
Non-Uniform Mapping in Real-Coded
Genetic Algorithms

Dhebar Yashesh∗, Kalyanmoy Deb† and Sunith Bandaru‡
∗Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India,

Email: yddhebar@iitk.ac.in
†Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA

Email: kdeb@egr.msu.edu
‡Virtual Systems Research Centre, University of Skövde, Skövde, Sweden,

Email: sunith.bandaru@his.se

COIN Report Number 2014010

Abstract—Genetic algorithms have been used as an optimiza-
tion tool using evolutionary strategies. Genetic algorithms cover
three basic steps for population refinement selection, cross-over
and mutation. In normal Real-coded genetic algorithm(RGA), the
population of real variables generated after population refinement
operations, is used for the computation of the objective function.
In this paper we have shown the effect made by mapping the
refined population towards better solutions and thereby creating
more biased search. The mapping used is non-uniform in nature
and is the function of the position of the individual w.r.t. the best
solution obtained so far in the algorithm, and hence the name
Non-Uniform RGA or in short NRGA. Tests were performed on
standard benchmark problems. The results were promising and
should encourage further research in this dimension.

I. INTRODUCTION

Genetic Algoriths (GAs) have been one of the powerful
techniques for doing optimization via evolutionary compu-
tation. Genetic Algorithm is an evolutionary based strategy
where the population is initialized randomly and then this
population is modified by the use of certain operations to get
new better population. These operations include - selection,
crossover and mutation. Different schemes have been proposed
in literature for performing selection. In this paper we have
done selection via tournament selection operator where the
tournament is performed between certain number of randomly
selected individuals (2 in our case) and the better one is
chosen for crossover. The crossover was made using SBX
cross-over operator proposed by Deb. K [1] and then the
obtained population was passed on for performing mutation
which made minor alteration in the population by modifying
certain individuals (the amount of which is controlled by the
mutation probability 𝑝𝑚𝑢𝑡.)

The above discussion on Genetic Algorithms was con-
cerned with only the mentioned three operations. We in this
paper have introduced a non-uniform mapping operator for
making further modification in the population obtained after
mutation. This operator which aims at pushing the population
towards the better solution obtained so far and thereby making
the search more biased as compared to the usual Real Coded
Genetic Algorithms. Earlier this strategy was studied with

Binary Coded GAs [3]. Figure 1 shows the work flow of RGA
and NRGA:

Crossover

Selection

Mutation

Initialization of Population

Refined Population

(a) RGA

Crossover

Selection

Mutation

Initialization of Population

Refined Population

Non− Uniform Mapping

Mapped Population

(b) NRGA

Fig. 1: Workflow of RGA and NRGA

In the remaining part of the paper we have explained the
mapping strategy, the new parameter involved as a result of
non uniform mapping, and its effect on the performance of
the algorithm.

We performed the experiment on 5 bechmark problems:
Sphere, Elipsoidal, Ackley, Schwefel and Rosenbrock. The re-
sults of different mapping-techniques were compared. Finally
the runs for problems prescibed in the problem suit of CEC-14
Real-Parameter Numerical Optimization [2] were performed
and the tabulated results for it are indicated in the end.

II. PREVIOUS WORKS

The previous works using the non-uniform mapping ap-
proach for generating population are observed in Binary Coded
Genetic Algorithms. In case of Real Coded Algorithms, the

2237

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

research in this direction is very less. Some of the notable
contributions are as follows:

ARGOT(Adaptive Representation Genetic Optimizer
Technique) [5] aimed at adaptively mapping the binary
strings(variables) to the decoded real(variables). It used
several environmentally triggered operators for altering
intermediate mappings which were based on internal
measurements such as parameter convergence, parameter
variance and parameter positioning within the possible range
of parameter values. Another work was DPE (Dynamic
Parameter Encoding) [6] which was a smart search and
domain control technique. The algorithm had two levels. In
first level it was aimed to get in the vicinity of the optimal
solution as fast as possible by making alterations in the most
significant bits. After achieving it, the population entered
the second level of algorithm wherein the most significant
bits were dropped and new bits were introduced for getting
more precision. In case of delta-coding algorithm [7], the
best solution of the previous run was used as reference. The
population was reinitialized and a seperate substring coding
was used for each parameter as a representation of distance
Δ from the corresponding parameter of the best solution
mentioned earlier. Thus, a hypercube was formed around the
best solution of previous generation the size of which was
controlled by adjusting the number of bits used for encoding.

III. THE NON-UNIFORM MAPPING

We will explain the mathematical model of the non-uniform
mapping for 1D case and then extend it to the n-dimensional
space. From the statistical data, we have with us the best so far
solution obtained as 𝑥𝑏,𝑡(where 𝑏 denotes the best and 𝑡 is the
current iteration nunber). The individual is bounded between
values 𝑎 and 𝑏 (with 𝑎 as lower bound (𝑥𝐿) and 𝑏 as upper
bound (𝑥𝑈)). The location of the individual after performing
three basic operations(selection, cross-over and mutation) is 𝑥.

The mapping function used is:

𝑚(𝜁) = 𝑘𝜁𝜂, (1)

where 𝜁 = (𝑥− 𝑎)/(𝑏− 𝑎). Using this mapping, we map 𝑥 to
𝑥∗(which is nearer to the best ever solution 𝑥𝑏,𝑡) as shown in
the figure below.

e

x’x ba b,tx

non−uniform
mapping

c d
mapping
uniform

Fig. 2: The Non-Uniform Mapping

This pushing of individuals towards the best so far point via
the use of the mapping function of Eq. 1 is done by equating

the areas under the graph as:∫ (𝑥∗−𝑎)/(𝑏−𝑎)

0

𝑚(𝜁)𝑑𝜁 = (𝑥− 𝑎)/(𝑏− 𝑎), (2)

for 𝑥 ∈ (𝑎, 𝑥𝑏,𝑡). The value of 𝑘 used in Eq. 1 is determined
by setting 𝑥 and 𝑥∗ in above equation to 𝑥𝑏,𝑡 (as the point 𝑥𝑏,𝑡

must remain stationary). From this we obtain

𝑘 = (𝜂+1)
(

𝑏−𝑎
𝑥𝑏,𝑡−𝑎

)𝜂
and finally substituting this value of 𝑘

in Eq. 2, the mapped value 𝑥∗ is :

𝑥∗ = 𝑎+ [(𝑥− 𝑎)(𝑥𝑏,𝑡 − 𝑎)𝜂]
1

𝜂+1 , (3)

Similarly, we can get the expression for 𝑥∗ when 𝑥 ∈ (𝑥𝑏, 𝑏).

