
Model Representation and Cooperative Coevolution

for Finite-State Machine Evolution

Grant Dick∗ and Xin Yao†

∗Department of Information Science, University of Otago, New Zealand

grant.dick@otago.ac.nz
†Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA)

School of Computer Science, University of Birmingham, UK

x.yao@cs.bham.ac.uk

Abstract—The use and search of finite-state machine (FSM)
representations has a long history in evolutionary computation.
The flexibility of Mealy-style and Moore-style FSMs is traded
against the large number of parameters required to encode
machines with many states and/or large output alphabets. Recent
work using Mealy FSMs on the Tartarus problem has shown
good performance of the resulting machines, but the evolutionary
search is slower than for other representations. The aim of
this paper is two-fold: first, a comparison between Mealy and
Moore representations is considered on two problems, and then
the impact of cooperative coevolution on FSM evolutionary
search is examined. The results suggest that the search space of
Moore-style FSMs may be easier to explore through evolutionary
search than the search space of an equivalent-sized Mealy FSM
representation. The results presented also suggest that the tested
cooperative coevolutionary algorithms struggle to appropriately
manage the non-separability present in FSMs, indicating that
new approaches to cooperative coevolution may be needed to
explore FSMs and similar graphical structures.

Keywords—Finite-state machines, evolutionary search, repre-
sentation, cooperative coevolution

I. INTRODUCTION

The evolutionary search of finite-state machine (FSM) rep-

resentations can be traced back to some of the earliest work

in evolutionary computation [1]. FSMs provide simple, yet

flexible, solutions to many problems in control, prediction

and pattern recognition. However, their expressiveness is often

at the expense of requiring numerous variables to manage

state transition and environmental output. Consequentially,

the search space of finite-state machines is often large and

complex, and becomes increasingly difficult to explore as

problem size increases.

Recent work has explored the evolutionary search of Mealy-

style FSMs for use in the Tartarus problem [2]. This work

found that the resulting FSMs were very effective controllers

within the Tartarus domain, and outperformed control methods

from previous work. However, the Mealy representation used

in the work required almost 80000 variables to implement the

resulting machines, and this required considerable effort from

the evolutionary search to find good solutions. The aim of this

paper is to extend this previous work by undertaking a compar-

ison of Mealy and Moore FSM representations. The resulting

Moore representations require half the parameters of a Mealy

FSM with the same number of internal states, which reduces

the size of the search space considerably. Despite this reduced

complexity, the resulting Moore FSMs are able to offer equal

or better performance on the examined problems. Additionally,

the paper explores the use of cooperative coevolutionary

methods in the search of finite-state machines. The results

suggest that existing methods of cooperative coevolution do

not adequately manage the degree of non-separability present

in FSM representations, and subsequently cannot improve the

evolutionary search for good FSMs.

The remainder of this paper is structured as follows: §II

examines previous work related to evolutionary computation

and finite-state machines, and provides a brief overview of co-

operative coevolutionary models; §III outlines the evolutionary

model and test problems used in the experimental component

of this paper; §IV performs a comparison of evolutionary

search of Moore and Mealy-style finite-state machines; §V

examines the impact of introducing cooperative coevolutionary

models into finite-state machine evolution; finally, §VI con-

cludes the paper, and suggests possible future work.

II. RELATED WORK

Finite-state machines are a computational model in which a

limited number of internal states act as memory, and transition

between these states depends upon a response to the machine’s

current state and environmental input. Typically, a finite-state

machine is defined as a six-tuple (Q,Σ,∆, δ, λ, qi), where Q

is the set of internal states of the machine, Σ is the set of

permissible environmental inputs (e.g., sensory inputs of an

agent), and ∆ is the set of possible environmental outputs

(e.g., agent actions). The function δ, maps the current state

and environmental input into a transition into the machine’s

next internal state, while λ is the output function that maps

the machine’s current state and (optionally) environmental

input into a suitable environmental output from ∆. Finally, qi
denotes the initial state in which the machine is started. Many

different types of finite-state machine exist in the literature

— in this paper, we limit exploration to Mealy and Moore

implementations [3], [4]. The two models, examples of which

as depicted in Fig 1, differ in the way that the output function,

δ is defined: in the Mealy-style of FSM, δ takes both the cur-

rent machine state and the environmental input as parameters

in order to determine the output action. Conversely, the Moore
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(b) Moore FSM

Fig. 1. The Mealy and Moore finite-state machine models. In the Mealy
representation, environment actions (outputs) are assigned to each state
transition, while in the Moore model, outputs are assigned to destination states.

