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Abstract—Convergence and diversity are two crucial issues in
evolutionary multiobjective optimization. To enhance the diver-
sity property of Multiobjective Evolutionary Algorithm (MOEA),
a novel selection method is implemented on decomposition-based
MOEA (MOEA/D). The selection method incorporates the con-
cept of maximum diversity loss, which quantifies the diversity loss
of each individual in every generation. By monitoring tolerance of
the diversity loss, the diversity of the solutions in each generation
can be preserved. To further enhance the algorithm’s search
ability, a new hybrid recombination strategy is implemented by
taking the advantage of different recombination operators. In
terms of Inverted Generational Distance (IGD), the experiment
results shown that the proposed algorithm, namely DHRS-
MOEA/D, performed significantly better than many state-of-the-
art MOEAs in most of the CEC-09 and WFG test problems.

I. INTRODUCTION

There is a dramatic increase of studies in evolutionary mul-

tiobjective optimization (EMO) during the past two decades.

One of the main reasons of EMO’s popularity is because

of its potential application in numerous complex engineering

optimization problems. A multiobjective optimization problem

(MOP) is an optimization problem which involves more than

one objective and generally the objectives are conflicting to

each other. The set of objective solutions which provide the

best trade-off between different objectives is called Pareto

optimal set. The main purpose of a multiobjective evolutionary

algorithm (MOEA) is to find the Pareto optimal set of a given

MOP.

Diversity and convergence are two important issues in any

MOEA. Over the past two decades, a considerable number of

research studies have concentrated on these two issues as they

directly affect the optimization performance of any MOEA.

There is a consensus that balance between these two issues

plays a crucial role in an MOEA’s optimization performance.

Numerous researchers proposed different techniques to control

the balance between these two properties of an MOEA [1].

To preserve the diversity of a MOEA’s search process, the

concepts of Niching [2], Weight Vector [3], Crowding [4]–

[6] and others [7]–[10] have been proposed. Apart from

diversity preservation, hybridization of metaheuristics is an-

other popular technique used in the design of an MOEA.

There are various methods of the hybridization that have been

proposed in the literature. Among these methods, hybridization

of crossover operator has attracted much of the attention as

it takes advantage of different operators during the search

process [11].

The main purpose of this paper is to propose a novel MOEA

which incorporates a diversity preservation selection operator

and a hybrid recombination strategy. The algorithm is based

on the decomposition-based MOEA [12] which decomposes

an MOP into a set of single objective optimization problem.

To evaluate the performance of the algorithm, Walking Fish

Group (WFG) [13] and CEC-09 [14] test suite are used as

benchmark test problems. Comparative studies are performed

by comparing the proposed algorithm with other state-of-the-

art algorithms. Section I gives a brief introduction to the

field and the focus of the paper. Section II provides some

and definitions commonly used in EMO. In Section III, the

proposed algorithm design is illustrated. Section IV presents

the experiment results of the paper and conclusions are drawn

in Section V.

II. BACKGROUND

An MOP consists of more than one objective function

that needs to be optimized simultaneously. Mathematically, an

MOP can be expressed as

minimize
x

f(x) = [f1(x) f2(x) . . . fm(x)]T

subject to x ∈ Ω
(1)

where fi is the i-th objective function; m is the number of

objective functions; f(x) ∈ R
m is the objective vector; n is

the number of decision variables; x ∈ R
n is the decision

vector and Ω ⊂ R
n is the feasible decision space. Without

loss of generality, a minimization problem is considered here.

Generally, Ω can be described by

Ω = {x ∈ R
n|gj(x) ≤ 0 for j = 1, . . . , p;

hk(x) = 0, for k = 1, . . . , q} (2)

where gj is the j-th inequality constraints out of total p

inequality equations and hk is the k-th equality constraints

out of total q equality equations. Since (1) involves more than
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one objective function, they might be no single point in Ω
that minimizes all the objectives simultaneously. Therefore,

the concepts of Pareto dominance and Pareto optimality are

needed to define the solution set that provides the best trade-

off between different objective functions.