IV. VECTOR-WISE MAPPING IN N-DIMENSIONAL SPACE

Previous section dealt with the one-dimensional scenerio.
We now extend our discussion on how to handle the
n-dimensional case. The point 𝑥 used earlier will now be of the
vector form 𝑿 with its coordinates as 𝑥𝑖 (where 𝑖 = 1...𝑛). We
implemented 2 methods of mapping. First was the Variable-
wise mapping approach where the components of 𝑿 (i.e.
𝑥𝑖) were pushed towards the corresponding components of
𝑿𝒃,𝒕(i.e. 𝑥𝑏,𝑡𝑖) just like in 1D case, i.e.

𝑥𝑖
∗ = 𝑥𝑖𝐿 + [(𝑥𝑖 − 𝑥𝑖𝐿)(𝑥𝑏,𝑡𝑖 − 𝑥𝑖𝐿)𝜂]

1

𝜂+1

The second method implemented was Vector-wise Map-
ping, which is shown in Fig. 3 pictorially for 2D case:

2

b,tx

B

A

x

x’

x

x

1

Fig. 3: The Non-Uniform Vector-wise Mapping for 2D Case

The strategy adopted here was first to extend the vector
X−Xb,t in both the directions so that it intersects the hyper-
boundary enclosing the domain of X at points A and B (with
X ∈ (A,Xb,t)). The line segment between A and Xb,t is
then parameterized with parameter 𝑑. The value of 𝑑 for the
corresponding points of interest is tabulated in Table I.

The mapping is then performed using usual 1D mapping
equation (Eq. 3) The parameterized value of the mapped point
X∗ is 𝑑∗ and we arrive at it via following equation:

𝑑∗ = 𝑎+ [(−𝑎)(1− 𝑎)𝜂]
1

𝜂+1

X∗ = X+ 𝑑∗(Xb,t −X)
(4)

2238

TABLE I: Values of parameter 𝑑 (reducing n-Dimensional
mapping to a 1D mapping)

Point of Interest d Description
X 0 Current Point

X
b,t 1 Best so fart Point
A a negative value
B b positive value

V. HANDELING 𝜂

The amount of pushing done and the speed of convergence
depends on the value of non-uniform mapping parameter 𝜂.
Several strategies were adopted to study the effect caused by
𝜂 on the performance of the algorithm. It is clearly noticed
that higher the value of 𝜂, more will be the pushing done and
so our solutions will start accumulating nearer and nearer to
the best ever point (Xb,t). If the value of 𝜂 is set too large
right from the start, then the amount of exploration will be
reduced and there will be higher chances of getting premature
convergence.

Keeping this in mind, we made the gradual increase in
𝜂 with a constant rate (𝜂 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑟𝑎𝑡𝑒). To reduce
the chances of premature convergence, we performed the
following check:

initialize: count = 0
if generation%5 = 0 then

if ∥fbestprev - fbestever∥ < 𝜖 then
count += 1;
if count == 3 then

randomize the population;
count = 0;

end
end

end
Algorithm 1: Strategy 1 for reducing premature convergence

(where 𝑓𝑏𝑒𝑠𝑡𝑝𝑟𝑒𝑣 is the best evalualed value of function from
the population of previous generation and 𝑓𝑏𝑒𝑠𝑡𝑒𝑣𝑒𝑟 is the
best function value evaluated so far. The threshold value 𝜖
was set to 0.001)

We performed the experiments on five benchmark problems
listed below:

Sphere: 𝑓(x) =

𝑛
∑

𝑖=1

𝑥2

𝑖 , (5)

Ellipsoidal: 𝑓(x) =
𝑛
∑

𝑖=1

𝑖𝑥2

𝑖 , (6)

Ackley: 𝑓(x) = −20 exp

⎛

⎝−0.2

√

√

√

⎷

1

𝑛

𝑛
∑

𝑖=1

𝑥2

𝑖

⎞

⎠

−exp

(

1

𝑛

𝑛
∑

𝑖=1

cos(2𝜋𝑥𝑖)

)

+20+𝑒, (7)

Schwefel: 𝑓(x) =
𝑛
∑

𝑖=1

(

𝑖
∑

𝑗=1

𝑥𝑖

)2

, (8)

Rosenbrock: 𝑓(x) =

𝑛−1
∑

𝑖=1

[

100(𝑥𝑖+1 − 𝑥2

𝑖)
2 + (1− 𝑥2

𝑖)
]

.(9)

All problems were evaluated for 𝑛 = 20 variables (i.e.
20 dimensional space). Following parameter values were kept
fixed for all runs:

∙ Population size = 100,

∙ Lower Bound = -10, Upper Bound = 10,

∙ Selection type: Tournament Selection,

∙ Crossover: Simulated Binary Crossover(SBX) with
crossover probability = 0.9,

∙ Mutation: Bitwise mutation with mutation probability = 0.05

∙ SBX and Mutation paramters: 𝜂𝑐 = 2 , 𝜂𝑚 = 50

The algorithm was terminated on achieving the accuracy of
10−2 OR when 3000 iterations (generations) were done. The
𝜂 was updated linearly as below:

𝜂(𝑡) =
𝑡

𝑡𝑚𝑎𝑥
𝜂𝑚𝑎𝑥 (10)

where 𝑡𝑚𝑎𝑥 = 3000. 𝜂𝑚𝑎𝑥 governed the rate of increase
in 𝜂 with generations and the values used for 𝜂𝑚𝑎𝑥 were
: 0, 20, 50, 75, 100 and 500 (value 0 means usual RGA).
Total 50 runs were perfomed for each problem and for both
strategies of mapping, i.e. variable-wise and vector-wise. The
results obtained for variable wise mapping case are tabulated
as follows in tables Tab: II to Tab: VI. In case of successful
runs(S)(i.e. on achieving the desired accuracy) , the statistical
data for number of Function Evaluations(FE) is represented
while in case of failure(F) (i.e when the desired accuracy was
not obtained), the statistical data of final objective value is
shown.