FSM approach defines δ purely as a function of the current

machine state. The two approaches present a trade-off between

simplicity, flexibility, and the number of required internal

states, with the Mealy representation argued as requiring fewer

internal states than an equivalent Moore FSM, at the expense

of needing to define an output label for each state transition.

Despite their differences in implementation, it is possible to

transform a Moore FSM into an equivalent-behaving Mealy

FSM (and vice versa) by using additional internal states [5].

A. Evolution of Finite-State Machines

As mentioned previously, finite-state machines feature

prominently in the history of evolutionary computation. The

seminal work of Fogel et al. evolved FSMs for predicting

sequences of symbols, ultimately creating the field of evolu-

tionary programming [1]. This work was later extended to ex-

amine the evolution of FSMs in the iterated prisoner’s dilemma

problem [6]. Subsequent work explored the use of genetic

algorithms to search for controllers for agent behaviour, with

the Tartarus problem a frequently explored benchmark [7], [2].

Additionally, FSMs have been evolved to produce defensive

behaviours in resource protection simulations [8]. Various

other examples of FSM evolution also appear in the litera-

ture [9], [10], [11], [12], [13].

Most work in evolutionary computation focuses on Mealy

FSM evolution, with the state transition and output functions

modelled as strings of value-pairs denoting the matching

input and corresponding output for the given state transition.

Some work has explored the evolutionary search of Moore-

style FSM representations [14], which typically requires fewer

parameters for implementation: each state transition requires

only a single parameter, while the output symbol attached to

each state is either evolved as part of the representation, or

externally assigned outside of the evolutionary search. Given

that the number of state transitions is typically much greater

than the number of internal states, Moore FSMs should require

around half the parameters of an equivalent-sized Mealy

FSM. However, there appears to be a lack of work directly

comparing the evolutionary search behaviours of Moore and

Mealy-style FSMs.

B. Cooperative Coevolution

The concept of coevolution features prominently in evo-

lutionary computation. Early work focused on competitive

coevolution, in which two or more populations evolve in a

predator-prey like fashion, with the fitness of each popula-

tion negatively correlated [15]. In the context of finite-state

machines, competitive coevolution has been explored in the

context of the Tartarus problem [16], but will not be explored

in this paper. In contrast to competitive coevolution, cooper-

ative coevolution presents a divide-and-conquer approach to

the problem of evolving solutions. In cooperative coevolution,

several populations coexist, each evolving subsets of the

parameters to the overall problem [17]. When an individual

from a given population needs to be evaluated, representatives

from the other populations are selected and combined with the

individual to form a complete solution to the problem. The

individual can then be evaluated against the target problem.

Two challenges are present in establishing a cooperative co-

evolutionary approach to a problem. The first is the previously

mentioned action of selecting population representatives. A

common solution to this, as used in this paper, is to select the

fittest individual from each population. Other solutions include

selecting an ensemble of individuals (such as the best, median

and worst fitness individuals) and performing multiple fitness

evaluations to obtain a clearer measure of fitness, albeit at the

expense of additional fitness evaluations.

In addition to selecting representatives, the second issue

that must be addressed in cooperative coevolution is deter-

mining the number of populations and which parameters each

population maintains. Some problems, such as the evolution

of finite-state machines or recurrent neural networks, offer

a natural decomposition of parameters by state or neuron,

so this becomes straightforward exercise [18]. An alternative

approach is to use random regrouping, in which each pop-

ulation is responsible for a random subset of the problem

parameters [19]. To encourage coupled evolution of parameters

during a run, these random groups are resampled at regular

intervals. This approach has been shown to be very effective on

high-dimension problems. Yet another approach is to attempt

to “learn” parameter interactions during the course of the run,

and use this to identify suitable parameter groupings [20].

III. EVOLUTIONARY MODEL AND TEST PROBLEMS

The previous work from which this paper is based explored

Mealy FSM representations that required almost 80000 vari-

ables. While the resulting FSM performed well, the evolution-

ary search was computationally expensive. As such, there is

a need to either reduce the number of required parameters to

encode the solution, or establish another model of evolutionary

search that more effectively searches the underlying parameter

space.

This paper uses the evolutionary model from previous

work [7], [2]. A population size of 200 individuals is used.

In each generation, the population is divided into 50 groups

of four individuals. Within each group, the fittest two individ-

uals undergo recombination and mutation, and the resulting
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offspring replace the two weakest individuals in the group. In

this way, half the population is replaced in each generation,

while an “elitist” strategy preserves the stronger population

members. For recombination, uniform crossover is used, while

point mutation is applied with probability 0.001.