Let u,v ∈ R
m be two objective vectors. For the case of

minimization, u is said to dominate v (or u � v) if and only

if ui ≤ vi for all i = 1, 2, . . . ,m and there exists at least

one ui < vi. Let F ⊂ R
m be the feasible objective space

which is mapped by Ω. A decision vector x∗ ∈ Ω is said to

be a Pareto optimal solution if there is no vector in F that

dominates f(x∗). The objective vector of the Pareto optimal

solution is called Pareto optimal objective vector. All the

Pareto optimal solutions in Ω jointly form the Pareto optimal

set (POS) whereas all the Pareto optimal objective vectors

in F collectively form the Pareto Optimal Front (POF). A

vector whose elements are the lower (upper for maximization

problem) bounds of all objective is called the ideal vector. In

general, the ideal vector is in infeasible objective space. For

more detailed treatment on the concepts, please see [15]–[17].

III. ALGORITHM DESIGN

This section introduces the proposed algorithm Diversity

Preservation with Hybrid Recombination Strategy Multiob-

jective Evolutionary Algorithm (DHRS-MOEA/D). This algo-

rithm preserves the diversity of solutions by restricting the

maximum allowable diversity loss (MRDL) [18]. Moreover,

the algorithm enhances the search process by implementing

the Hybrid Recombination Strategy (HRS) which incorporates

different recombination operator in the algorithm.

A. Maximum Relative Diversity Loss

Relative diversity loss (RDL) is a measurement quantity that

quantifies the diversity loss of an individual solution over two

consecutive generations. To compute this quantity, ratio of the

parent and offspring solution to the convergence direction is

used to quantify the diversity loss.

f1 

f2 
A 

B D 

C 

E 

F 

Figure 1. Parent B and offspring C form a reference pair which is used to
compute the relative diversity loss of parent A to offspring D

To illustrate the way of computing RDL, a simple example

is given as shown in Fig. 1. Let’s assume that we have a

parent-offspring pair, B and C. For the ease of illustrations,

B is named reference parent whereas C is called reference

offspring. The RDL of parent A to offspring D (with respect

to B and C) is defined as

Γb→d

dconv,1
=

△ABC

△BCD
(3)

where △ABC and △BCD are the area of triangle ABC

and BCD respectively. This equation basically estimates the

ratio of spread between AB and CD. High value of the

resulting Γb→d

dconv,1
may indicate the shrink of solution spread

in the objective space. Notice this equation (3) only consider

two individuals in the population. If there are more than two

individuals in the population, we need to modify equation (3)

as follow

Γp→c = max
i=1,...,k

Γp→c

dconv,i
(4)

Γp→c is called maximum RDL as it takes the highest Γp→c

dconv,i

among the k parent-offspring pairs.

Convergence directions are needed to compute the MRDL.

In this paper, the convergence direction is defined as a direc-

tion from a given point in the feasible objective space to the

closest point on PF. Based on this definition, one offspring-

parent pair is used to estimate the convergence direction. The

condition for the offspring-parent pair requires that offspring to

dominate the parent solution and the parent solution must the

closest to the offspring solution in the objective space among

the parent population. The rationale behind the estimation is to

use the domination relationship from the parent and offspring

pool to predict the convergence direction.

Algorithm 1 shows the pseudocode of calculating the

MRDL. The reference parents objective vector set (P ) and

reference offsprings objective vector set (C) are used to store

the estimated convergence directions. At the start of each

generation, the algorithm will clear these two reference sets

(P and C). If these two reference sets are empty, the resulting

MRDL is zero. If there is more than one objective vector in

each reference set, the algorithm will calculate the RDL using

different parent-offspring pairs and return the maximum RDL.

During the environmental selection, the MRDL quantity is

computed for each individual solution in the population. If the

MRDL is higher than a predefined value, the individual is dis-

carded for the next generation. For more detailed descriptions

for the MRDL, please refer [18].