TABLE II: Results of Variable-wise mapping scheme for the
Sphere function.

Method 𝜂𝑚𝑎𝑥 FE/f S or F min median max
RGA 0 FE S = 50 6701 8901 11801
NRGA 20 FE S = 50 3201 4001 5201
NRGA 50 FE S = 50 2801 3501 4301
NRGA 75 FE S = 50 2601 3401 4901
NRGA 100 FE S = 50 2,401 3401 4701
NRGA 500 FE S = 50 3501 5501 8801

TABLE III: Results of Variable-wise mapping scheme for the
Ellipsoidal function.

Method 𝜂𝑚𝑎𝑥 FE/f S or F min median max
RGA 0 f F= 50 0.1581 0.2883 0.3739
NRGA 20 FE S = 50 7701 8901 10001
NRGA 50 FE S = 50 6301 7401 8201
NRGA 75 FE S = 50 5401 6901 8201
NRGA 100 FE S = 50 5601 6701 8001
NRGA 500 FE S = 50 5901 9901 19901

From the results it is evident that the algorithm give
relatively good performance for 𝜂𝑚𝑎𝑥 = 75, i.e. when the
rate of increase in 𝜂 is 75/3000 = 0.025/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛. But
it is also true that 𝜂𝑚𝑎𝑥 = 75 alone does not produce the
best results. The power of the non-uniform mapping approach
is clearly visible by observing the plots in Fig. 4 - Fig. 8.
The plots are plotted for the best run in RGA V/s the best
run in NRGA with 𝜂𝑚𝑎𝑥 = 75. Clearly, NRGA showed the
fast rate of convergence. We also conducted the experiments

2239

TABLE IV: Results of Variable-wise mapping scheme for the
Ackley function.

Method 𝜂𝑚𝑎𝑥 FE/f S or F min median max
RGA 0 f F = 50 0.1533 0.2247 0.2603
NRGA 20 FE S = 50 10401 12201 14101
NRGA 50 FE S = 50 7801 9501 11101
NRGA 75 FE S = 50 7001 9001 10501
NRGA 100 FE S = 46 6901 8801 16001

f F = 4 1.4235 1.6462 1.6462
NRGA 500 FE S = 1 8401 8401 8401

f F = 49 1.155 2.5799 3.5742

TABLE V: Results of Variable-wise mapping scheme for the
Schwefel function.

Method 𝜂𝑚𝑎𝑥 FE/f S or F min median max
RGA 0 f F = 50 0.9945 1.643 3.0541
NRGA 20 FE S = 50 39501 52401 64601
NRGA 50 FE S = 50 33001 49301 66101
NRGA 75 FE S = 50 40601 50501 69401
NRGA 100 FE S = 50 32301 51901 68601
NRGA 500 FE S = 43 66401 174401 271501

f F = 7 0.0259 0.174 0.8787

with vector-wise mapping and it was observed that 𝜂𝑚𝑎𝑥 = 75
value gave better convergence than other values of 𝜂𝑚𝑎𝑥. Table
VII shows the comparison for vector-wise mappping case and
variable-wise mapping case with 𝜂𝑚𝑎𝑥 = 75. Same parameter
values were used for variable-wise and vector-wise mapping
case.

0 10 20 30 40 50 60 70
−3

−2

−1

0

1

2

Generation No.

F
un

c.
 V

al
ue

(lo
g

sc
al

e)

Sphere Function

NRGA
RGA

Fig. 4: Sphere Function

In case of sphere function (Fig. 4) it can be clearly
seen that both RGA and NRGA showed same trend initially
and infact it has to so, because for initial generations we
have lower value of 𝜂(which is increasing at the rate of
0.025/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) and thus the mapping for both RGA and
NRGA is approximately same. But later, rate of convergence
for NRGA increases, thereby showing the effect caused by the

TABLE VI: Results of Variable-wise mapping scheme for
Rosenbrock function.

Method 𝜂𝑚𝑎𝑥 FE/f S or F min median max
RGA 0 f F = 50 21.7009 23.634 90.3395
NRGA 20 FE S = 1 204101 204101 204101

f F = 49 0.0313 9.1326 14.8271
NRGA 50 f F = 50 0.0445 6.9445 12.6175
NRGA 75 f F = 50 0.147 5.8189 17.1752
NRGA 100 f F = 50 0.0668 5.3279 12.3613
NRGA 500 f F = 50 0.0107 8.3114 18.2916

non-uniform mapping.

0 500 1000 1500 2000 2500 3000
−4

−2

0

2

4

Generation No.

F
un

c.
 V

al
ue

(lo
g

sc
al

e)

Ellipsoidal Function

NRGA
RGA

Fig. 5: Ellipsoidal Function

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

2

Generation No.

F
un

c.
 V

al
ue

(lo
g

sc
al

e)

Ackley Function

NRGA
RGA

Fig. 6: Ackley Function

0 500 1000 1500 2000 2500 3000
−4

−2

0

2

4

Generation No.

F
un

c.
 V

al
ue

(lo
g

sc
al

e)

Schwefel Function

NRGA
RGA

Fig. 7: Schwefel Function

The solutions in case of ackley, elipsoidal and schwefel
improved monotonically (Fig. 5 - 7) for NRGA, while pop-
ulation was driven towards premature convergence for these
objective functions in case of RGA.