The above breeding strategy was used for both Mealy and

Moore representations. Therefore, the only difference between

the configurations was in the underlying representations: for

Mealy FSMs, the representation was a vector of value-pairs

for each state transition, with one value denoting the des-

tination state, and another to determine the environmental

output for the transition. Crossover swapped complete value-

pairs between parents, while mutation operated on either the

destination value or output with equal probability. For the

Moore FSM representation, a simple array of integers was

used, with each value indicating the target state for the given

state transition. Rather than evolving the output function, we

hard code the output action to each state: for a given FSM with

m states, each state is assigned a unique identifier from 0 to

m − 1. The output attributed to the state is then determined

by the remainder of the division of the state’s id by the size

of the output alphabet. This approach to modelling Moore-

style FSM is similar to previous work, in which only the state

transition function was evolved [13]. However, in this work,

we hard-code the state outputs prior to evolutionary search.

Given that the labelling of internal states is arbitrary, and that

initialisation of the populations is done randomly, this should

not limit the flexibility of the resulting FSMs. Additionally,

it decouples the output function from the transition function,

and may make the search space smaller and easier to navigate.

A. Test Problems

Two test problems from previous work are explored in

this paper. The first problem, Tartarus is a control problem,

in which an agent is tasked with pushing boxes from the

interior locations of a bounded world to the exterior walls

using minimal sensory input in a given amount of time [21].

It presents a difficult challenge in which the agent must build

a complex mental model of the world in order to effectively

perform its tasks. At each time step, the agent is provided with

the status of the eight cells in its immediate neighbourhood.

Each cell can take on the one of the values EMPTY, WALL, or

BLOCK. As a consequence, the agent must be able to respond

to 38 = 6561 environmental inputs. At each time step, the

agent performs one of three actions: turn LEFT, turn RIGHT,

or move FORWARD. The move forward action serves as the

mechanism for moving boxes; if the agent is facing a box, and

the cell immediately beyond the box is empty, then the box

is moved to the empty cell as part of the agent’s movement.

If the cell beyond is not empty, then the agent performs no

action and a unit of time is consumed. Similarly, if the agent

performs a move forward action while facing a wall, then no

action is taken in the world and a unit of time is consumed.

Complete details for this problem can be found in previous

work [21], [2].

The second problem, competition for resources, is a sim-

ulation that models the attacker-defender actions required to

respond to an attack on resources in a networked environ-

ment [8]. In this problem, two agents (a player and opponent)

are placed in a square toroidal grid, and each can sense the

state of the four grid locations to their immediate north, south,

east and west (the von Neumann neighbourhood). Each cell

can take on three states - visited by the AGENT, visited

by the OPPONENT, or EMPTY (not previously visited by

either). Consequently, the agent must be able to respond to

34 = 81 environmental inputs.1 At each time step, the agent

must move to one of the four adjacent cells that has not been

visited by their opponent in a previous step. The goal of the

simulation is to visit, or “capture”, as many cells in the grid as

possible, either by trapping the opposing agent, or rushing to

grab empty cells as quickly as possible. For this problem, we

use the “greedy” opponent agent from previous work, which

attempts to move to empty cells if present, but otherwise

moves to random locations that it controls. We do not use

the greedy agent initialisation from previous work, but rather

initialise each state transition output to any available action.2

The remaining parameters for this problem were the same as

for the original work [8].

To enable consistent comparisons between the finite-state

machine representations, we used 12 internal states for the

Tartarus problem, and eight internal states for the competition

for resources problem. Varying the number of states, and

examining the change in performance and evolutionary search,

is left for future work. The number of states adopted is in-line

with previous work exploring Mealy FSMs. Given that Moore

FSMs are argued as requiring more internal states than Mealy

FSMS, if any bias is introduced by the number of internal

states chosen, it is probably in the favour of the Mealy FSM

representation.

Results presented in this paper are averages obtained from

30 independent runs from each configuration. Where possible,

results are presented with 95% confidence intervals (indicated

as shaded regions around the plotted mean).

IV. COMPARISON OF FSM REPRESENTATIONS

The evolution of best fitness for each finite-state machine

representation on the two test problems is shown in Figs 2 and

3. Two plots are shown in each figure: the first graph shows

the direct comparisons of fitness over time, while the second

graph attempts to normalise out the underlying trend to allow

more direct comparison to be made. The relative fitness in the

second graph is therefore:

frel (t) =
fMoore (t)− fMealy (t)

fMealy (t)
− 1 (1)

where fX (t) is the mean best fitness of method X at gener-

ation t.

1In actuality, there are only 80 inputs, as the case where an agent is
completely surrounded by cells visited by its opponent can never happen.