B. Hybrid Recombination Strategy

As the fitness landscape is not known a priori, it is difficult

to design a single crossover operator that works well during

different evolutionary stage. Even in the same generation, a

crossover operator may perform well (in term of generating

good offspring solutions) on a subset of parent solutions

whereas perform poor on other parent solutions. To circumvent

this problem, hybridization of crossover operators is a feasible
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Algorithm 1 Compute the Maximum Relative Diversity Loss

Require:

P : The reference parents objective vector set.

C: The reference offsprings objective vector set.

x : The parent objective vector.

y : The offspring objective vector.

Require: |P | = |C|
Ensure:

g: Maximum Relative Diversity Loss

1: if P = ∅ then

2: g = 0
3: return

4: else

5: s = |P |
6: max = 0
7: for i = 1 → s do

8: Calculate r = △xPiCi

△yPiCi

9: if r > max then

10: max = r

11: end if

12: end for

13: g = max

14: return

15: end if

approach as it relaxes the dependency on single crossover that

performs well over the generations.

We propose a simple hybrid recombination strategy (HRS)

that assigns crossover operator based on its performance.

During the initialization stage of the algorithm, each individual

is randomly assigned one of the recombination operators from

the recombination operator set with equal probability. The

recombination operator of each individual may change de-

pending on the performance of the individual’s operator. If the

recombination operator of a particular weight vector did not

produce an offspring solution that surpasses the environmental

selection for consecutive γ times, the recombination operator

will be substituted by the next recombination operator in

the set. In DHRS-MOEA/D, the recombination operator set

consists of DE mutation operator and SBX operator.

C. Main Algorithm

In DHRS-MOEA/D, Tchebycheff Approach [17] is used to

decompose an MOP into N scalar optimization sub-problems,

where N is the population size of the algorithm. For the sake

of completeness, Tchebycheff approach is briefly described.

In this approach, an MOP can be decomposed in the form

minimize
x

gte(x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗|}

subject to x ∈ Ω
(5)

where λi is the i-th scalar component of the weight vector λ,

z∗ = (z∗1 , z
∗
2 , . . . , z

∗
m)T is the reference point in the objective

space, i.e., z∗i = min{fi(x)|x ∈ Ω} for each i = 1, . . . ,m.

DHRS-MOEA/D incorporates the selection operator [18]

and HRS into the decomposition-based MOEA. In each gen-

eration, DHRS-MOEA/D maintains:

• a population consists of N individuals, each individual

has a weight vector (λi ∈ [0 1]m), a decision vector (xi),

a vector that records the objective vector (f i ∈ R
m), a

set of integer, B(i), which contains the T nearest weight

vector indices, a memory that record the current type of

recombination operator, and an integer ri that records

the number of inferior offspring that is generated by the

individual’s current recombination operator;

• a vector set, P, that stores the reference parents of current

generation;

• a vector set, C, that stores the reference offspring of

current generation;

• an approximated ideal vector, z ∈ R
m.

The pseudo-code of DHRS-MOEA/D is shown in Algo-

rithm 2. During initialization, each individual is randomly

assigned a recombination operator from an operator set. In

DHRS-MOEA/D, there are two different recombination opera-

tors, namely simulated binary crossover (SBX) and differential

evolution (DE) operators. After the initialization is finished, p

parents are selected from weight vector neighbourhood index

set, B(i) to reproduce an offspring solution. The recom-

bination operator for any individual in the population may

change and it depends on the performance of the operator.

The hybrid recombination strategy (HRS) is used to decide

the operator assignment of each individual. If an individual’s

operator did not reproduce an offspring solution that surpasses

environmental selection for consecutive β times, the algorithm

will the next recombination operator to the individual.

During the environmental selection, the algorithm first com-

pares the offspring solution (y) with parent solution (xk). If

any of the parent solution is dominated by the newly generated

offspring solution, the proposed algorithm will calculate the

Γp→c of replacing the parent solution with the offspring solu-

tion. This step is to check whether there is a similar offspring

solution that surpasses current environmental selection. If the

computed Γp→c is lower than preset threshold, γ, the offspring

solution will replace the parent solution. Otherwise, the parent

solution surpasses the environmental selection and the newly

generated solution is discarded. This characterizes one of the

major differences between DHRS-MOEA/D and MOEA/D.