The rosenbrock function is the one where we encounter
flat zones (Fig.9) thereby making the algorithm prone to
premature convergence. It is clearly observed that the plot
for NRGA (Fig. 8) remained flat for considerable number of
iterations thereby showing that we got stuck at some point and
subsequent generations failed to generate better individuals.
Here is what seemed to have happened:

∙ Let us call the point which was considered as the best
one for several generations as 𝑥𝑠𝑡𝑘𝑏

∙ Now the amount of pushing done is dependent on the
value of 𝜂(which is 0.025 ∗ 𝑔𝑒𝑛)

2240

0 500 1000 1500 2000 2500 3000
−5

0

5

10

Generation No.

F
un

c.
 V

al
ue

(lo
g

sc
al

e)
Rosenbrock Function

NRGA
RGA

Fig. 8: Rosenbrock Function

∙ If the value of 𝜂 is high, then even after reinitialization,
the mapped population (Eq. 4) in next iteration would
gather around the Xstk

b and so the exploration is
reduced.

∙ Hence the population will get accumulated near to the
𝑥𝑠𝑡𝑘

𝑏 until we get an individual which is better than
𝑥𝑠𝑡𝑘

𝑏.

But on its subsequent journey, the plot changes its trend
of maintaining the flat nature and becomes monotonically
decreasing. This thing is realised as an account of reinitial-
ization of population made (thereby creating diversity and
hence a better individual) in case of premature convergence
as indicated in Algo. 1.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

10

−4

−2

0

2

4

6

8

10

12

x 10
5 100 ((y − x2)2) + (1 − x2)

x
y

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10−10
0

10

−4

−2

0

2

4

6

8

10

12

x 10
5

100 ((y − x2)2) + (1 − x2)

xy

(b)

Fig. 9: Rosenbrock Function

TABLE VII: Comparison between Vector-wise mapping and
Variable-wise mapping with 𝜂𝑚𝑎𝑥 = 75

Function Mapping FE/f S or F min median max
Sphere Variable FE S = 50 2601 3401 4901

Vector FE S = 50 2401 3501 4301
Elipsoidal Variable FE S = 50 5401 6901 8201

Vector FE S = 50 5901 6901 9001
Ackley Variable FE S = 50 7001 9001 10501

Vector FE S = 50 7301 8901 13901
Schwefel Variable FE S = 50 40601 50501 69401

Vector FE S = 50 34601 48301 64201
Rosenbrock Variable f F = 50 0.147 5.8189 17.1752

Vector FE S = 1 121201 121201 121201
f F = 49 0.0797 5.8716 13.6898

Table VII gives us an idea that vector-wise mapping
strategy has tendency to give better results as compared to
the variable-wise mapping.

VI. ANOTHER APPOROACH FOR REDUCING PREMATURE
CONVERGENCE

It is evident from the results that for the fuctions like rosen-
brock, our strategy didn’t performed so well. The algorithm

got stuck at one of these optima and thereby didn’t give good
results. Problems of similar nature were asked to solve as as
part of CEC-14 problem suit on Real-Parameter optimizaton
[2] and hence there was a need to make slight modification in
our previous strategy in order to reduce premature convergence
(Algo 1).

In the concluding portion of last section we addressed some
points focusing on the point Xstk

𝑏 where our algorithm got
stuck. The major catch for premature convergence was the
”larger value of 𝜂” which made the population rush towards
Xstk

b thereby reducing the exploration.

To tackle this issue, apart from reintializing population
we also updated 𝜂 back to 0 and increased it gradually.
Algorithm 2 gives the overview of the modification done.

initialize: count = 0, dec = 0
𝑑𝑒𝑐 is incremented by 1 with every generation and:
if generation%5 = 0 then

if ∥fbestprev - fbestever∥ < 𝜖 then
count += 1;
if count == 3 then

randomize the population;
count = 0;
dec = 1;

end
end

end
𝜂 = 𝑑𝑒𝑐 ∗ 0.025 //Updation in 𝜂

Algorithm 2: Strategy 2 for reducing premature convergence

The results of this approach were promising as compared
with the Strategy 1. It is to note that for lower dimen-
sions, Strategy 1 worked well while for higher dimensions
the Strategy 2 dominated. Experiment to compare these two
approaches was conducted for 3 problems - ackley, schwefel
and rosenbrock. The parameters modified were:

∙ Population size = 200

∙ Lower Bound = -100, Upper Bound = 100,

∙ Accuracy desired = 10−8

∙ Maximum no. of Function Evaluations = 200000

Total 51 runs were performed and the mapping used was
vector-wise mapping. Table VIII shows the resutls obtained.

VII. FINAL EXPERIMENTS AND RESULTS

As per the directives of CEC-14 competition on Real-
Parameter Numerical Optimization, Problem suit A[2], we
ran the algorithm on specified 30 objective functions. Runs
were performed for 10𝐷, 30𝐷, 50𝐷 and 100𝐷 case (where
𝐷 denotes dimension). The values of key NRGA parameters
taken are specified below:

∙ Population size = 10*D

∙ Lower Bound = -100, Upper Bound = 100,

∙ Selection type: Tournament Selection,

∙ Crossover: Simulated Binary Crossover(SBX) with
crossover probability = 0.9,

∙ Mutation: mutation probability = 0.05

2241

TABLE VIII: Comparion between Strategy 1 and Strategy 2 For reducing premature convergence

Func. Strategy Best Worst Median Mean Std. Dev.
Ackley 2 5.0349𝑒− 04 2.0000𝑒 + 01 1.9995𝑒 + 01 1.6072𝑒 + 01 8.0160𝑒 + 00

1 8.0000𝑒 + 01 9.9999𝑒 + 01 8.0005𝑒 + 01 8.3928𝑒 + 01 8.0160𝑒 + 00
Schwefel 2 1.6836𝑒− 03 2.0579𝑒− 02 7.5771𝑒− 03 8.1766𝑒− 03 3.5335𝑒− 03

1 8.4305𝑒− 05 1.5288𝑒− 03 3.7390𝑒− 04 4.1472𝑒− 04 2.4136𝑒− 04
Rosenbrock 2 1.2500𝑒 + 00 6.7028𝑒 + 01 1.2842𝑒 + 01 1.1975𝑒 + 01 9.1913𝑒 + 00

1 5.4141𝑒 + 01 3.4689𝑒 + 03 1.1020𝑒 + 03 1.2267𝑒 + 03 8.9078𝑒 + 02

∙ SBX and Mutation paramters: 𝜂𝑐 = 2 , 𝜂𝑚 = 50

The vector-wise mapping approach was used and the rate
of increase in 𝜂 was set to 0.025/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛. The issue of
premature convergence was handled using the Algo 2. The
accuracy level desired was 10−8. The code was terminated
when number of function evaluations crossed the value of
10000 ∗𝐷 or the desired accuracy was achieved.