2The initial work initialised individuals by prioritising empty cells over
visited cells, but this was not necessary for this work.
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much smaller search space. This smaller search space may be

easier to navigate using evolutionary search, making it faster to

identify good solutions. The ability to locate good solutions is

then carried on into subsequent generations, maintaining good

search performance.

V. COOPERATIVE COEVOLUTION AND FSM EVOLUTION

Previous work has demonstrated the ability of cooperative

coevolution to increase the scalability of evolutionary search,

and to exploit inherent separability in problem domains. The

motivation for this work is inspired, in part, by previous work

demonstrating cooperative coevolution in neural network evo-

lution [18], [22]. In that work, each population was responsible

for maintaining the weights for a single neuron of a fixed

network topology. To evaluate an individual, representatives

from each population were taken to assemble the complete

weight set for the neural network, the resulting network

was applied to the test cases, and the measured fitness was

assigned to the individual. The results suggested that the

coevolutionary process was able to identify and exploit the

“limited separability” present in the representation [18]. It is

therefore interesting to see if this carries over to finite-state

machine evolution.

A standard coevolutionary strategy was adopted for this

paper. The parameters were grouped into several distinct

populations — each population had 200 members and used the

same breeding strategy outlined in §III. A “generation” acted

upon a single population in a round-robin fashion. In this way,

the same number of evaluations was performed in both the

coevolutionary and single population models, allowing simple

comparisons to be made. Grouping of parameters was done

in two ways: the first method was to group all of the state

transition variables pertaining to a given state, meaning that

there was a population for each internal state in the FSM. The

second method used the random grouping approach, with the

parameters of the representation shuffled and then allocated to

subpopulations in equal proportions. After 100 generations, a

new permutation of the parameters was established, and the

new parameter groupings were redistributed amongst the popu-

lations. For this configuration, the same number of populations

as the number of internal states was used, allowing for easy

comparison. Other population configurations were explored,

but the results are not presented here.

For evaluation purposes, the cooperative coevolutionary

framework needs to select representative individuals from

the populations not currently being worked upon. A simple

“best individual” strategy was adopted — the best individual

from each population not currently undergoing evolution was

selected and combined with each individual from the current

population as it underwent evaluation. Other strategies were

investigated, but this strategy appeared to provide the best

performance.

For a point of comparison, a recurrent neural network

(RNN) architecture was also evolved through cooperative

coevolution. The network architecture had five hidden nodes,

with an output node for each possible environmental action.

Hidden nodes used tanh activation functions, while the output

nodes used linear activation nodes. The output node with the

highest activation provided the environmental action for the

system.3 Given the fixed network topology, the representation

for this approach was a simple weight vector, with BLX-0.5

crossover [23] used for recombination, and Gaussian mutation

applied to each element with probability 0.05.

A. Results and Discussion

The evolution of best fitness over time for the cooperative

coevolutionary approaches is shown in Figs 4 and 5. As done

in §IV, the “raw” results are presented, along with an attempt

to normalise the performance relative to the single population

evolutionary model.

The RNN results for the Tartarus problem using the simple

model of cooperative coevolution appear to concur with previ-

ous work; the framework is able to find good RNN solutions

faster than an equivalent single population, non-cooperative,

approach. However, neither of the FSM representations were

able to improve upon the single population model by intro-

ducing cooperation. While the initial generations demonstrate

a small improvement in fitness over a single population, the

improvement is not maintained over the course of the run.

The performance of all representations using the random

regrouping approach is also poor, and the regrouping events

are clearly delineated by a substantial and immediate drop in

fitness, which takes time to overcome.

A similar story to the Tartarus problem is present in the

results for the competition for resources problem. In this

case, the cooperative approaches for both FSM representations

are able to achieve parity with the single population model,

albeit at a much slower rate. The RNN approach sees an

initial benefit from using cooperative coevolution, although the

fitness in the final generations lags behind that of the single

population model. In all three representations, the random

regrouping approach offers the worst overall performance,

although the impact of regrouping appears to be less significant

than on the Tartarus problem.

The results presented here raise some interesting points

for discussion. In all cases using cooperative coevolution, the

fitness of individuals in the very early generations is greater

than those in the single population model. This is likely due

to the “best individual” method used to select population

representatives; by selecting the “best” representatives from

each population, evaluation takes place under more controlled

circumstances. In a non-cooperative model, the random initial-

isation that takes place means that good parameter values are

likely to be paired with bad parameter values within the same

individual. However, in the cooperative model, each individual

samples only a subset of all the parameters, with the remain-

ing parameter values being fixed through the representative

solutions. Fixing these representative parameters reduces the

3In the competition for resources problem, the output nodes attached to
actions that were not currently possible were ignored, so only permissible

actions were considered for output.
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