In DHRS-MOEA/D, a non-dominated offspring solution is

not necessary to replace the parent solution. Although this

characteristic may raise some doubts about the algorithm’s

convergence at first sight, our empirical results showed that

the convergence of DHRS-MOEA/D is not worse than other

major MOEAs. Before the parent-offspring replacement hap-

pened, the offspring objective vector is stored in the reference

offspring set and the closest parent objective vector is stored

in the reference parent set. These two vectors later is used

to approximate the convergence direction which is one of the

most important element in the calculation of Γp→c.
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Algorithm 2 Diversity Preservation with Hybrid Recombina-

tion Strategy Multiobjective Evolutionary Algorithm (DHRS-

MOEA/D)

Input:

MOP (1)

A stopping criterion

N : Population size

T : The number of the weight vectors in the neighbourhood

of each weight vector

β: The parameter used in hybrid recombination strategy

γ: Maximum tolerable Γp→c

Output:

Approximated Pareto Front ( f1, . . . , fN )

Approximated Pareto Solutions (x1,. . . ,xN )

Step 1 ➢ Initialization:

Step 1.1 Generate a set of weight vector and assign

each individual a specific weight vector. Find

the T closest weight vectors (in terms of Eu-

clidean distance) for each individual. Set B(i) =
i1, . . . , iT , where λi1 , . . . , λiT are the T closest

weight vectors to λi.

Step 2.2 Generate an initial population, x1,x2, . . . ,xN ,

by uniformly random sampling the decision

space. Set f i = f(xi) and randomly assign

recombination operator for each individual.

Step 3.3 Initialize z by setting zk = min
j=1,...,N

f
j
k where

k = 1, . . . ,m.

Step 2 ➢ Update: Set P = C = ∅. For i = 1, . . . , N , do

Step 2.1 Reproduction: Select the appropriate recombi-

nation operator according to the HRS. If ri > β,

change the recombination operator, else keep the

current recombination operator. Randomly select

p indices from B(i) (where p is the number

of parents used in recombination operator) and

use the operator to produce a new solution, x′.

Apply polynomial mutation to the new solution

to produce y.

Step 2.2 Update of z: Evaluate y to get f(y). If fj(y) <
zi for any j ∈ {1, . . . ,m}, set zi = fj(y)

Step 2.3 Selection: Declare a set D = {1, . . . , N}
and permute the sequence in the set. For each

j = 1, . . . , N , set k = Dj , if gte(y|λk, z) <

gte(xk|λk, z), calculate Γp→c using Algorithm 1

and set ri = ri + 1. If Γp→c < γ, set ri = 0,

xk = y, fk = f(y), C = C ∪ {f(y)},

P = P ∪ {w}, where w is the nearest parent

objective vector to y, and then directly go back

Step 2.

Step 3 ➢ Stopping Criterion: If the stopping criterion

is satisfied, stop the process, output {x1, . . . ,xN} and

{f1, . . . , fN}. Otherwise, go to Step 2.

IV. EXPERIMENT RESULTS

This section presents the experiment results of DHRS-

MOEA/D performance in terms of Inverted Generational Dis-

tance (IGD). Two well-known MOEA test suites, namely WFG

and CEC-09, are used to evaluate the algorithm’s performance.

For the WFG test suite, the decision variable are set to be 24,

4 of them are position related parameters (k = 4) whereas

the rest are distance related parameters (l = 24). For the

CEC-09 test suite, recommended settings in [14] are used

in the experiment. The POFs of the CEC-09 test suite are

obtained from the CEC-09 competition website. The parameter

settings of the algorithm are shown in Table I.