Total 51 runs were performed for each problem and the
best, worst, mean and standard deviation were recorded. The
tabulated data of the results is mentioned below in tables Tab:X
- Tab:XIII:

The Algorithm Complexity was determined as per the
instruction given in the report [2]. The complexity of algorithm
for 10𝐷, 30𝐷 and 50𝐷 problem is shown in Tab:IX. The
computing system used for running the code was Ubuntu
Version 12.04, 32 bits with intel - i5 processor and 4GB RAM.
C-Language was used for coding the algorithm.

TABLE IX: Algorithm Complexity: 𝑇0, 𝑇1 and 𝑇2 are time
in seconds

Dimention 𝑇0 𝑇1 𝑇2 (𝑇2− 𝑇1)/𝑇0

𝐷 = 10 0.11 0.26 1.15 8.09
𝐷 = 30 0.11 1.42 3.61 19.91
𝐷 = 50 0.11 3.85 95 828.64

1

VIII. CONCLUSION AND FUTURE WORK

In this paper a mapping strategy was proposed for making
the exploration more biased towards the better solutions. Two
mapping approaches were used - Variable-wise and Vector-
wise. The mapping introduced a new parameter in our algo-
rithm (𝜂) which changed dynamically and its rate of change
had crucial impact on the performance of the algorithm. Satis-
factory results were obtained for contant rate of increase of 𝜂
which was 0.025/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛. The mapping approach proved
to be fruitful as it gave the fast convergence as compared to
normal RGA.

Yet, from the obtained results, the obsevation was made that
for the problems with heigher complexity such as rosenbrock
(which has flat terrains as indicated in Fig. 9), the approach
developed was not so effective. Hence strategies (Algo 1
and Algo 2) were introduced for controlling the diversity
of population and thereby avoiding premature convergence.
Observation was made that on moving from lower dimesions
to higher dimensions problems the performance of Algo 1
degraded while that of Algo 2 improved. Finally, the algorithm
was tested with the problem suit of CEC-14 Real Paramter
Numerical Optimization [2] and the results were tabulated. The
complexity of algorithm was also tested which showed that on

moving for higher dimensions, the algorithm speed became an
issue.

As it was observed that each method suggested in this paper
had its own strong sides and weak sides, the further research
is encouraged to develop hybrid strategies. This work can also
be used with niching techniques for tackling the problems of
multi-modal optimization.

REFERENCES

[1] Deb, Kalyanmoy, and Ram Bhushan Agrawal. ”Simulated binary
crossover for continuous search space.” Complex Systems 9 (1994): 1-
34.

[2] J. J. Liang, B-Y. Qu, P. N. Suganthan, ”Problem Definitions and Eval-
uation Criteria for the CEC 2014 Special Session and Competition on
Single Objective Real-Parameter Numerical Optimization”, Technical
Report 201311, Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Techno-
logical University, Singapore, December 2013.

[3] Deb, Kalyanmoy, Yashesh D. Dhebar, and N. V. R. Pavan. ”Non-
Uniform Mapping in Binary-Coded Genetic Algorithms.” Proceedings
of Seventh International Conference on Bio-Inspired Computing: The-
ories and Applications (BIC-TA 2012). Springer India, 2013.

[4] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: MIT Press, 1975.

[5] C. G. Shaefer. The argot strategy: Adaptive representation genetic
optimizer technique. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 50–58, 1987.

[6] N. N. Schraudolph and R. K. Belew. Dynamic parameter encoding for
genetic algorithms. Technical Report LAUR90-2795, Los Alamos: Los
Alamos National Laboratory, 1990.

[7] D. Whitley, K. Mathias, and P. Fitzhorn. Delta coding: An iterative
search strategy for genetic algorithms. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 77–84. San
Mateo, CA: Morgan Kaufmann, 1991.

2242

TABLE X: Results for 10D

Func. Best Worst Median Mean Std. Dev.
1 1.0770𝑒 + 03 1.2128𝑒 + 05 1.8323𝑒 + 04 2.7905𝑒 + 04 3.1272𝑒 + 04
2 4.7595𝑒− 05 5.3168𝑒 + 03 5.1965𝑒 + 02 9.1466𝑒 + 02 1.1026𝑒 + 03
3 3.1679𝑒− 01 6.2498𝑒 + 03 1.2087𝑒 + 03 1.5168𝑒 + 03 1.5166𝑒 + 03
4 2.4164𝑒− 03 3.4780𝑒 + 01 4.3356𝑒 + 00 1.5436𝑒 + 01 1.7052𝑒 + 01
5 2.0646𝑒− 04 2.0000𝑒 + 01 2.0000𝑒 + 01 1.9607𝑒 + 01 2.8004𝑒 + 00
6 1.5571𝑒− 01 5.4159𝑒 + 00 2.4599𝑒 + 00 2.4498𝑒 + 00 1.2721𝑒 + 00
7 4.6808𝑒− 02 4.9173𝑒− 01 1.9444𝑒− 01 2.0303𝑒− 01 1.0403𝑒− 01
8 1.9899𝑒 + 00 2.3879𝑒 + 01 4.9748𝑒 + 00 5.5847𝑒 + 00 3.7885𝑒 + 00
9 9.9498𝑒− 01 2.1889𝑒 + 01 7.9597𝑒 + 00 8.6937𝑒 + 00 3.9614𝑒 + 00

