig. 7 shows the results out 
of 10 runs, for each of 150 generations in the first stage, 
training the team to be able to adaptively pick the best region 
while playing with a proper state. The figure shows the best, 
mean, and worst curves among the 10 runs for the proposed 
CA team and the default team. The difference in terms of 
score is evident. The second stage of training, Fig. 8 shows 
that although scoring of red team is lower, yet it was 
successful in selecting the most appropriate time to cut the 
opponent's passes. 

   
Fig. 7. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the default team (1st learning stage) 
 

 
Fig. 8. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the default team (2nd learning stage) 

Experiment 2. Proposed CA-team against the team with a 
strong offense 
 In this experiment, the red team played against a team that 
is trained to enhance only its offense using regular EP. As 
results show in Fig. 9, first stage training represented a very 
strong offense using CA compared to basic EP. In Fig. 10, the 
performance of the red team is enhanced with a stronger 
defense (needs more learning time than offense). It is worth 
noting that the performance of the EP-based team that 
enhances the offense using only best regions is better than 
that of the default team. This is clear from the resultant score 
of games between our algorithm from one side and the 
EP-based team from the other side. 
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Fig. 9. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the EP team (1st learning stage) 
 
 

 
Fig. 10. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the EP team (2nd learning stage) 
 
Experiment 3. Proposed CA-team against the team with a 
strong defense 

The red team was made to play against another team with a 
stronger defense. This opposing team always places a player 
between our player who possesses the ball and its supporting 
player as soon as our team takes control. This is supposed to 
be more aggressive in stopping any pass that can make a 
potential plan for scoring a goal. Hence, this made it harder to 
select the proper plan and timing to avoid such tactic. As soon 
as the red team was trained to play against such stronger 
defense team it was able to find better plans and states. The 
collective behaviors of all players in terms of proper states 
and better regions were able to evolve successful tactics that 
led to winning. Fig. 11 shows how our algorithm was able to 
produce better scores. Stronger defense team (opposing team) 
was close and came between the best and average among our 
learning curves during the first learning stage.  

The overall performance of the algorithm became better 
during the second learning stage. There is an apparent 
difference between the best scenarios of both techniques as 
seen in Fig. 12. 

Experiment 4. Proposed CA-team against the GA-team 

 
Fig. 11. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the strong defense team (1st learning stage) 
 
 

 
Fig. 12. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the strong defense team (2nd learning stage) 
 

In this experiment the CA-team played against a GA model 
that used tournament selection. The belief space in CAs helps 
utilizing more function evaluations in searching for better 
plans. Fig. 13 shows that the results obtained from stage 1 
training make it clear that the performance of CA-team is 
better than that of the GA team. Although the score of the 
CA-team in the second stage is not higher than that of the first 
stage but the GA team was not able to score as much goals as 
in the first stage. This is shown in Fig. 14. 

 
Fig. 13. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the GA- team (1st learning stage) 
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The results of the 35 runs for experiments 1–4 are shown in 
Fig. 15. In this figure, a peak means that there is positive 
difference in the score between the two teams to our favor. 
While the trough of a wave indicates that there is a negative 
difference and hence it means that we lost that game. Small 
amplitudes mean that the difference, if it exists, is small. 

 
Fig. 14. The average, maximum and minimum number of goals that were 
recorded in 10 runs, each of 150 generations long for a game between 
CA-team and the GA- team (2nd learning stage) 

 

    
Fig. 15. Difference in scoring between the different pairs of experiments 
 
 
A summary for some important statistics for all the 
experiments is given in Table 1. Table 2 summarizes all 
statistics for all types of experiments at generation 25, 50, 75, 
100, 125 and 150. 
 
 

TABLE 1 
PERFORMANCE OF THE ALGORITHM AGAINST ALL OTHER TEAMS  

Game 
description 

(35X10mins) 
Wins Losses Draw Avg. 

goals 

Avg. 
opponent’s 

goals 

(Experiment 1) 
CA Vs. Default 35 0 0 6.571428 0.057142857 

(Experiment 2) 
CA Vs. EP 35 0 0 7.314285 0.428571429 

(Experiment 3 
CA Vs. Defense 19 5 11 0.885714 0.428571429 

(Experiment 4) 
CA Vs. GA 23 4 8 1.002157 0.389236801 

 

VII. CONCLUSION 
The Adaptive Cultural Algorithm framework with an 
embedded EP component as a population space was able to 
successfully learn different types of plays. The system 
utilized the belief space to record important events to be able 
to fine tune the ranges of individuals' behaviors. The system 
was able to learn the best regions and states to be assumed by 
the team at offensive and defensive situations. These 
situations were demonstrated through the use of opponents 
with different skill sets. Other useful environmental 
parameters and attributes related to the play domain could be 
useful in finding stronger tactics for obtaining higher scores. 
This will be investigated in future work. 
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Training Set Generations 
1st Stage 2nd Stage 

Min Avg Max Opp 
Max Min Avg Max Opp 

Max 

CA-team Vs. Default 

25 1 12.56 31 1 1 7.64 19 1 
50 17 37.46667 60 4 12 24.32 46 2 
75 39 62.30667 84 6 23 41.13333 68 4 
100 62 84.73333 110 9 39 56.70667 95 5 
125 81 109.96 131 11 50 75.50667 123 5 
150 104 130.12 156 12 61 91.66667 146 6 

[(Default)Opp. Max / CA-team] * 100 7.69 % 4.11 % 

CA-team Vs. EP-team 

25 1 6.493333 17 1 1 8.88 25 0 
50 10 19.09333 30 2 14 26.46667 51 1 
75 21 31.54667 42 2 19 38.08 70 1 
100 32 43 55 2 31 51.30667 94 2 
125 45 54.37333 68 3 37 64.45333 114 2 
150 56 68.09333 82 3 46 79.2 128 3 

[(EP-team)Opp. Max / CA-team] * 100 3.66 % 2.34 % 

CA-team Vs. D-team 

25 0 1.546667 4 8 0 1.44 4 2 
50 1 5.426667 10 11 1 3.733333 5 5 
75 7 9.866667 12 13 3 5.053333 10 6 
100 10 13.28 20 16 5 8.306667 13 8 
125 11 15.57333 21 18 8 12.29333 17 8 
150 12 17.82667 24 21 9 13.38667 18 10 

[(D-team)Opp. Max / CA-team] * 100 87.5 % 55.56 % 

CA-team Vs. 
GA-team 

25 2 3 5 4 1 2 3 3 
50 3 5 7 5 2 4 5 3 
75 4 5 8 6 2 5 8 4 
100 6 9 11 8 7 10 13 7 
125 11 14 17 14 12 15 18 11 
150 13 16 21 15 14 17 20 13 

[(GA-team)Opp. Max / CA-team] * 100 71.42857 % 65 % 
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