Table I
PARAMETER SETTINGS FOR EXPERIMENTS

Parameters Values

Population size, N 100 or 300 (2 or 3 objectives)

Total number of generation 500

Total number of fitness evaluation 5× 104 or 1.5× 105

Neighbourhood size, T 20

Probability in mating selection, nr 0.9

Crossover control in DE, CR 1.0

Differential weight in DE, F 0.5

Distribution index in SBX, ηc 20

Distribution index in mutation, ηm 20

Mutation rates, pm 1/n (n: decision variables)

Maximum allowable Γp→c, γ 20

HBS parameter, β 2

The proposed algorithm, DHRS-MOEA/D, is compared

with other major MOEAs. In the comparative study, NSGA-II

[4], NSDE [12], MOEA/D-DE [12] and MOEA/D-SBX [19]

are compared with the proposed algorithm. To make a fair

comparison, the parameters of different operators are kept the

same across different algorithms. Each algorithm performs

30 independent runs for each test problem. The mean and

standard deviation of the obtained IGD are recorded down.

Student’s t-test and Wilcoxon rank sum test are also performed

to check whether the IGD values of the test problems with

different algorithms are from the same normal distributions, as

shown in Table II and Table III. 5% significant level is used

to decide whether the null hypothesis (that two algorithm’s

IGD values are independent random samples from the same

distribution) to be rejected or not. If the p value is less

than 5 × 10−2, we are at least 95% confident that the IGD

values of the two algorithms are from different probability

distributions. If a particular algorithm’s average IGD value

outperforms other algorithms in the same test problem, as

well as the algorithm’s IGD value’s probability distribution is

different with other algorithms, we conclude that the algorithm

outperforms other algorithms significantly.

From Table II and III, DHRS-MOEA/D ranks between first

and third in all the 19 test problems (12 first ranks, 6 second

ranks and 1 third rank). Out of 12 rank one test problems,

DHRS-MOEA/D performs significantly better than others on

7 of the benchmark test problems with 95% confidence level

(UF2-UF4, UF9-UF10, WFG1, WFG3, WFG6-WFG8). In

terms of IGD values, DHRS-MOEA/D generally performs

better than others in these two test suites. Fig. 2 shows the
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IGD over generation for UF2, UF3, UF4 and UF9 problems.

From the figure, it can be noticed that the proposed algorithm

converges relatively slow at the early generations (generation

number < 100). However, the proposed algorithm performs

better at the later generation. Fig. 3 and Fig. 4 show the

final solutions of UF3 from different algorithms over 30

independent runs. From the figure, we can observe that DHRS-

MOEA/D produces well spread solutions without significantly

deteriorating its convergence properties. For WFG1 problem,

we can see that none of the algorithms reaches the true

PF. This is because WFG1 problem is heavily biased where

slight deviations from the true POS result in huge different

in objective space. UF3 is a difficult MOP as it can cause

diversity loss of MOEAs at the early generations. If we refer

to Fig. 2(b), it can be noticed that other algorithms (except

the proposed DHRS-MOEA/D) converge very fast at the early

generations. After 200-th generation, most of the algorithms’

IGD values reach the steady state. However, the proposed

algorithm is still improving its IGD performance.

V. CONCLUSION

This paper has proposed a new MOEA which improves

the optimization performance of the MOEA/D. By controlling

the diversity loss of the population, diversity property of the

MOEA has been improved. Hybrid recombination strategy is

used to enhance the search ability by alternating the crossover

operator based on its optimization performance. From the sim-

ulation results, we can conclude that the proposed algorithm

improves its optimization performance at the cost of sacrifying

its convergence speed at the early generation. If the number

of fitness evaluations is very limited and convergence speed

is highly desired, the proposed algorithm may not be a good

candidate of optimizer. If the optimization performance is the

first priority, the proposed algorithm is competitive to other

state-of-the-art MOEAs.
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Figure 2. Plot of average IGD over generation in (a) UF2 (b) UF3 (c) UF4 and (d) UF9 benchmark problem.