10 3.6648𝑒 + 00 3.6734𝑒 + 02 1.2868𝑒 + 02 1.1943𝑒 + 02 1.0325𝑒 + 02
11 1.8597𝑒 + 01 1.6346𝑒 + 03 5.6494𝑒 + 02 5.7595𝑒 + 02 3.0133𝑒 + 02
12 7.6195𝑒− 03 3.8644𝑒− 01 1.1127𝑒− 01 1.2416𝑒− 01 8.3969𝑒− 02
13 3.7911𝑒− 02 3.3836𝑒− 01 1.4853𝑒− 01 1.5769𝑒− 01 6.2114𝑒− 02
14 1.2744𝑒− 01 3.9109𝑒− 01 2.5765𝑒− 01 2.5370𝑒− 01 6.8082𝑒− 02
15 3.7187𝑒− 01 2.6298𝑒 + 00 9.2013𝑒− 01 1.0218𝑒 + 00 5.0308𝑒− 01
16 1.4868𝑒 + 00 3.9634𝑒 + 00 2.7252𝑒 + 00 2.7469𝑒 + 00 4.9249𝑒− 01
17 4.0376𝑒 + 02 6.4374𝑒 + 04 8.0552𝑒 + 03 1.6075𝑒 + 04 1.7718𝑒 + 04
18 5.5815𝑒 + 01 2.4290𝑒 + 04 7.1702𝑒 + 03 7.4198𝑒 + 03 5.1241𝑒 + 03
19 1.0352𝑒 + 00 4.5166𝑒 + 00 1.7157𝑒 + 00 2.0933𝑒 + 00 7.8083𝑒− 01
20 4.3321𝑒 + 00 7.0763𝑒 + 03 9.2784𝑒 + 02 1.7192𝑒 + 03 1.9259𝑒 + 03
21 1.4310𝑒 + 02 1.7164𝑒 + 04 3.0918𝑒 + 03 4.8234𝑒 + 03 4.2292𝑒 + 03
22 1.0507𝑒 + 00 1.6341𝑒 + 02 2.0799𝑒 + 01 3.7567𝑒 + 01 4.0177𝑒 + 01
23 3.2946𝑒 + 02 3.2946𝑒 + 02 3.2946𝑒 + 02 3.2946𝑒 + 02 9.4145𝑒− 06
24 1.1012𝑒 + 02 2.0487𝑒 + 02 1.2736𝑒 + 02 1.3076𝑒 + 02 1.5627𝑒 + 01
25 1.3128𝑒 + 02 2.0287𝑒 + 02 1.9488𝑒 + 02 1.8368𝑒 + 02 2.0744𝑒 + 01
26 1.0002𝑒 + 02 1.0029𝑒 + 02 1.0013𝑒 + 02 1.0014𝑒 + 02 6.2764𝑒− 02
27 2.4338𝑒 + 00 4.0633𝑒 + 02 3.4671𝑒 + 02 2.8078𝑒 + 02 1.5766𝑒 + 02
28 1.0188𝑒 + 02 7.9089𝑒 + 02 4.7514𝑒 + 02 4.7715𝑒 + 02 1.0963𝑒 + 02
29 2.5161𝑒 + 02 5.5437𝑒 + 02 4.1309𝑒 + 02 4.1329𝑒 + 02 7.2925𝑒 + 01
30 1.0715𝑒 + 03 2.3445𝑒 + 03 1.7814𝑒 + 03 1.7275𝑒 + 03 3.1530𝑒 + 02

TABLE XI: Results for 30D

Func. Best Worst Median Mean Std. Dev.
1 3.2954𝑒 + 05 3.1864𝑒 + 06 1.0665𝑒 + 06 1.3108𝑒 + 06 7.0642𝑒 + 05
2 2.4655𝑒 + 03 1.9976𝑒 + 04 8.5582𝑒 + 03 9.2995𝑒 + 03 3.9564𝑒 + 03
3 4.0904𝑒 + 02 1.5083𝑒 + 04 3.8262𝑒 + 03 4.9164𝑒 + 03 3.7777𝑒 + 03
4 1.1317𝑒− 01 1.4103𝑒 + 02 8.1351𝑒 + 01 9.3626𝑒 + 01 3.0286𝑒 + 01
5 2.0000𝑒 + 01 2.0001𝑒 + 01 2.0000𝑒 + 01 2.0000𝑒 + 01 1.5237𝑒− 04
6 1.3670𝑒 + 01 2.1999𝑒 + 01 1.7894𝑒 + 01 1.7893𝑒 + 01 2.1841𝑒 + 00
7 4.9700𝑒− 04 5.1221𝑒− 02 1.1675𝑒− 02 1.6496𝑒− 02 1.6139𝑒− 02
8 1.0993𝑒 + 01 5.8703𝑒 + 01 2.8109𝑒 + 01 3.0178𝑒 + 01 8.8008𝑒 + 00
9 2.5869𝑒 + 01 8.6561𝑒 + 01 4.2783𝑒 + 01 4.5690𝑒 + 01 1.3464𝑒 + 01

10 5.9321𝑒 + 02 2.8281𝑒 + 03 1.1198𝑒 + 03 1.2770𝑒 + 03 5.3541𝑒 + 02
11 2.0210𝑒 + 03 5.2852𝑒 + 03 3.3891𝑒 + 03 3.4225𝑒 + 03 6.4794𝑒 + 02
12 5.5958𝑒− 02 5.3133𝑒− 01 1.3844𝑒− 01 1.6184𝑒− 01 8.4330𝑒− 02
13 1.5443𝑒− 01 4.7254𝑒− 01 2.8412𝑒− 01 2.8167𝑒− 01 5.6491𝑒− 02
14 1.2965𝑒− 01 2.4866𝑒− 01 1.8792𝑒− 01 1.8665𝑒− 01 2.6632𝑒− 02
15 5.1145𝑒 + 00 2.9274𝑒 + 01 1.3563𝑒 + 01 1.4068𝑒 + 01 4.7245𝑒 + 00
16 9.7768𝑒 + 00 1.2944𝑒 + 01 1.1475𝑒 + 01 1.1542𝑒 + 01 6.5696𝑒− 01
17 5.3894𝑒 + 04 7.7806𝑒 + 05 3.4353𝑒 + 05 3.3559𝑒 + 05 1.7548𝑒 + 05
18 4.6349𝑒 + 01 3.3731𝑒 + 03 2.6897𝑒 + 02 5.5046𝑒 + 02 7.1612𝑒 + 02
19 1.1396𝑒 + 01 1.6781𝑒 + 01 1.3840𝑒 + 01 1.4027𝑒 + 01 1.2754𝑒 + 00
20 3.4528𝑒 + 03 3.9387𝑒 + 04 1.1763𝑒 + 04 1.2018𝑒 + 04 5.7052𝑒 + 03
21 6.6342𝑒 + 04 5.3146𝑒 + 05 1.9755𝑒 + 05 2.1197𝑒 + 05 1.0976𝑒 + 05
22 1.4846𝑒 + 02 8.4777𝑒 + 02 4.1171𝑒 + 02 4.2071𝑒 + 02 1.3888𝑒 + 02
23 3.1524𝑒 + 02 3.1526𝑒 + 02 3.1525𝑒 + 02 3.1525𝑒 + 02 2.9608𝑒− 03
24 2.2368𝑒 + 02 2.4464𝑒 + 02 2.2773𝑒 + 02 2.2895𝑒 + 02 4.5394𝑒 + 00
25 2.0649𝑒 + 02 2.1392𝑒 + 02 2.1051𝑒 + 02 2.1054𝑒 + 02 1.7009𝑒 + 00
26 1.0021𝑒 + 02 1.0056𝑒 + 02 1.0036𝑒 + 02 1.0036𝑒 + 02 9.3247𝑒− 02
27 4.0250𝑒 + 02 8.5105𝑒 + 02 6.4950𝑒 + 02 5.8929𝑒 + 02 1.7176𝑒 + 02
28 8.7902𝑒 + 02 3.1856𝑒 + 03 1.4349𝑒 + 03 1.6022𝑒 + 03 5.8851𝑒 + 02
29 1.0321𝑒 + 03 1.9850𝑒 + 03 1.3055𝑒 + 03 1.3306𝑒 + 03 2.0581𝑒 + 02
30 2.0985𝑒 + 03 4.4863𝑒 + 03 3.2094𝑒 + 03 3.2273𝑒 + 03 5.9982𝑒 + 02

2243

TABLE XII: Results for 50D

Func. Best Worst Median Mean Std. Dev.
1 9.3233𝑒 + 05 3.4638𝑒 + 06 2.0414𝑒 + 06 2.1285𝑒 + 06 5.5455𝑒 + 05
2 4.7555𝑒 + 02 1.0668𝑒 + 04 3.9445𝑒 + 03 4.6175𝑒 + 03 2.4460𝑒 + 03
3 4.4492𝑒 + 03 2.1852𝑒 + 04 1.1492𝑒 + 04 1.1327𝑒 + 04 3.3122𝑒 + 03
4 6.8296𝑒 + 01 1.8960𝑒 + 02 1.3975𝑒 + 02 1.3257𝑒 + 02 2.6275𝑒 + 01
5 2.0000𝑒 + 01 2.0001𝑒 + 01 2.0000𝑒 + 01 2.0000𝑒 + 01 7.5942𝑒− 05
6 2.7653𝑒 + 01 4.1354𝑒 + 01 3.5999𝑒 + 01 3.5642𝑒 + 01 3.3526𝑒 + 00
7 3.2813𝑒− 03 2.5539𝑒− 02 1.3214𝑒− 02 1.3104𝑒− 02 5.3208𝑒− 03
8 4.1790𝑒 + 01 1.0646𝑒 + 02 6.5712𝑒 + 01 6.6967𝑒 + 01 1.3401𝑒 + 01
9 5.8703𝑒 + 01 1.6616𝑒 + 02 9.0541𝑒 + 01 9.3156𝑒 + 01 1.8650𝑒 + 01

10 1.1302𝑒 + 03 4.0901𝑒 + 03 2.6482𝑒 + 03 2.5661𝑒 + 03 6.7580𝑒 + 02
11 4.0153𝑒 + 03 8.3330𝑒 + 03 6.0564𝑒 + 03 6.1785𝑒 + 03 9.0019𝑒 + 02
12 8.9723𝑒− 02 4.4947𝑒− 01 2.0066𝑒− 01 2.0718𝑒− 01 6.8092𝑒− 02
13 3.8756𝑒− 01 5.8012𝑒− 01 4.7233𝑒− 01 4.7179𝑒− 01 4.7699𝑒− 02
14 2.7542𝑒− 01 3.5641𝑒− 01 3.1486𝑒− 01 3.1634𝑒− 01 2.0054𝑒− 02
15 6.5653𝑒 + 01 1.4188𝑒 + 02 9.2688𝑒 + 01 9.5118𝑒 + 01 1.7216𝑒 + 01
16 1.9265𝑒 + 01 2.2101𝑒 + 01 2.0501𝑒 + 01 2.0634𝑒 + 01 7.4250𝑒− 01
17 1.1092𝑒 + 05 8.9156𝑒 + 05 3.3306𝑒 + 05 3.4707𝑒 + 05 1.6532𝑒 + 05
18 1.3207𝑒 + 02 3.1442𝑒 + 03 8.8586𝑒 + 02 1.0276𝑒 + 03 6.3573𝑒 + 02
19 2.1726𝑒 + 01 6.6902𝑒 + 01 2.6981𝑒 + 01 2.9933𝑒 + 01 8.1163𝑒 + 00
20 7.2614𝑒 + 03 3.3869𝑒 + 04 1.7180𝑒 + 04 1.7177𝑒 + 04 5.8271𝑒 + 03
21 1.7818𝑒 + 05 9.5972𝑒 + 05 4.4486𝑒 + 05 4.6760𝑒 + 05 1.8693𝑒 + 05
22 3.9891𝑒 + 02 1.5024𝑒 + 03 1.0907𝑒 + 03 1.0507𝑒 + 03 2.6318𝑒 + 02
23 3.4400𝑒 + 02 3.4401𝑒 + 02 3.4401𝑒 + 02 3.4401𝑒 + 02 3.0307𝑒− 04
24 2.5613𝑒 + 02 2.8525𝑒 + 02 2.7420𝑒 + 02 2.7318𝑒 + 02 6.2152𝑒 + 00
25 2.0000𝑒 + 02 2.2900𝑒 + 02 2.2114𝑒 + 02 2.1915𝑒 + 02 8.1734𝑒 + 00
26 1.0021𝑒 + 02 2.0020𝑒 + 02 1.0033𝑒 + 02 1.2185𝑒 + 02 4.1464𝑒 + 01
27 1.0490𝑒 + 03 1.3747𝑒 + 03 1.1786𝑒 + 03 1.1929𝑒 + 03 7.8248𝑒 + 01
28 3.3779𝑒 + 03 6.8852𝑒 + 03 4.8930𝑒 + 03 4.8432𝑒 + 03 7.2192𝑒 + 02
29 1.5854𝑒 + 03 3.1441𝑒 + 03 2.5127𝑒 + 03 2.4586𝑒 + 03 4.9458𝑒 + 02
30 1.5217𝑒 + 04 2.0769𝑒 + 04 1.8309𝑒 + 04 1.8439𝑒 + 04 1.1925𝑒 + 03