(a) (b) (c) (d) (e)

Figure 3. Plots of the approximated Pareto front of UF3 with 30 independent runs by using (a) DHRS-MOEA/D (b) MOEA/D-DE (c) MOEA/D-SBX (d)
NSDE (e) NSGA-II

(a) (b) (c) (d) (e)

Figure 4. Plots of the approximated Pareto front of WFG1 with 30 independent runs by using (a) DHRS-MOEA/D (b) MOEA/D-DE (c) MOEA/D-SBX
(d) NSDE (e) NSGA-II
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Table II
STATISTICS OF THE IGD VALUES (CEC-09 TEST SUITE)

UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 UF10

MOEA/D Average 0.156953 0.064201 0.306635 0.056051 0.439415 0.437451 0.353306 0.147992 0.133993 0.293651

-SBX Std. Dev. 0.065312 0.031131 0.029931 0.003418 0.084132 0.150794 0.155061 0.035788 0.062404 0.130362

Rank 5 5 5 3 3 4 5 3 3 2

p(t-test) 4.31E-14 9.04E-09 1.78E-41 4.37E-22 3.95E-01 8.92E-06 6.24E-13 3.56E-07 1.62E-06 2.20E-02

H0 (t-test) Reject Reject Reject Reject Accept Reject Reject Reject Reject Reject

p (r. sum) 3.18E-11 1.04E-10 2.87E-11 2.87E-11 2.68E-01 9.85E-06 1.02E-09 3.39E-07 8.02E-08 8.64E-02

H0 (r. sum) Reject Reject Reject Reject Accept Reject Reject Reject Reject Accept

MOEA/D Average 0.047532 0.042727 0.151459 0.08661 0.766799 0.438578 0.101792 0.091078 0.106537 0.582637

-DE Std. Dev. 0.037332 0.031711 0.068806 0.010382 0.132768 0.220314 0.164595 0.012398 0.04522 0.071635

Rank 2 2 2 5 4 5 3 1 2 4

p (t-test) 1.73E-01 5.28E-03 7.06E-09 4.74E-29 5.75E-16 2.37E-04 1.09E-01 6.20E-06 1.59E-04 1.16E-25

H0 (t-test) Accept Reject Reject Reject Reject Reject Accept Reject Reject Reject

p (r. sum) 9.06E-01 9.33E-02 2.89E-07 2.87E-11 5.32E-10 1.37E-04 4.93E-02 1.13E-05 2.08E-06 7.03E-11

H0 (r. sum) Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject

NSGA-II Average 0.123068 0.048146 0.218053 0.053257 0.329483 0.230239 0.235744 0.219417 0.163559 0.323611

Std. Dev. 0.03187 0.012489 0.066681 0.001766 0.092297 0.06805 0.144534 0.009773 0.049139 0.070307

Rank 4 4 4 2 1 1 4 5 4 3

p (t-test) 1.82E-20 2.59E-13 1.31E-17 1.06E-27 3.31E-03 5.86E-01 1.47E-07 1.19E-41 3.91E-13 6.82E-06

H0 (t-test) Reject Reject Reject Reject Reject Accept Reject Reject Reject Reject

p (r. sum) 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.96E-03 5.25E-01 1.48E-09 2.87E-11 5.32E-10 1.20E-07

H0 (r. sum) Reject Reject Reject Reject Reject Accept Reject Reject Reject Reject

NSDE Average 0.060237 0.042996 0.15138 0.072304 0.848596 0.418027 0.038879 0.151971 0.193795 2.430789

Std. Dev. 0.016159 0.004701 0.027065 0.007766 0.171164 0.08179 0.042124 0.030039 0.064635 0.184853

Rank 3 3 3 4 5 3 1 4 5 5

p (t-test) 8.78E-09 5.86E-23 2.17E-20 8.85E-26 6.75E-17 1.16E-06 7.68E-01 8.21E-10 5.67E-14 6.61E-54

H0 (t-test) Reject Reject Reject Reject Reject Reject Accept Reject Reject Reject

p (r. sum) 4.78E-09 3.51E-11 7.76E-11 2.87E-11 1.04E-10 2.28E-07 2.60E-04 2.49E-10 3.64E-10 2.87E-11

H0 (r. sum) Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject

DHRS- Average 0.037849 0.02578 0.062131 0.046211 0.409578 0.246909 0.044692 0.107821 0.067304 0.228139