TABLE XIII: Results for 100D

Func. Best Worst Median Mean Std. Dev.
1 2.4183𝑒 + 07 4.8513𝑒 + 07 3.1610𝑒 + 07 3.2417𝑒 + 07 4.5619𝑒 + 06
2 8.4452𝑒 + 02 3.9053𝑒 + 04 1.3851𝑒 + 04 1.4606𝑒 + 04 6.6768𝑒 + 03
3 1.7794𝑒 + 04 3.5966𝑒 + 04 2.7092𝑒 + 04 2.7015𝑒 + 04 4.0642𝑒 + 03
4 3.3040𝑒 + 02 4.7099𝑒 + 02 3.9537𝑒 + 02 3.9568𝑒 + 02 3.5115𝑒 + 01
5 2.0000𝑒 + 01 2.0001𝑒 + 01 2.0000𝑒 + 01 2.0000𝑒 + 01 8.0875𝑒− 05
6 8.7948𝑒 + 01 1.1304𝑒 + 02 9.7877𝑒 + 01 9.7551𝑒 + 01 4.9272𝑒 + 00
7 9.2296𝑒− 03 4.1721𝑒− 02 2.1302𝑒− 02 2.2152𝑒− 02 7.3382𝑒− 03
8 1.5323𝑒 + 02 2.5671𝑒 + 02 1.9707𝑒 + 02 2.0017𝑒 + 02 2.3871𝑒 + 01
9 2.0098𝑒 + 02 2.9351𝑒 + 02 2.4078𝑒 + 02 2.4548𝑒 + 02 2.2234𝑒 + 01

10 3.5154𝑒 + 03 1.0181𝑒 + 04 6.0405𝑒 + 03 6.3267𝑒 + 03 1.2752𝑒 + 03
11 1.0120𝑒 + 04 1.7056𝑒 + 04 1.4028𝑒 + 04 1.3669𝑒 + 04 1.5581𝑒 + 03
12 1.9985𝑒− 01 5.5885𝑒− 01 3.7161𝑒− 01 3.7991𝑒− 01 8.9085𝑒− 02
13 4.3925𝑒− 01 5.8912𝑒− 01 5.0285𝑒− 01 5.0104𝑒− 01 3.0011𝑒− 02
14 1.5143𝑒− 01 1.8138𝑒− 01 1.6187𝑒− 01 1.6281𝑒− 01 7.2109𝑒− 03
15 3.6164𝑒 + 02 5.6875𝑒 + 02 4.4969𝑒 + 02 4.5313𝑒 + 02 5.2330𝑒 + 01
16 4.1126𝑒 + 01 4.5664𝑒 + 01 4.3330𝑒 + 01 4.3612𝑒 + 01 1.0370𝑒 + 00
17 1.0304𝑒 + 06 3.7266𝑒 + 06 2.0981𝑒 + 06 2.1717𝑒 + 06 4.8270𝑒 + 05
18 2.1530𝑒 + 02 1.5259𝑒 + 03 5.7270𝑒 + 02 6.3202𝑒 + 02 3.1093𝑒 + 02
19 5.0736𝑒 + 01 1.6730𝑒 + 02 9.2625𝑒 + 01 9.9327𝑒 + 01 1.9690𝑒 + 01
20 4.7750𝑒 + 04 1.1140𝑒 + 05 6.8687𝑒 + 04 7.1711𝑒 + 04 1.4154𝑒 + 04
21 1.0533𝑒 + 06 3.3801𝑒 + 06 1.8279𝑒 + 06 1.9177𝑒 + 06 4.7684𝑒 + 05
22 1.2238𝑒 + 03 3.3274𝑒 + 03 2.3040𝑒 + 03 2.2938𝑒 + 03 4.5285𝑒 + 02
23 3.6349𝑒 + 02 3.7643𝑒 + 02 3.7006𝑒 + 02 3.7003𝑒 + 02 3.2964𝑒 + 00
24 3.6860𝑒 + 02 3.8955𝑒 + 02 3.7540𝑒 + 02 3.7593𝑒 + 02 4.3245𝑒 + 00
25 2.0001𝑒 + 02 2.6273𝑒 + 02 2.3765𝑒 + 02 2.2742𝑒 + 02 2.0651𝑒 + 01
26 2.0019𝑒 + 02 2.0038𝑒 + 02 2.0028𝑒 + 02 2.0028𝑒 + 02 4.1800𝑒− 02
27 2.0107𝑒 + 03 2.7051𝑒 + 03 2.3428𝑒 + 03 2.3549𝑒 + 03 1.3405𝑒 + 02
28 1.0174𝑒 + 04 1.3795𝑒 + 04 1.2203𝑒 + 04 1.2094𝑒 + 04 8.9545𝑒 + 02
29 2.9018𝑒 + 03 4.7736𝑒 + 03 3.7789𝑒 + 03 3.8139𝑒 + 03 4.6716𝑒 + 02

2244