MOEA/D Std. Dev. 0.008519 0.00352 0.02174 0.00078 0.116556 0.151995 0.098667 0.013652 0.027963 0.078988

Rank 1 1 1 1 2 2 2 2 1 1

Table III
STATISTICS OF THE IGD VALUES (WFG TEST SUITE)

WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

MOEA/D Average 1.048133 0.187786 0.020332 0.016714 0.069122 0.082187 0.020597 0.127121 0.060725

-SBX Std. Dev. 0.045804 0.064425 0.005855 0.001559 0.000568 0.023867 0.011149 0.00975 0.038031

Rank 2 5 2 1 1 3 4 2 3

p (t-test) 5.65E-23 1.97E-08 1.24E-05 5.38E-11 6.20E-01 1.06E-07 1.36E-02 2.25E-11 2.55E-01

H0 (t-test) Reject Reject Reject Reject Accept Reject Reject Reject Accept

p (r. sum) 5.32E-10 4.29E-11 1.86E-10 3.21E-08 3.39E-02 2.71E-08 3.59E-01 7.04E-10 9.67E-03

H0 (r. sum) Reject Reject Reject Reject Reject Reject Accept Reject Reject

MOEA/D Average 1.163333 0.167235 0.020445 0.081227 0.069269 0.107269 0.019025 0.127221 0.059763

-DE Std. Dev. 0.013848 0.0883 0.001762 0.008085 0.000296 0.031888 0.001118 0.012852 0.028653

Rank 4 4 3 4 3 4 3 3 2

p (t-test) 5.74E-61 3.49E-05 8.30E-23 1.96E-44 1.52E-01 5.72E-12 6.38E-25 1.32E-08 2.39E-01

H0 (t-test) Reject Reject Reject Reject Accept Reject Reject Reject Accept

p (r. sum) 2.87E-11 3.34E-09 2.87E-11 2.87E-11 2.23E-01 1.62E-09 2.87E-11 7.39E-08 6.73E-04

H0 (r. sum) Reject Reject Reject Reject Accept Reject Reject Reject Reject

NSGA-II Average 1.078783 0.161065 0.021071 0.018874 0.070581 0.064023 0.016965 0.137202 0.08435

Std. Dev. 0.081178 0.027787 0.001555 0.001081 0.000457 0.006819 0.000974 0.006502 0.052919

Rank 3 3 4 2 4 2 2 4 4

p (t-test) 3.26E-16 4.49E-08 8.94E-28 5.95E-03 2.95E-22 7.97E-05 3.91E-12 4.41E-25 5.10E-03

H0 (t-test) Reject Reject Reject Reject Reject Reject Reject Reject Reject

p (r. sum) 8.12E-09 2.66E-02 2.87E-11 1.63E-02 2.87E-11 1.20E-07 7.76E-11 2.87E-11 5.84E-02

H0 (r. sum) Reject Reject Reject Reject Reject Reject Reject Reject Accept

NSDE Average 1.218112 0.046113 0.034366 0.092772 0.075478 0.107921 0.030578 0.141382 0.110565

Std. Dev. 0.005217 0.025469 0.001689 0.003727 0.001746 0.034865 0.00186 0.010109 0.037973

Rank 5 1 5 5 5 5 5 5 5

p (t-test) 9.05E-76 3.48E-02 3.67E-54 1.83E-66 2.55E-27 2.89E-11 1.63E-46 1.52E-21 9.65E-08

H0 (t-test) Reject Reject Reject Reject Reject Reject Reject Reject Reject

p (r. sum) 2.87E-11 2.19E-02 2.87E-11 2.87E-11 2.87E-11 1.26E-08 2.87E-11 3.18E-11 2.29E-08

H0 (r. sum) Reject Reject Reject Reject Reject Reject Reject Reject Reject

DHRS- Average 0.910717 0.075047 0.015212 0.019849 0.069128 0.045605 0.015382 0.110458 0.048994

MOEA/D Std. Dev. 0.010472 0.068955 0.000382 0.001522 0.00022 0.022731 0.000209 0.005046 0.040303

Rank 1 2 1 3 2 1 1 1 1
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